

Verkehrsuntersuchung Östliches Altona

Im Auftrag

Freie und Hansestadt Hamburg Behörde für Wirtschaft, Verkehr und Innovation Alter Steinweg 4 20459 Hamburg

April 2019

Verkehrsuntersuchung Östliches Altona

Auftraggeber: Freie und Hansestadt Hamburg

Behörde für Wirtschaft, Verkehr und Innovation

Amt für Verkehr und Straßenwesen Verkehrs- und Infrastrukturentwicklung

Alter Steinweg 4 20459 Hamburg

Auftragnehmer: SBI Beratende Ingenieure für

Bau-Verkehr-Vermessung GmbH

Hasselbrookstraße 33 22089 Hamburg

040/25 19 57-0 office@sbi.de www.sbi.de

Bearbeiter:

Stand: 12. April 2019

Projekt: 7500K01

G:\PRJ\7500-7599\7500-Altona-Ost_10-VU\Bericht\P7500K01_VU Altona Ost_Bericht_190412.docx

Inhalt

1	Vorbemerkungen und Aufgabenstellung	4
2	Abschätzung der Verkehrsentwicklung	7
2.1	Methodik und Grundlagen	7
2.2	Analyseverkehrsstärken	8
2.3	Abgleich der Analyseverkehrsstärken und Ableitung der Prognosenullfälle	8
2.4	Städtebauliche Rahmenbedingungen – Verkehrserzeugung	13
2.5	Prognoseplanfälle	19
2.6	Ableitung der Spitzenstunden aus der Tagesverkehrsprognose	26
3	Verkehrstechnische Bewertung	27
3.1	Luruper Chaussee / Ebertplatz (LSA 450)	28
3.2	Bahrenfelder Chaussee / Von-Sauer-Straße (LSA 167)	
3.3	Bahrenfelder Chaussee / Bornkampsweg (LSA 353)	
3.4	Stresemannstraße / Plöner Straße (LSA 1598)	35
3.5	Stresemannstraße / Kaltenkircher Platz (LSA 151)	36
3.6	Stresemannstraße / Kieler Straße (LSA 7)	40
3.7	Stresemannstraße / Alsenstraße (LSA 153)	43
3.8	Stresemannstraße / Max-Brauer-Allee (LSA 18)	45
3.9	Harkortstraße / Erschließungsstraße Holsten-Areal	47
3.10	Julius-Leber-Straße / Harkortstraße (LSA 709)	48
3.11	Holstenstraße / Holstenplatz (LSA 600)	50
3.12	Holstenstraße / Max-Brauer-Allee (LSA 131)	52
3.13	Max-Brauer-Allee / Julius-Leber-Straße (LSA 706)	54
3.14	Max-Brauer-Allee / Goetheallee (LSA 1771)	56
3.15	Max-Brauer-Allee / Große Bergstraße (LSA 321)	58
3.16	Barnerstraße / Bahrenfelder Straße (LSA 417)	60
3.17	Barnerstraße / Friedensallee (LSA 617)	62
3.18	Friedensallee / Hohenzollernring (LSA 1004)	64
3.19	Von-Sauer-Straße / Friedensallee (LSA 1212)	66
3.20	Bornkampsweg / Holstenkamp (LSA 1148)	68
3.21	Holstenkamp / Große Bahnstraße (LSA 1043)	71
3.22	Eimsbütteler Marktplatz (LSA 1601 und 475)	73
3.23	Kieler Straße / Waidmannstraße (LSA 1332)	75
3.24	Kieler Straße / Augustenburger Straße (LSA 621)	77
3.25	Alsenstraße / Augustenburger Straße (LSA 942)	79
3.26	Fruchtallee / Doormannsweg (LSA 813)	81
3.27	Schäferkampsallee / Kleiner Schäferkamp (LSA 203)	84
3.28	Kleiner Schäferkamp / Weidenallee (LSA 219)	
3.29	Max-Brauer-Allee / Schulterblatt (LSA 221)	88

3.30	Weitere Knotenpunkte	90
4	Maßnahmen zur Verbesserung der Verkehrsabwicklung	91
4.1	Einzelmaßnahmen an den Knotenpunkten	91
4.1.1	Bestandssituation	91
4.1.2	Entwicklungsstufe 1	92
4.1.3	Entwicklungsstufe 2	94
4.2	Stärkung der Querverbindung Holsten-Areal	96
4.3	Westliche Anbindung Mitte Altona	97
4.4	Verkehrspolitische und städtebauliche Maßnahmen	98
5	Zusammenfassung	99
Litera	turverzeichnis	104
Anlag	enverzeichnis	106
Anha	ngverzeichnis	107

Anmerkung:

Der Anhang enthält für alle untersuchten Knotenpunkte die Übersichten der Knotenstrombelastungen in den maßgebenden Spitzenstunden früh und spät (Analyse, Entwicklungsstufen 1 und 2) und die durchgeführten Leistungsfähigkeitsnachweise (jeweils Signalzeitenplan und HBS-Bewertung). Aufgrund des Umfangs, der Datenmenge und der sehr fachspezifischen verkehrstechnischen Unterlagen ist der Anhang nicht integraler Bestandteil der Verkehrsuntersuchung. Er kann aber bei Bedarf bzw. Interesse und auf Anfrage zur Verfügung gestellt werden.

1 Vorbemerkungen und Aufgabenstellung

Im östlichen Bereich des Bezirkes Altona sind mittel- bis langfristig verschiedene städtebauliche Entwicklungen geplant. Diesbezüglich sind insbesondere folgende räumliche Schwerpunkte zu nennen:

- Mitte Altona Entwicklung eines neuen Stadtteilquartiers auf dem ehemaligen Gelände des Güterbahnhofes Altona
- Holsten-Areal Verlagerung der Holsten-Brauerei nach Neugraben und Entwicklung eines neuen, gemischt genutzten Quartiers
- Verlagerung des Fernbahnhofs Hamburg-Altona nach Diebsteich Bau eines neuen Fernbahnhofes und städtebauliche Neuentwicklung der frei werdenden Flächen
- Bahrenfeld-Nord Aufgabe der Trabrennbahn Bahrenfeld und Entwicklung eines neuen Wohnquartiers in Verbindung mit der Überdeckelung der Bundesautobahn A7 in Bahrenfeld

Im Rahmen der vorliegenden Verkehrsuntersuchung sind die Auswirkungen aller relevanten Bauvorhaben im erweiterten Untersuchungsraum auf die straßenverkehrliche Infrastruktur im Bereich Östliches Altona zu analysieren. Im Ergebnis soll eine aktuelle Planungsgrundlage für die verkehrliche Bewertung sämtlicher Entwicklungen geschaffen werden. Notwendige Ausbaubedarfe zur Gewährleistung einer qualitativ ausreichenden Verkehrsabwicklung für alle Verkehrsteilnehmer im übergeordneten Straßennetz sind im Sinne von Mindestanforderungen zu definieren und in Form von Systemskizzen darzustellen. Für ggf. stadträumlich oder verkehrlich schwierige Verhältnisse sind mögliche Alternativen, unter Umständen auch als Maßnahmenpakete, aufzuzeigen.

Die Untersuchung soll eine Fortschreibung und Aktualisierung der Ergebnisse aus den bisherigen bauhabenbezogenen Verkehrsuntersuchungen und -gutachten zu den o.a. städtebaulichen Entwicklungen darstellen. Die Aktualisierung der Grundlagen bezieht sich insbesondere auf

- die Konkretisierung der städtebaulichen Entwicklungen/Nutzungen,
- die Berücksichtigung aktueller Verkehrszählungen,
- die Berücksichtigung der seither in Planung befindlichen oder umgesetzten Maßnahmen an den zu untersuchenden Knotenpunkten (z.B. im Rahmen des Busbeschleunigungsprogramms oder des Programms zur Förderung des Radverkehrs),
- die Berücksichtigung der Auswirkungen gemäß der Luftreinhalteplanung (z.B. hinsichtlich der allgemeinen Verkehrsentwicklung und des Modal Split-Ansatzes für Neubauvorhaben).

Auf Grundlage einer ausführlichen Analyse der aktuellen Verkehrssituation sind zwei Prognose-Entwicklungsstufen zu betrachten: Die Entwicklungsstufe 1 (ES1) bezieht sich auf eine mittelfristige Umsetzung städtebaulicher Entwicklungen und den Ausbau diverser Knotenpunkte bis etwa 2025. In der Entwicklungsstufe 2 (ES2) werden eher langfristig bis zum Prognosehorizont 2030 die Realisierung aller relevanten Bauvorhaben und maßgebliche Ergänzungen im Straßennetz (u.a. Verlängerung des Holstenkamp und Überdeckelung

der Autobahn A7 zwischen der Anschlussstelle Othmarschen bis nördlich der Straßenachsen Holstenkamp/Schulgartenweg) berücksichtigt.

Der Untersuchungsraum und die relevanten Knotenpunkte im übergeordneten Straßennetz sind in Abbildung 1 dargestellt. Die "rot" markierten, insgesamt 29 Knotenpunkte auf den Hauptachsen

- Luruper Chaussee Bahrenfelder Chaussee Stresemannstraße zwischen Ebertplatz und Max-Brauer-Allee,
- Holstenkamp Fruchtallee Schäferkampsallee
 zwischen Bornkampsweg (bzw. Ebertplatz) und Beim Schlump,
- Kieler Straße Holstenstraße zwischen Eimsbütteler Marktplatz und Max-Brauer-Allee,
- Alsenstraße Doormannsweg zwischen Stresemannstraße und Fruchtallee,
- Max-Brauer-Allee Altonaer Straße Kleiner Schäferkamp zwischen Große Bergstraße und Schäferkampsallee,
- Friedensallee Barnerstraße
 zwischen Von-Sauer-Straße und Lessingtunnel,
- Harkortstraße zwischen Stresemannstraße und Julius-Leber-Straße

sind im Rahmen der vorliegenden Untersuchung hinsichtlich ihrer Leistungsfähigkeit zu bewerten (siehe Kapitel 3).

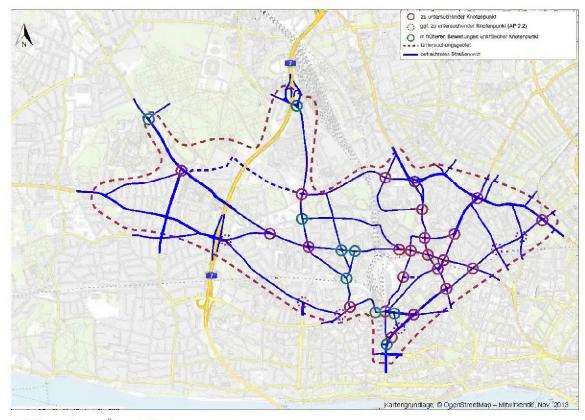


Abbildung 1: Übersichtsplan

Die "grün" gekennzeichneten Knotenpunkte wurden bereits im Auftrag der Freien und Hansestadt Hamburg in den vorangegangenen Untersuchungen

- Verkehrsgutachten f
 ür die Entwicklung der "Bahnfl
 ächen Altona" 2009 [1],
- Verkehrsuntersuchung "Neue Mitte Altona" 2010 [2],
- Ergänzung zur Verkehrsuntersuchung "Neue Mitte Altona" 2011 [3] und
- Verkehrsuntersuchung Bahrenfeld-Nord 2014 [4]

analysiert und auch bei Verkehrszunahmen durch städtebauliche Entwicklungen als nicht kritisch eingeschätzt. Infolgedessen wird mit Verweis auf die bereits vorliegenden Ergebnisse auf eine erneute detaillierte Bewertung der Knotenpunkte

- Luruper Hauptstraße/Stadionstraße,
- Schnackenburgallee/A7-AS Volkspark Ostrampe,
- Bornkampsweg/Leunastraße/Boschstraße,
- Stresemannstraße/Ruhrstraße,
- Stresemannstraße/Schützenstraße,
- Bahrenfelder Steindamm/Schützenstraße,
- Barnerstraße/Lessingtunnel,
- Julius-Leber-Straße/Goetheallee und
- Max-Brauer-Allee/Paul-Nevermann-Platz

in Abstimmung mit dem Auftraggeber verzichtet. Vielmehr wird durch einen quantitativen Vergleich der Prognosebelastungen "alt" und "neu" die seinerzeit ermittelte Leistungsfähigkeit an den Knotenpunkten verifiziert.

2 Abschätzung der Verkehrsentwicklung

2.1 Methodik und Grundlagen

Die Verkehrsprognose wird in sechs Schritten umgesetzt. Die Teilschritte werden in den Abschnitten 2.2 bis 2.6 detailliert erläutert.

Im <u>ersten Schritt</u> werden die Analyseverkehrsstärken ermittelt. Grundlage bilden dabei die Verkehrserhebungen der Freien und Hansestadt Hamburg [5], die regelmäßig oder anlassbezogen im gesamten Hamburger Straßennetz an Knotenpunkten (Einmündungen und Kreuzungen) oder an ausgewählten Querschnitten durchgeführt werden. Zusammenfassend kann das Analysejahr mit dem Jahr 2015 angegeben werden.

In einem zweiten Schritt werden die Ergebnisse eines hamburgweiten, auf einen normalen Werktag bezogenen Verkehrsmodells als Auszug für das Untersuchungsgebiet [6] analysiert, mit den vorliegenden Informationen (Schritt 1) abgeglichen und bei Bedarf kleinräumig aktualisiert sowie in Einzelfällen auch korrigiert. Dabei handelt es sich um das Verkehrsmodell der Firma Argus Stadt und Verkehr, dass in Hamburg bereits zur Untersuchung verschiedener verkehrlicher Fragestellung eingesetzt wurde und laufend fortgeschrieben und weiterentwickelt wird. Dieses als wesentliche Grundlage verwendete Verkehrsmodell wird im Weiteren als Argus-Modell bezeichnet, um gegebenenfalls Verwechslungen der Verkehrsprognose der vorliegenden Untersuchung zu vermeiden.

Zwar bildet das Argus-Modell die werktäglichen Verkehrsstärken im Hauptverkehrsstraßennetz in der Regel gut ab, im nachgeordneten Netz sind aber vereinzelt unplausible Verkehrsstärken festzustellen (z.B. westlich des geplanten Fernbahnhofs Diebsteich). Die erkannten Ungenauigkeiten wurden in Abstimmung mit der Behörde für Wirtschaft, Verkehr und Innovation – Amt V "Verkehr und Straßenwesen" manuell korrigiert und den weiteren Prognoseschritten zugrunde gelegt. Damit ist eine gute Vergleichbarkeit der Analysesituation (Schritt 1) der vorliegenden Verkehrsuntersuchung mit dem Argus-Modell für den Bereich Altona-Ost [6] sichergestellt.

Im <u>dritten Schritt</u> werden die Prognosenullfälle für die vorliegende Verkehrsuntersuchung in der Unterscheidung zwischen den Entwicklungsstufen 1 und 2 abgleitet. Wesentlicher Unterschied zwischen den Entwicklungsstufen ist dabei die Veränderung des Straßennetzes. In der Entwicklungsstufe 1 wird ein Straßennetz ohne verlängerten Holstenkamp (bis ca. 2025) und in Entwicklungsstufe 2 mit verlängerten Holstenkamp (ab ca. 2025) zugrunde gelegt.

Das Argus-Modell beschreibt im Rahmen der Prognoserechnungen die möglichen Wirkungen verkehrsnetzstruktureller Anpassungen (Verlängerung Holstenkamp, neue Straßenverbindung zwischen Plöner Straße und Waidmannstraße) aber auch der Maßnahmen der Luftreinhalteplanung auf die Verkehrsstärke im betrachteten Verkehrsnetz. Aus dem Argus-Modell wurden zwei Prognose-Nullfälle berechnet, die den Vorgaben der vorliegenden Untersuchung entsprechen (ohne die hier betrachteten städtebaulichen Entwicklungen). Diese Prognose-Nullfälle des Argus-Modells wurden mit den Erkenntnissen des zweiten Schritts angepasst und fortgeschrieben.

Die am 31. Mai 2018 in Kraft getretenen Durchfahrtsbeschränkungen für Dieselfahrzeuge auf einem knapp 600 m langen Abschnitt in der Max-Brauer-Allee und in der Stresemannstraße zwischen Pferdemarkt und Kaltenkircher Platz sind in den Verkehrsprognosen nicht berücksichtigt worden. Es ist davon auszugehen, dass diese Beschränkungen nur kurzfristig gelten und in den nächsten Jahren wieder aufgehoben werden.

Im <u>vierten Schritt</u> werden die Verkehrserzeugung der zu betrachtenden Entwicklungsvorhaben abgeschätzt und schließlich im <u>fünften Schritt</u> auf die Prognosenullfälle umgelegt, sodass sich die werktäglichen Prognoseverkehrsaufkommen streckenbezogen ergeben.

Dieser Prognoseverkehr wird abschließend im <u>sechsten Schritt</u> auf die Spitzenstundenbelastungen in den Hauptverkehrszeiten früh und spät in Anlehnung an die aktuellen Spitzenstundenanteile und Verkehrsstromverteilungen am jeweiligen Knotenpunkt umgerechnet.

2.2 Analyseverkehrsstärken

An 100 Zählstellen im Untersuchungsraum (77 Knotenpunkte und 23 Querschnitte) wurden insgesamt rund 150 einzelne Verkehrszählungen aus dem Zeitraum 2005 bis 2017 [5] analysiert und in Hinblick auf die Verwendbarkeit für die Verkehrsuntersuchung bewertet. Insgesamt kann auf dieser Grundlage bereits ein umfassendes Bild des Verkehrsgeschehens im Untersuchungsgebiet abgeleitet werden.

2.3 Abgleich der Analyseverkehrsstärken und Ableitung der Prognosenullfälle

Das Argus-Modell stellt derzeit noch das einzige stadtweite Verkehrsmodell zur Untersuchung verkehrsrelevanter Fragestellungen hinsichtlich der zukünftigen Verkehrsentwicklung in der Freien und Hansestadt Hamburg dar. Es ist damit eine wichtige Informationsquelle für die vorliegende Untersuchung. Der Auftraggeber stellt einen Auszug aus dem Argus-Modell für den Betrachtungsbereich der Verkehrsuntersuchung sowohl für die Analysesituation als auch für zwei Prognosenullfälle (ohne und mit verlängertem Holstenkamp) zur Verfügung [6]. Der Prognosenullfall mit verlängertem Holstenkamp dient dabei in erster Linie zur modellhaften Bestimmung der Verkehrsverlagerungen infolge des verlängerten Holstenkamp und der verkehrlichen Veränderungen durch die kleineren städtebaulichen Entwicklungen der Entwicklungsstufe 2, die im Rahmen der vorliegenden Untersuchung nicht im Detail modelliert wurden (vgl. Abschnitt 2.4 – Flächen mit weniger als 200 Wohneinheiten und/oder weniger als 5.000 m² Bruttogrundfläche für gewerbliche Nutzungen).

Die Ergebnisse des Analyseverkehrsmodells (Argus-Modell) werden mit den Ergebnissen des ersten Planungsschrittes verglichen. Dabei wird zwar eine grundsätzlich gute Übereinstimmung der Verkehrsbelastungen im Bereich der Hauptverkehrsstraßen festgestellt. Vereinzelt zeigen sich aber auch größere Abweichungen insbesondere im nachgeordneten Straßennetz. Beispielhaft seien hier die Verkehrsstärken in der Von-Hutten-Straße oder im Bereich westlich des neuen Fernbahnhofs Diebsteich genannt. Beispielsweise waren die Verkehrsstärken im Bereich westlich des neuen Fernbahnhofs in den Streckenzügen Leunastraße und Am Diebsteich nicht plausibel und wurden "händisch" ohne Aktualisierung bzw. Nachkalibrierung des Argus-Modells durch den Modellersteller angepasst.

Die Prognosenullfälle wurden projektspezifisch für die vorliegende Verkehrsuntersuchung berechnet und weichen damit beispielsweise gegenüber dem Luftreinhalteplan in Bezug auf

städtebauliche Entwicklungen und Straßenverkehrsinfrastruktur ab (siehe nachfolgende Tabellen). Die Prognosenullfälle der unterschiedlichen Untersuchungen sind damit nicht direkt miteinander vergleichbar.

In Tabelle 1 sind die straßenverkehrlichen Maßnahmen ausgewiesen, die im Argus-Modell für die projektspezifische Verkehrsprognose berücksichtigt wurden. Im Vergleich dazu sind auch die Ergänzungen im Stadtstraßennetz für das Modell des Luftreinhalteplans (LRP) aufgeführt (siehe Angaben in [6]).

Netzergänzung Stadtstraßen	Argus-Modell LRP 2025	Argus-Modell VU östl. Altona 2025
Anbindung Altenwerder Nord, Süd	Х	X
Ausbau Kattwykbrücke, Rethebrücke	X	X
2. Anbindung Steinwerder	X	X
Ausbau Freihafenelbbrücke	X	X
Umgestaltung Langenhorner Chaussee	-	X
Großmarktbrücke	_	X
Umbau Deichtorplatz	(-)	X
Umbau Hohenfelder Bucht	_	X
Umbau Knoten Steintorwall/ Altmannbrücke	7= 3	X
Kapazitätsbeschränkung Billhorner Brücke	-	X
Verlängerung Holstenkamp	X	in Entwicklungsstufe 2 berücksichtigt
Erschließungsstraßennetz Wilhelmsburg 2013+	X	X
Erschließungsstraßennetz HafenCity	X	X
Erschließungsstraßennetz Rothenburgsort	X	X
Erschließungsstraßennetz Mitte Altona	X	X
Erschließungsstraßennetz Bahrenfeld Nord	X	X
Erschließungsstraßennetz Fernbahnhof Diebsteich	-	X
Erschließungsstraßennetz Holstenareal	7-1	X

Tabelle 1: Straßenverkehrliche Maßnahmen im Vergleich der Projekte Luftreinhalteplanung (LRP) und Verkehrsuntersuchung Östliches Altona (Tabelle in Anlehnung an [6])

Zusammenfassend ist festzuhalten, dass im Rahmen der Prognosenullfälle für die Entwicklungsstufen 1 (ohne verlängerten Holstenkamp) und 2 (mit verlängertem Holstenkamp) alle bekannten städtebaulichen Entwicklungen in der Freien und Hansestadt Hamburg (ohne die hier projektbezogenen untersuchten Entwicklungsvorhaben) berücksichtigt sind. Dies gilt insbesondere für eine Vielzahl von Entwicklungen, die einerseits den definierten Grenzwert für die vorliegende Verkehrsuntersuchung von 200 Wohneinheiten bzw. 5.000 m² Bruttogrundfläche für gewerbliche Nutzungen nicht überschreiten (Stand 1. Quartal 2017) sowie andererseits auch für die großen Entwicklungsvorhaben, die zwar nicht im Plangebiet liegen,

aber aufgrund der zu erwartenden Neuverkehre das Verkehrsgeschehen im Plangebiet beeinflussen können (z.B. HafenCity, Kleiner Grasbrook, Oberbillwerder usw.).

Die im Rahmen der Luftreinhalteplanung untersuchten Maßnahmen zur Verbesserung der Luftqualität und deren Wirkungen auf den Kfz-Verkehr sind in der vorliegenden Untersuchung ebenso enthalten. Allerdings wurde für die projektbezogen zugrunde gelegte Verkehrsprognose nach Vorgabe der zuständigen Fachdienststellen für einzelne Maßnahmen – wie bspw. für die Erweiterung des StadtRAD-Angebotes oder Maßnahmen im Parkraumund Verkehrsmanagement – eine geringere Wirkung als in der Luftreinhalteplanung angenommen. Hintergrund ist dabei, dass ein etwas konservativerer Ansatz gewählt werden sollte.

Schließlich wurde im Rahmen der Modellprognose (Argus-Modell) eine Anpassung der bekannten Modal-Split-Anteile umgesetzt, um die vergleichsweise alten Erhebungsergebnisse der Mobilität in Deutschland aus dem Jahr 2008 (MID 2008; [7]) auf Basis einer Trendfortschreibung zu aktualisieren (vgl. Abbildung 2).

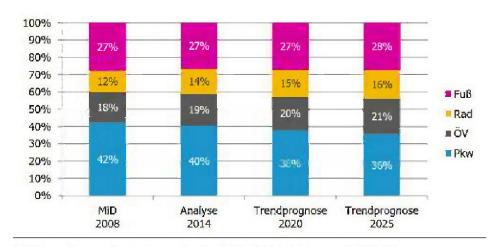


Abbildung 2: Abschätzung der Modal-Split-Entwicklung seit 2008 [6]

Die inzwischen vorliegenden Ergebnisse der Erhebungswelle 2017 (seit Juni 2018 [8] bzw. seit Dezember 2018, [9]; vgl. Abbildung 3) bestätigen im Wesentlichen die Ergebnisse der Abschätzung der Modal-Split-Entwicklung in dieser Trendextrapolation. Jedoch wurden die für 2025 abgeschätzten Modal-Split-Anteile hamburgweit bereits 2017 erreicht. Die im Rahmen der vorliegenden Untersuchung angesetzten mIV-Anteile zwischen 30 und 40% entsprechen damit den aktuellen Ergebnissen sehr gut und sind in Bezug auf die neuesten Erkenntnisse der MID 2017 als konservativ zu bewerten.

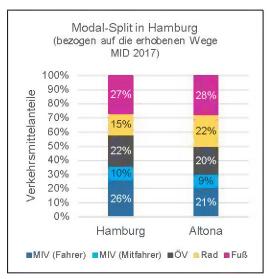


Abbildung 3: Modal-Split-Anteile in Hamburg und im Bezirk Altona gemäß MID 2017 [9]

Auch für die Prognosenullfälle des Argus-Modells waren vereinzelt kleinräumige Anpassungen der Verkehrsstärken zum Beispiel im Bereich der Ebertallee und der Theodorstraße erforderlich. Hier waren vergleichsweise hohe Richtungsunterschiede in den Prognoseverkehrsstärken festzustellen, die in diesem Umfang aus dem Bestand nicht abgeleitet werden konnten. Andererseits wurden im Bereich der Harkortstraße sehr hohe Entlastungen ermittelt, die allein durch den Entfall der Holstenbrauerei nicht zu erklären waren. Diesbezüglich wurden die Verkehrsstärken manuell korrigiert. Dies gilt insbesondere im Bereich der Harkortstraße auch für die Veränderungen der Buslinienführungen zur Erschließung des neuen Fernbahnhofs. Auch diese waren im Argus-Modell (noch) nicht enthalten und mussten ergänzt werden. Daraus resultieren vergleichsweise hohe Schwerverkehrsanteile im südlichen Abschnitt der Harkortstraße, die nach Norden abnehmen. Die absolute Anzahl der Fahrzeuge des Schwerverkehrs bleiben im Streckenverlauf aber weitgehend konstant und sind überwiegend dem Linienbusverkehr zuzuordnen.

Die gewählte Untersuchungsmethodik bietet zudem die Möglichkeit, die Verlagerungseffekte einer Verkehrsnetzergänzung modellgestützt bestimmen zu können. Hier wird auf bewährte Methoden zur (theoriegestützten) Abbildung des menschlichen Verkehrsverhaltens zurückgegriffen. Dabei werden im Rahmen der Verkehrsumlegungsrechnung die Reisezeit- und Reiseweiteneffekte der Verkehrsnetzveränderung berücksichtigt und der Routenentscheidung der Verkehrsteilnehmer zugrunde gelegt. Die folgenden beiden Abbildungen zeigen die Verlagerungseffekte durch eine Verlängerung des Holstenkamp bis zum Ebertplatz aus den bisherigen Untersuchungen (siehe Abbildung 4), die in früheren Untersuchungen aus Abstimmungen und Expertenwissen abgeleitet wurden und den Verlagerungseffekten, die nunmehr modellgestützt berechnet wurden (siehe Abbildung 5).



Abbildung 4: Verlagerungseffekte in Kfz/d durch eine Verlängerung des Holstenkamp aus früheren Untersuchungen (Abbildung aus [4])

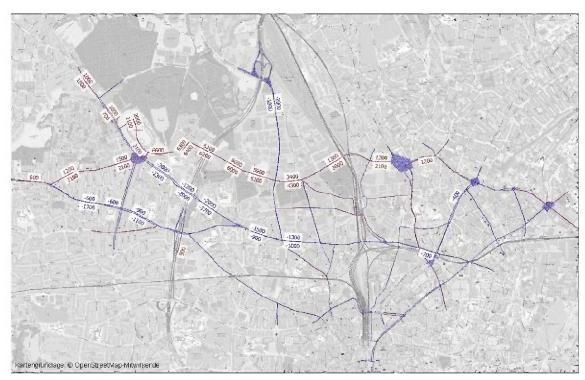


Abbildung 5: Verlagerungseffekte in Kfz/d durch eine Verlängerung des Holstenkamp modelltheoretisch abgeleitet

Der Vergleich zeigt, dass sich beide Abschätzungen zwar moderat unterscheiden, aber nicht grundsätzlich im Widerspruch zueinander stehen. Es ist festzustellen, dass die großräumige Wirkung des verlängerten Holstenkamp auf Grundlage der modellgestützten Berechnungen

geringer ausfallen als bisher erwartet. Insbesondere die deutlichen Umverteilungen zwischen dem Straßenzug Luruper Chaussee – Stresemannstraße und dem Straßenzug Holstenkamp – Fruchtallee treten nicht in dem bisher erwarteten Umfang ein. Östlich der Kieler Straße sind die Verlagerungen bereits so gering, dass sie voraussichtlich nicht mehr spürbar sind bzw. im Bereich der täglichen Schwankungsbreite liegen. Insgesamt betragen die Mehr- bzw. Minderbelastungen östlich der Kieler Straße in der Stresemannstraße nur noch rund -700 Kfz/d (statt bisher -3.900 Kfz/d) und in der Fruchtallee rund +1.200 Kfz/d (statt bisher +5.700 Kfz/d).

Andererseits ist aber auch festzustellen, dass die kleinräumige Wirkung des verlängerten Holstenkamp in gewissem Umfang neu zu bewerten ist: Entlang des verlängerten Holstenkamp sind entsprechend der aktuellen Verkehrsprognose ca. 12.000 Kfz/d als Verlagerungen aus dem umliegenden Straßennetz zu erwarten. Allerdings sind auch die Entlastungseffekte in der Luruper Chaussee (-4.300 statt -6.400 Kfz/d) und in der Bahrenfelder Chaussee (-2.000 statt -8.600 Kfz/d) geringer als bisher angenommen.

Die Veränderungen im Bereich der Osdorfer Landstraße sind mit jeweils rund -2.000 Kfz/d in beiden Untersuchungen nahezu identisch. Die Notkestraße wird hingegen etwas stärker belastet als bisher angenommen (+3.600 statt +2.000 Kfz/d).

Bei der Interpretation dieser Werte ist aber auch zu beachten, dass sich der methodische Ansatz der Verkehrsprognose in der aktuellen Verkehrsuntersuchung wesentlich von den vorangegangenen Untersuchungen unterscheidet. Insbesondere die Berücksichtigung von zusätzlichen Kfz-Verkehren aus großen städtebaulichen Entwicklungen, die zum Teil deutlich außerhalb des Betrachtungsgebietes liegen, aber auch die Berücksichtigung einer Vielzahl kleinerer Vorhaben, die nicht die definierte Grenze von 200 Wohneinheiten oder 5.000 m² Bruttogrundfläche für gewerbliche Nutzungen überschreiten, führen zu den beschriebenen Veränderungen der Verkehrsstärkensituation im Vergleich zu früheren Untersuchungen.

Im Ergebnis der vielfältigen Abgleiche zwischen den Ergebnissen der Verkehrszählungen, dem zur Verfügung gestellten Auszug aus dem Argus-Modell (Analyse und zwei Prognosenullfälle) können die projektbezogenen Verkehrsstärken in der Analyse sowie in den Nullfällen gemäß Anlagen 2 bis 4 angegeben werden.

2.4 Städtebauliche Rahmenbedingungen – Verkehrserzeugung

Bereits in den früheren Verkehrsuntersuchungen zur Mitte Altona [1], [2] und [3] sowie in der Verkehrsuntersuchung Bahrenfeld-Nord [4] wurden zahlreiche städtebaulichen Entwicklungen im Untersuchungsraum betrachtet und in ihrer Wirkung auf den Verkehrsablauf untersucht.

Einige dieser Vorhaben sind inzwischen umgesetzt (z.B. Stresemannstraße 300), andere werden auf absehbare Zeit nicht mehr weiter verfolgt (u.a. Mitte Altona 3. BA "Bahnflächen", Tucholsky-Quartier). Für einzelne der bereits betrachteten Vorhaben wurden zwischenzeitlich die Nutzungskonzepte aktualisiert und konkretisiert (z.B. Trabrennbahn Bahrenfeld, Neuer Fernbahnhof Altona inkl. der umliegenden Flächen für städtebauliche Entwicklungen). Schließlich sind aufgrund des ergänzten Betrachtungsgebietes auch einige zusätzliche Flächen zu berücksichtigen (z.B. Kolbenschmidt-Areal, Stellingen 62). Neuere Entwicklungsvorhaben, die seit der letzten Abfrage relevanter Flächen im Februar 2018 bekannt geworden

sind, konnten in der in der vorliegenden Untersuchung nicht berücksichtigt werden. Ein Beispiel für diese neuen Entwicklungsvorhaben ist die Science-City-Bahrenfeld. Für dieses Projekt soll im Jahr 2020 ein Architekturwettbewerb starten. Mit einer Realisierung des Gesamtprojekts und dem verkehrlichen Wirksamwerden ist somit nicht vor 2025 zu rechnen. Dieses Vorhaben würde dementsprechend der Entwicklungsstufe 2 zuzuordnen sein.

Für die Flächen, die im Rahmen der vorliegenden Untersuchung zu berücksichtigen sind, wurde ein Mindestwert von 200 Wohneinheiten bzw. 5.000 m² Bruttogrundfläche (BGF) vereinbart. Bei den zuständigen Bezirksämtern Altona, Mitte und Eimsbüttel wurden diesbezüglich die relevanten Bauvorhaben abgefragt. Die folgenden Tabellen zeigen eine Zusammenfassung der wesentlichen städtebaulichen Merkmale der einzelnen Bauvorhaben differenziert nach Stadtteilen. Die Bauvorhaben der Entwicklungsstufe 1 sind "grün", die Flächen der Entwicklungsstufe 2 "blau" hinterlegt.

Bereio	ch	B-Plan / Quartier	Wohn- einheiten	weitere Nutzungen / ergänzende Informationen
	Mitte Altona	Altona Nord 26 (1. BA)	1.600	7.500 m² BGF Büronutzung, 7.500 m² BGF Nahversorgung 5.000 m² BGF Kleingewerbe Stadtteilschule (1.000 Schüler / 150 Lehrende)
	Mitt	Bahnflächen (2. BA)	1.900	2.000 m² BGF Büronutzung 2.000 m² BGF Nahversorgung
Altona-Nord		Verlegung des Fern- bahnhofs Hamburg-Altona		ca. 20.000 Fahrgäste/d, davon rd. 10.000 Umsteiger 10 Kurzzeitstellplätze, 8 Taxistellplätze, 8 Stellplätze für Carsharing 11.500 m² BGF Büronutzung (ca. 130 Pkw-Stellplätze) 9.500 m² BGF Hotel (ca. 95. Pkw-Stellplätze) 4.760 m² BGF Shops / Fitness (ca. 55 Pkw-Stellplätze)
	Holsten	Holstenareal	1.650	12.800 m² BGF Büro / Dienstleistung 12.700 m² BGF Hotel, 3.500 m² BGF Einzelhandel / Gastronomie 3.000 m² Kleingewerbe 3.200 m² soziale Einrichtungen (z.B. Kita) 9.600 m² BGF Schule (davon ca. 6.000 m² Bestand)
		Stresemannstraße 213	780	Studentenapartments 2.600 m² Einzelhandel
		Städtebauliche Flächen im Umfeld des neuen Fernbahn- hofs Altona		100.000 m² BGF Büro / Dienstleistung 35.000 m² BGF Gewerbe

Tabelle 2a: Städtebauliche Rahmendaten zu den Entwicklungen im Stadtteil Altona Nord (Stand: Februar 2018)

Bereio	ch	B-Plan / Quartier	Wohn- einheiten	weitere Nutzungen / ergänzende Informationen
		Trabrennbahn	1.350	40.000 m² BGF Büronutzung 5.000 m² BGF Nahversorgung / Gastronomie
Pe		August-Kirch-Straße	900	40.000 m² Schule (inkl. Bestand und Sporthallen)
Bahrenfeld		Holstenkamp	250	
Bah		Bahrenfeld 66		10.000 m² BGF Gewerbe (Lager / Produktion)
		Von-Sauer-Straße / Bahrenfelder Ch.	320	180 Apartments, 140 Wohnungen 2.500 m² BGF Einzelhandel
Lurup		Lurup 62 Technologiepark		55.000 m² BGF Gewerbegebiet (Büro, Forschung)
Ottensen		Ottensen 66 Kolbenschmidt-Areal	680	
Otte		Ottensen 67 Euler-Hermes-Areal	470	
Stellingen		Stellingen 62 Sportplatzring / Basselweg	640	6.850 m² BGF Büronutzung 3.000 m² BGF Stadtteilhaus 4.100 m² BGF Nahversorgung / Gastronomie Kita – 120 Kinder
Ste		Stellingen 62 Spannskamp	250	
Pauli		St- Pauli D164 Nobistor 16		4.300 m² BGF Büronutzung 1.100 m² BGF Gastronomie
rg.		St-Pauli D164 Holstenstraße 5-7		10.950 m² BGF Hotel (196 Gästezimmer) 2.100 m² BGF Nahversorgung

Tabelle 2b: Städtebauliche Rahmendaten zu den Entwicklungen in den Stadteilen Bahrenfeld, Lurup, Ottensen, Stellingen und St. Pauli (Stand: Februar 2018)

Abbildung 6 zeigt die Lage der städtebaulichen Entwicklungen im Untersuchungsgebiet und verdeutlicht die beiden Entwicklungsschwerpunkte in den Bereichen Mitte Altona und im Umfeld der Trabrennbahn Bahrenfeld.

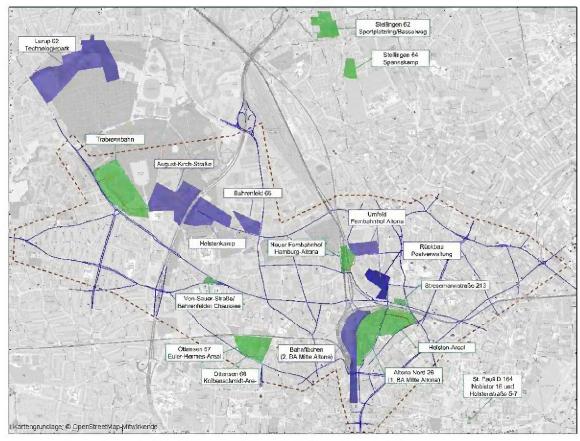


Abbildung 6: Lage der Entwicklungsvorhaben im Untersuchungsgebiet (Entwicklungsstufe 1 – grün; Entwicklungsstufe 2 – blau)

Zwar werden im Rahmen der Verkehrsprognose nur die aufgelisteten 18 Entwicklungen explizit betrachtet. Die übrigen (kleineren) städtebaulichen Entwicklungen sind jedoch aufgrund der gewählten Prognosemethodik implizit berücksichtigt.

Die Parameter der Verkehrserzeugungsberechnung orientieren sich an den vorherigen Untersuchungen. Allerdings wurden auch einzelne Parameter aktualisiert:

- Für alle Wohnnutzungen wird der Ansatz von durchschnittlich 2,0 Einwohner/ Wohneinheit gewählt (Ausnahme: Kleinstwohnungen/Apartments). Dies entspricht dem hamburgweiten Mittelwert für Bestandswohnungen im Jahr 2016.
- Der Wirtschaftsverkehr wird als eigene Nutzergruppe ausgewiesen. Der Wirtschaftsverkehr wurde in den vorherigen Untersuchungen zwar nicht vernachlässigt, aber auch nicht gesondert aufgeführt.
- Die Modal-Split-Anteile werden entsprechend der vorliegenden Erkenntnisse aktualisiert und je nach räumlicher Lage der einzelnen Entwicklungsvorhaben weiter differenziert. Zwar wird für die Flächen in Altona (bzw. Bezirk Mitte) weiterhin von einem MIV-Anteil von 35% ausgegangen, für die Flächen in Bahrenfeld und Eimsbüttel wird der MIV-Anteil aber moderat auf 40% reduziert. Zusätzlich wird für die Flächen im Einzugsbereich von S- bzw. U-Bahnhaltestellen ein um 5%-Punkte reduzierter MIV-Anteil angesetzt. Geplante oder im Rahmen von Machbarkeitsstudien zu untersuchende Erweiterungen des U- und S-Bahnnetzes (z.B. S32 oder der U5) werden

aufgrund der noch ungewissen Realisierungschancen und -zeiträume nicht berücksichtigt. Erst nach Abschluss der laufenden Machbarkeitsuntersuchungen vsl. im Jahr 2019 soll eine verkehrspolitische Entscheidung über die Erschließung des Hamburger Westens mit einem Schnellbahnsystem fallen.

Die folgende Tabelle 3 fasst die Ergebnisse der Verkehrserzeugungsberechnung zusammen. Die Annahmen und Ansätze der verkehrlichen Kenngrößen für die Verkehrserzeugung werden für die einzelnen Entwicklungsvorhaben detailliert in Anlage 1 ausgewiesen. Es wird deutlich, dass allein die hier betrachteten städtebaulichen Entwicklungen vsl. rund 36.000 zusätzliche Kfz-Fahrten/d erzeugen werden, wovon zwischen etwa 8 bis 12% auf die Spitzenstunden früh und spät entfallen. Rund 70% des gesamten zusätzlichen Kfz-Verkehrsaufkommens werden in der Entwicklungsstufe 1 realisiert.

B-Plan / Quartier	Neuverkehrsaufkommen						
	Tagesve	rkehr (gesa	amt)	Spitzenstu	unde früh	Spitzenstu	ınde spät
	[Kfz/d]	[SV/d]	SV-	[Kfz	[Kfz/h]		:/h]
		-	Anteil	Quellver- kehr	Ziel- verkehr	Quellver- kehr	Ziel- verkehr
Altona Nord 26 (1. BA Mitte Altona)	4.760	120	3%	250	200	260	300
Bahnflächen (2. BA Mitte Altona)	3.380	120	4%	220	60	150	220
Neuer Fernbahnhof Hamburg-Altona	2.200	20	1%	60	100	180	170
Holsten-Areal	4.020	140	3%	240	110	200	260
Stresemannstraße 213	970	20	2%	50	20	60	70
Städtebauliche Flächen im Umfeld des neuen Fernbahnhofs Hamburg-Altona	4.170	340	8%	120	400	290	130
Trabrennbahn	5.010	140	3%	250	220	270	280
August-Kirch-Straße	2.050	60	3%	150	90	90	130
Holstenkamp	520	20	4%	40	10	30	40
Bahrenfeld 66	240	100	42%	10	20	20	10
Von-Sauer-Straße/ Bahrenfelder Ch.	1.050	20	2%	50	20	60	70
Lurup 62 – Technologiepark	740	20	3%	30	100	60	20
Ottensen 66 - Kolbenschmidt-Areal	1.600	20	1%	120	20	70	110

Tabelle 3a: Verkehrsaufkommen der zusätzlichen Entwicklungsvorhaben

B-Plan / Quartier	Neuverkehrsaufkommen							
	Tagesverkehr (gesamt)		amt)	Spitzenstu	unde früh	Spitzenstunde spät		
	[Kfz/d]	[SV/d]	SV-	[Kfz	:/h]	[Kfz/h]		
			Anteil	Quellver- kehr	Ziel- verkehr	Quellver- kehr	Ziel- verkehr	
Ottensen 67 - Euler-Hermes-Areal	1.110	20	2%	80	20	50	80	
Stellingen 62 - Sportplatzring/ Basselweg	4.090	40	1%	180	130	250	290	
Stellingen 64 - Spannskamp	570	20	4%	40	10	30	40	
St. Pauli D164 - Nobistor 16	280	0	0%	10	20	30	20	
St. Pauli D164 - Holstenstraße 5-7	420	20	5%	20	20	30	40	
Rückbau Postverwaltung	-1.010	0	0%	-10	-50	-80	-60	
Entwicklungsstufe 1	26.080	580	2%	1.350	890	1.490	1.730	
Entwicklungsstufe 2	36.170	1.240	3%	1.910	1.520	2.050	2.220	

Tabelle 3b: Verkehrsaufkommen der zusätzlichen Entwicklungsvorhaben (Fortsetzung)

Zur räumlichen Verteilung der Kfz-Neuverkehre wird ein "Sektorenmodell" mit sieben einheitlichen Quell-/Zielsektoren zugrunde gelegt (siehe Abbildung 7).

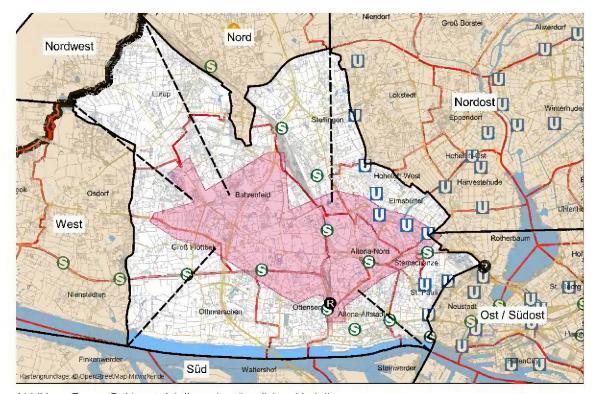


Abbildung 7: Sektoreneinteilung der räumlichen Verteilung

Im "Sektorenmodell" werden die einzelnen Entwicklungsvorhaben den Teilbereichen Ost, Mitte und West des Untersuchungsgebiets zugordnet. Für diese Teilbereiche werden jeweils prozentuale Verteilungen auf die sieben Quell-/Zielsektoren definiert und anschließend in das modellierte Straßennetz umgelegt. Tabelle 4 zeigt die Anteile der Quell-/Zielsektoren am Gesamtverkehrsaufkommen aus den jeweiligen Teilbereichen.

Richtungen	ohne/ mit verlängertem Holstenkamp						
(Quell- bzw. Zielsektor)	Ost	Mitte	West				
	Altona Nord 26, Bahnflächen, Holsten-Areal, Stresemannstraße 213 neuer Fernbhf. HH-Altona und Umfeld, St Pauli D164	Von-Sauer-Straße/ Bahrenfelder Chaussee, Ottensen 66 und 67, Stellingen 62 und 64	Trabrennbahn, August-Kirch-Straße, Holstenkamp, Bahrenfeld 66 Lurup 62				
Nordwest	5%	10%	15%				
Nord	20%	25%	25%				
Nordost	20%	15%	10%				
Ost/Südost	30%	20%	20%				
Süd	20%	20%	15%				
West	5%	10%	15%				

Tabelle 4: Räumliche Verteilung der Quell- und Zielverkehre in den drei Teilbereichen

2.5 Prognoseplanfälle

Auf Grundlage der zuvor definierten Prognosenullfälle, der Abschätzung des zusätzlichen Verkehrsaufkommens der maßgeblichen Entwicklungsvorhaben und dessen räumlicher Verteilung werden die Prognoseverkehrsstärken in den beiden Entwicklungsstufen 1 und 2 bestimmt. Dazu werden die Kfz-Neuverkehre gemäß den oben genannten prozentualen Anteilen auf das Straßennetz im Umlegungsmodell verteilt. Dabei werden (soweit möglich und sinnvoll) nicht nur die direkten Verbindungen zwischen den Entwicklungsgebieten und den Quell-/Zielsektoren, sondern auch Alternativrouten genutzt. Grundlage für die Bewertung einer Strecke als sinnvolle Alternativroute sind unter anderem die tatsächlich im Straßennetz erreichbaren Reisezeiten in den Hauptverkehrszeiten unter Berücksichtigung von Erfahrungswerten und tageszeitspezifisch ermittelten Routenempfehlungen auf der Internetseite www.google.de/maps. Die Lage einzelner Gebiete bedingt dabei, dass es für bestimmte Quell-/Zielsektoren keine Alternativrouten gibt. Beispielsweise ist der nördliche Zielsektor aus dem Entwicklungsgebiet Bahrenfeld 66 nur über die Schnackenburgallee erreichbar. Für das benachbarte Zielgebiet Trabrennbahn ist in der Entwicklungsstufe 2 zumindest mit einem Anteil an Fahrten zu rechnen, die nicht den verlängerten Holstenkamp und die Schnackenburgallee wählen, um den nördlichen Zielsektor zu erreichen, sondern die Stadionstraße nutzen.

Die nachfolgenden Abbildungen dokumentieren auszugsweise die projektbezogenen Umlegungsergebnisse für die Prognoseplanfälle der beiden Entwicklungsstufen 1 und 2 sowie die Verkehrsentwicklung im Vergleich zum Prognosenullfall als Differenzenplots (siehe auch vollständige Darstellungen in den Anlagen 5 bis 9).

Die Differenzenpläne zeigen, dass infolge der städtebaulichen Entwicklungsvorhaben im gesamten betrachteten Straßennetz zum Teil mit erheblichen Mehrbelastungen gegenüber (der heutigen Situation und) den Prognosenullfällen zu rechnen ist. Insbesondere im Bereich der östlichen Stresemannstraße und im Straßenzug Holstenstraße sind abschnittsweise Zunahmen bis zu 8.000 Kfz/d gegenüber der heutigen Situation zu erwarten. Dies gilt in fast vergleichbarer Größenordnung auch für den Straßenzug Fruchtallee.

Mit den Verkehrsverlagerungen auf den verlängerten Holstenkamp können die Zunahmen in der westlichen Stresemannstraße nahezu auf das heutige Niveau begrenzt werden. Im Abschnitt der Bahrenfelder Chaussee sind leichte Rückgänge zu erwarten, die aber im täglichen Verkehrsablauf vermutlich kaum spürbar sein werden. Der verlängerte Holstenkamp wird hingegen in erheblichem Maße mit zusätzlichen Kfz-Verkehren aus den städtebaulichen Entwicklungen, aber auch in nicht unerheblichem Umfang durch Verkehrsverlagerungen belastet. Im Bereich westlich des Bornkampswegs sind rund 16.600 Kfz/d zu erwarten. In Höhe des zukünftigen Autobahndeckels werden rund 15.300 Kfz/d und nördlich des Ebertplatzes ebenfalls rund 16.600 Kfz/d prognostiziert. Im Vergleich zur Verkehrsuntersuchung Bahrenfeld-Nord [4] werden auf dem verlängerten Holstenkamp um rund 3.500 bis 4.000 Kfz/d höhere Verkehrsbelastungen prognostiziert. Allerdings sind die Zunahmen unmittelbar westlich des Bornkampswegs im Vergleich zur Verkehrsuntersuchung Bahrenfeld-Nord deutlich geringer. Dies resultiert aus einer Neubewertung der Verkehrsstärken in der Analysesituation der vorliegenden Verkehrsuntersuchung unter Berücksichtigung der vorliegenden Verkehrszählungen und der zukünftig entfallenden Nutzungen (Kleingärten).

Diese beschriebenen Veränderungen der Verkehrsströme nach Realisierung des verlängerten Holstenkamp sind bereits in Abbildung 5 – allerdings ohne die zusätzlichen Verkehrsaufkommen der untersuchten städtebaulichen Entwicklungsvorhaben – dargestellt. Abbildung 12 zeigt nunmehr ergänzend dazu die Veränderungen der Verkehrsstärken im betrachteten Straßennetz zwischen dem Prognosenullfall ohne verlängerten Holstenkamp und den zu erwartenden Verkehrsstärken der Entwicklungsstufe 2.

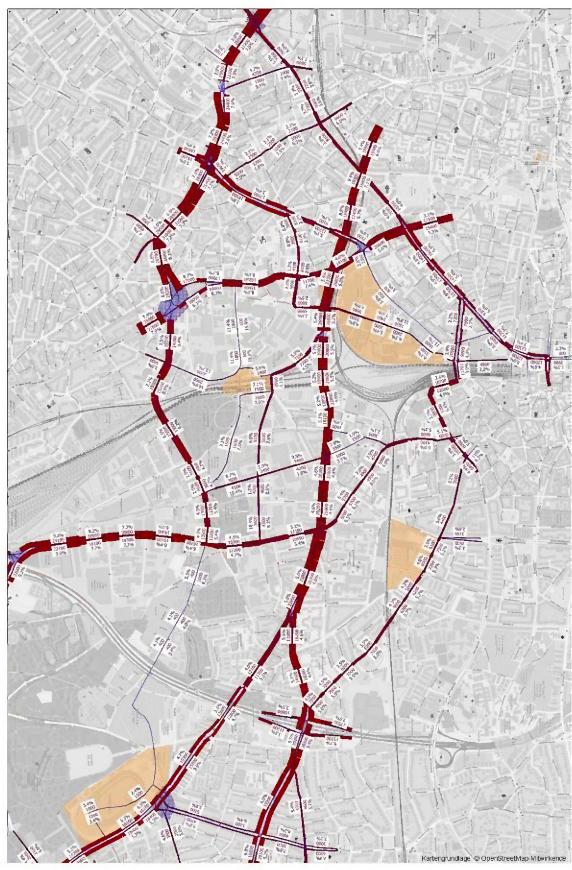


Abbildung 8: Prognoseplanfall Entwicklungsstufe 1 (ca. 2025) - Kfz/d und SV-Anteil

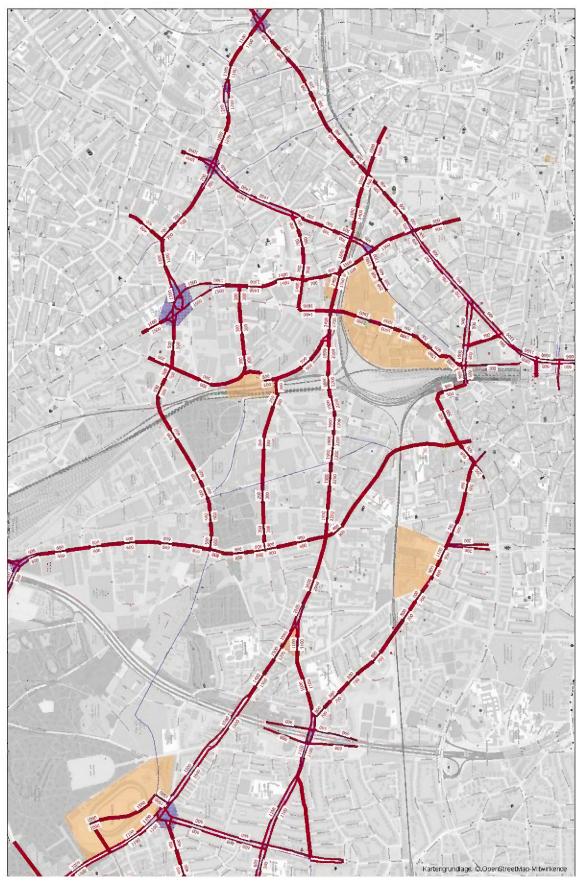


Abbildung 9: Differenzenplan Prognoseplanfall Entwicklungsstufe 1 – Prognosenullfall ohne verlängerten Holstenkamp in Kfz/d

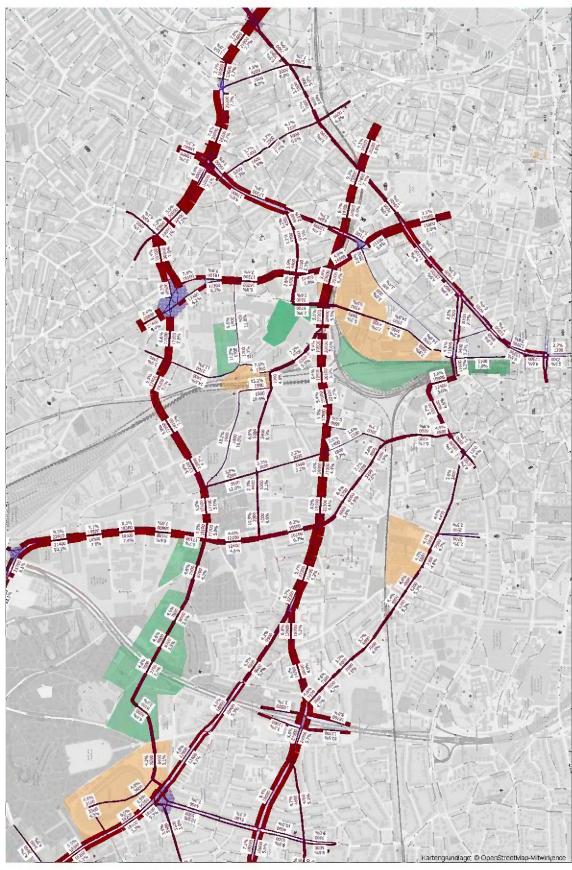


Abbildung 10: Prognoseplanfall Entwicklungsstufe 2 (ca. 2030) - Kfz/d und SV-Anteil

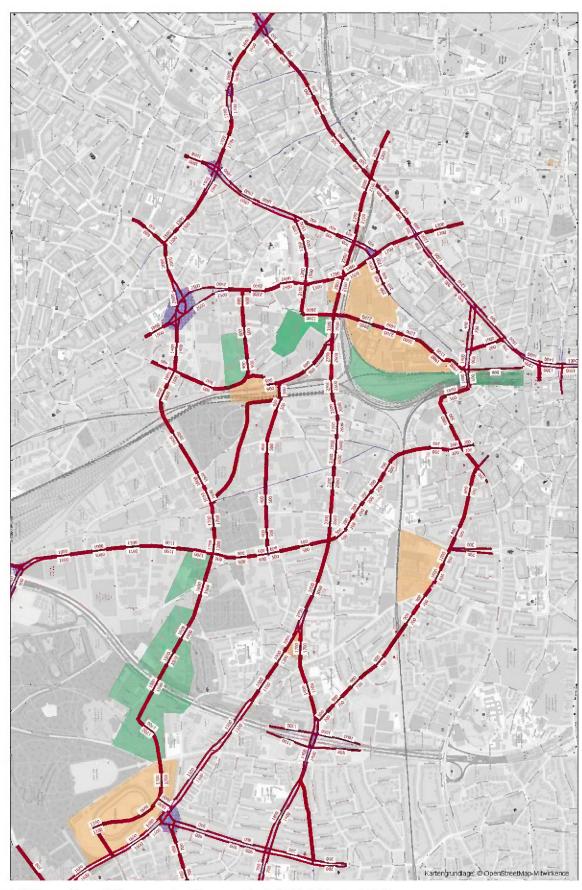


Abbildung 11: Differenzenplan Prognoseplanfall Entwicklungsstufe 2 – Prognosenullfall mit verlängertem Holstenkamp – Kfz/d

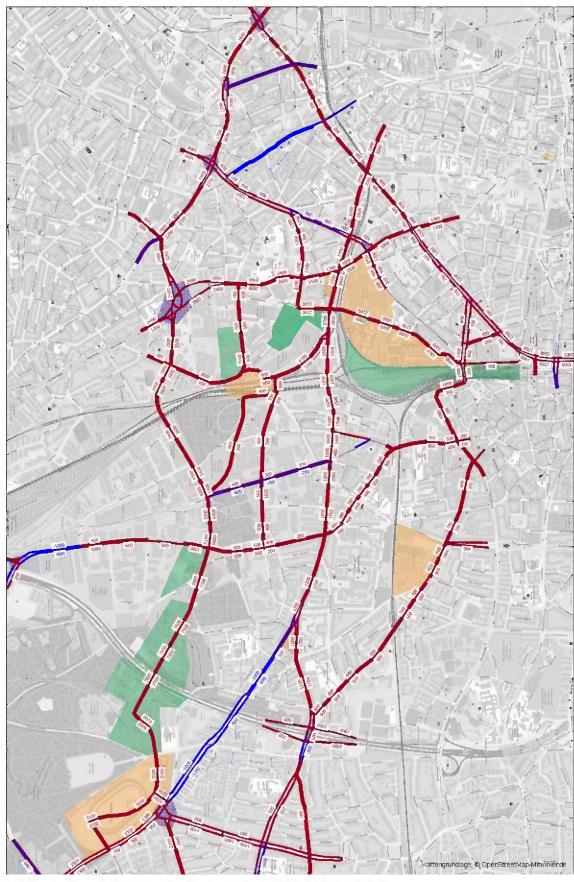


Abbildung 12: Differenzenplan Prognoseplanfall Entwicklungsstufe 2 – Prognosenulffall ohne verlängerten Holstenkamp – Kfz/d

2.6 Ableitung der Spitzenstunden aus der Tagesverkehrsprognose

Das Argus-Modell ist ein reines Tagesverkehrsmodell. Für die nachfolgende verkehrstechnische Bewertung der Leistungsfähigkeit der Knotenpunkte im Untersuchungsraum sind die maßgebenden Spitzenstunden früh und spät aus dem prognostizierten Tagesverkehr abzuleiten. Hierfür wird auf die Ergebnisse der aktuellen Verkehrserhebungen an den Knotenpunkten zurückgegriffen. Die einzelnen Knotenpunktströme werden analog zu den Veränderungen der Tagesverkehrsstärken zwischen dem Analysemodell und den Prognosenullfällen hochgerechnet und anschließend mit den Kfz-Neuverkehren der Entwicklungsgebiete in den jeweiligen Spitzenstunden überlagert.

Die Spitzenstundenbelastungen für die Analysesituation sowie für die Entwicklungsstufen 1 und 2 sind im Anhang für jeden untersuchten Knotenpunkt ausgewiesen.

3 Verkehrstechnische Bewertung

Die überschlägige Bemessung und verkehrstechnische Bewertung der Leistungsfähigkeit der Knotenpunkte erfolgt unter Verwendung des Programmsystems Lisa+ [10] und orientiert sich an dem Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS) [11].

Prinzipiell werden für die Leistungsfähigkeitsberechnungen an den signalisierten Knotenpunkten die aktuellen Festzeitprogramme in den maßgebenden Spitzenstunden und die derzeitige Knotenpunktgeometrie [12] zugrunde gelegt. Sofern hierbei keine ausreichende Verkehrsqualität gewährleistet werden kann, werden die Möglichkeiten einer Optimierung der Signalisierung geprüft und ggf. erforderliche Ausbaumaßnahmen erarbeitet.

Maßgebliches Kriterium für die Qualitätsbeurteilung der Verkehrsabwicklung sind nach dem HBS die mittlere Wartezeit der Kraftfahrzeuge und die maximale Wartezeit der Fußgänger und Radfahrer. Der Verkehrsablauf wird dabei durch die Qualitätsstufen (QSV) im Wertebereich A...sehr gut bis F...ungenügend (überlastet) beschrieben (siehe [11]).

		ezeiten an zw. Sättig				
QSV	mit	LSA	ohne LSA		Bes	chreibung des Verkehrsablaufes
	Kfz	Rad ¹ / Fuß ⁴	Kfz / Rad ²	Rad³/ Fuß		
A	≤ 20 s	≤ 30 s	≤10s	≤5s	sehr gut	nahezu keine Behinderungen; sehr geringe Wartezeiten
В	≤ 35 s	≤ 40 s	≤ 20 s	≤10s	gut	geringe Beeinflussung der wartepflichtigen Kraftfahrzeuge
C	≤ 50 s	≤ 55 s	≤ 30 s	≤15s	zufrieden- stellend	spürbare Wartezeiten; geringe, kurzzeitige Staubildungen
D	≤ 70 s	≤ 70 s ⁴	≤ 45 s	≤ 25 s	ausreichend	höhere Wartezeiten, Staubildung; noch stabiler Verkehrszustand
Е	> 70 s	≤ 85 s	> 45 s	≤ 35 s	mangelhaft	Kapazität wird erreicht hohe Wartezeiten, erhebliche Staubildung
F	x ≥ 1	> 85 s	x ≥ 1	> 35 s	ungenügend	Überlastung: sehr hohe Wartezeiten, ständig zunehmender Stau

- 1 ... Grenzwerte gelten für den Radverkehr auch bei gemeinsamer Führung mit Kfz auf der Fahrbahn
- 2 ... gilt auch für Radverkehr auf der Fahrbahn
- 3 ... gilt auch für Radverkehr auf Radverkehrsanlagen
- 4 ... in Hamburg ist für Fußgänger eine maximale Wartezeit von 80 s einzuhalten

Tabelle 5: Qualitätsstufen des Verkehrsablaufs an Knotenpunkten [11]

Grundsätzlich kennzeichnet die Qualitätsstufe D einen noch stabilen Verkehrszustand und ist in der Regel als mindestens erreichbare Verkehrsqualität anzustreben. Nur in Ausnahmefällen unter bestimmten Bedingungen können kurzzeitige Überschreitungen der Grenze zur Qualitätsstufe E insbesondere in Spitzenverkehrszeiten auch hinnehmbar sein.

Die Staulänge N kann ebenfalls als Qualitätskriterium maßgebend werden, wenn die Gefahr besteht, dass z.B. andere Verkehrsströme beeinträchtigt werden. Außerdem charakterisieren verbleibende Rückstaus nach "Grün-Ende" einen stockenden, zähfließenden Verkehrsablauf bis hin zum Stop-and-Go-Verkehr.

3.1 Luruper Chaussee / Ebertplatz (LSA 450)

Knotenpunktbelastung (vgl. Anhang 1.1) und Entwicklung zur Analyse	Analyse 22.11.2011	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	2.830 (7%)	3.480 (7%) +23 %	3.940 (6%) +39 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.790 (7%)	3.480 (7%) +25 %	3.810 (6%) +37 %

Knotenpunktausbau und Verkehrsqu	Analyse		Entw.stufe 1		Entw.stufe 2		
Spitzenstunden	früh	spät	früh	spät	früh	spät	
Bestand (= Umbau Zwischenzustand)	(Anhang 1.3)	В	В				
Planung (= Umbau Endzustand)	(Anhang 1.5)			С	С	D	D
einschl. KP Verlängerter Holstenkamp	(Anhang 1.7)			C	D	D	D

Tabelle 6: Verkehrstechnische Bewertung Luruper Chaussee/Ebertplatz

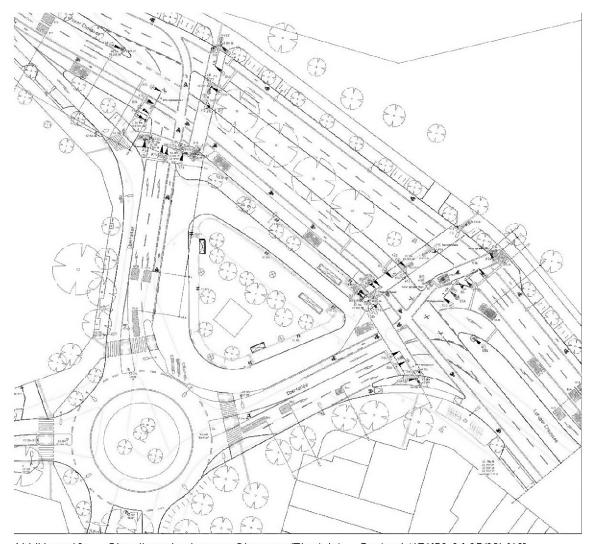


Abbildung 13: Signallageplan Luruper Chaussee/Ebertplatz – Bestand (17/450-04-05/02) [13]

Bestand (Zwischenzustand)

Der gesamte Ebertplatz mit den beiden Knotenpunkten Luruper Chaussee/Ebertplatz und Ebertallee/Notkestraße wird derzeit im Rahmen des Busbeschleunigungsprogramms für die Metrobuslinien M2 und M3 umgeplant (siehe Abbildung 13) [13]. Der sogenannte Zwischenzustand soll Ende November 2018 hergestellt sein. Dieser Ausbauzustand stellt die Grundlage für die Leistungsfähigkeitsnachweise in der Analyse dar.

Der signalisierte Knotenpunkt Luruper Chaussee/Ebertplatz ist im (künftigen) Bestand bei den <u>Analyse</u>verkehrsbelastungen ausreichend leistungsfähig. Nach HBS-Maßstäben ist der Verkehrsablauf in den maßgebenden Spitzenstunden mit der Qualitätsstufe B zu bewerten. Bei den verfügbaren Kapazitätsreserven können auch die üblichen täglichen bzw. stündlichen Verkehrsschwankungen qualitätsgerecht abgewickelt werden.

Planung (Endzustand)

Für die Entwicklungsstufen 1 und 2 ist der vollständige Knotenumbau im Endzustand mit einer zusätzlichen nördlichen Anbindung über eine T-Einmündung mit Rechtsversatz (LSA 421) zugrunde zu legen. In Entwicklungsstufe 1 wird über diese Anbindung das neue Stadtteilquartier Bahrenfeld-Nord (Trabrennbahn) erschlossen; in Entwicklungsstufe 2 wird hierüber außerdem der verlängerte Holstenkamp an den Ebertplatz bzw. an die Luruper Chaussee angebunden. Für das Ausbaukonzept liegt ein erster (Vor)Entwurf der Festzeitsteuerung vor [14].

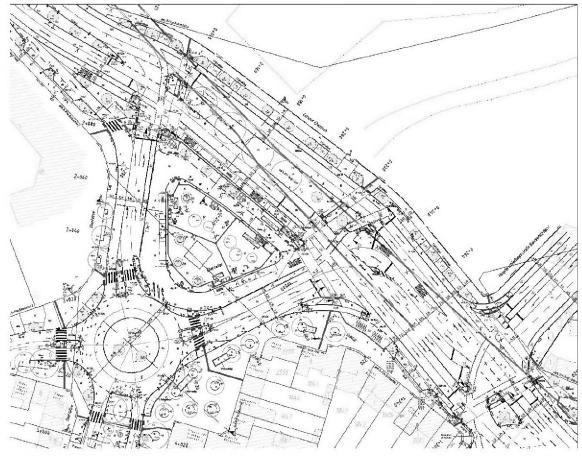


Abbildung 14: Signallageplan Luruper Chaussee/Ebertplatz – Umbau Endzustand (Vorentwurf) [14]

In der <u>Entwicklungsstufe 1</u> können die prognostizierten Belastungen an den beiden Knotenpunkten Ebertplatz und verlängerter Holstenkamp mit einer mindestens ausreichenden Verkehrsqualität (QSV = C bzw. D) abgewickelt werden. Aufgrund der komplexen Abhängigkeiten zwischen beiden Knotenpunkten werden allerdings fahrstreifenbezogene Auslastungen bis knapp 90% berechnet. Schon geringe Aufkommensschwankungen oder Buseingriffe im Rahmen der Busbeschleunigung können kurzzeitig zu spürbaren Behinderungen führen.

Die Verkehrsabwicklung in der Entwicklungsstufe 2 kann qualitativ als gerade noch ausreichend bezeichnet werden. Insgesamt wird zwar die Qualitätsstufe D berechnet, aber zeitweise ist u.U. auch mit Rückstau bis in den Kreisverkehr zu rechnen, so dass hier deutliche Behinderungen nicht auszuschließen sind. Die höchsten fahrstreifenbezogenen Auslastungen liegen bei etwa 90%; Optimierungspotenziale an beiden Knotenpunkten sind aufgrund der gegenseitigen Koordinierungsanforderungen in den Hauptverkehrszeiten nur sehr gering. Zeitweilige Belastungsschwankungen und/oder Buseingriffe im Rahmen der Busbeschleunigung können unter Umständen zu einem instabilen Verkehrszustand führen.

3.2 Bahrenfelder Chaussee / Von-Sauer-Straße (LSA 167)

Knotenpunktbelastung (vgl. Anhang 2.1) und Entwicklung zur Analyse	Analyse 23.08.2011	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.460 (6%)	3.970 (6%) +15 %	3.860 (6%) +12 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.360 (4%)	4.020 (4%) +20 %	3.830 (4%) +14 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 2.3)	E (D)	С	IL.	D	IL.	D
Optimierung der Aufschaltung				F*	D*	F*	D*
Rückbau (Verzicht auf FG-Querung)	(Anhang 2.4)	В	В	В	В	В	В

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 7: Verkehrstechnische Bewertung Bahrenfelder Chaussee/Von-Sauer-Straße

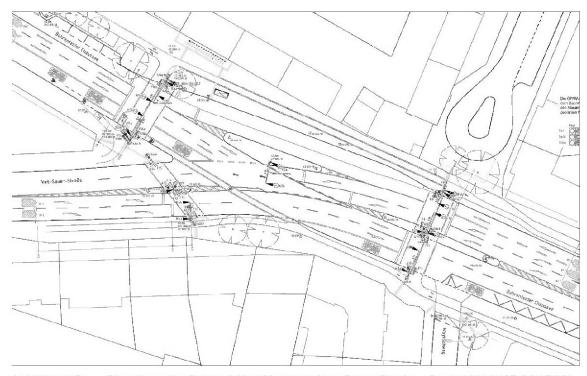


Abbildung 15: Signallageplan Bahrenfelder Chaussee/Von-Sauer-Straße – Bestand (14/167-04-07/02)

Bestand

Im <u>Analyse</u>zustand ist der signalisierte Knotenpunkt Bahrenfelder Chaussee/Von-Sauer-Straße bei den aktuellen Belastungen auch bei normalen Verkehrsverhältnissen (u.a. kein Stau auf der BAB A7 bzw. kein Umleitungsverkehr) zumindest in der Hauptverkehrszeit morgens sehr hoch ausgelastet. Die Leistungsfähigkeitsgrenze wird erreicht; die Verkehrsabwicklung ist theoretisch mit der Qualitätsstufe E zu beschreiben. Auch durch die verkehrsabhängige Steuerung bzw. Optimierung der (bewerteten) Festzeitsteuerung ist keine grund-

sätzlich bessere Verkehrsqualität zu erreichen. Durch Buseingriffe im Rahmen der Busbeschleunigung auf der Bahrenfelder Chaussee ist u.U. kurzeitig sogar eine qualitativ noch ungünstigere Verkehrsabwicklung für die übrigen Kfz-Ströme zu verzeichnen. Andererseits führt die LSA-Koordinierung in der Von-Sauer-Straße morgens stadteinwärts in der Realität zu etwas geringeren Wartezeiten im Vergleich zu den Berechnungen, so dass die Verkehrsabwicklung tatsächlich bzw. zeitweise eher dem Wertebereich D zuzuordnen ist.

In den <u>Entwicklungsstufen 1 und 2</u> ist mit einem Anstieg der Verkehrsbelastungen zu rechnen, die zeitweise nicht mehr qualitätsgerecht abgewickelt werden können. Aufgrund der sehr hohen Auslastung bzw. Überlastung der einzelnen Phasen insbesondere in der Hauptverkehrszeit morgens sind auch keine Optimierungsmöglichkeiten an der Aufschaltung gegeben. Der Knotenpunkt in seinem derzeitigen Ausbauzustand ist insgesamt als nicht leistungsfähig einzuschätzen.

Ein erforderlicher Ausbau des Knotenpunktes zur nachhaltigen Erhöhung der Leistungsfähigkeit ist unter Berücksichtigung der vorhandenen Bebauung nicht möglich.

Rückbau (Verzicht auf östliche Fußgängerfurt)

Allerdings würde sich die Leistungsfähigkeit deutlich erhöhen bei einem Verzicht auf die östliche Fußgängerquerung in Höhe Boschstraße/Woyrschweg. Selbst in den Hauptverkehrszeiten der Analyse und Entwicklungsstufen 1 und 2 könnte bei diesem Rückbau die Qualitätsstufe B erreicht werden. In diesem Zusammenhang wäre die Radverkehrsführung aus der Von-Sauer-Straße links in die Luruper Chaussee in jedem Fall anzupassen und ggf. die Bushaltestelle der Metrobuslinien 2 und 3 stadteinwärts vor den Knotenpunkt zu verlegen; die verlängerten Fußwege zur Querung der Bahrenfelder Chaussee insbesondere aus den Quartieren Boschstraße und Woyrschweg sind jedoch nachteilig zu bewerten.

3.3 Bahrenfelder Chaussee / Bornkampsweg (LSA 353)

Knotenpunktbelastung (vgl. Anhang 3.1) und Entwicklung zur Analyse	Analyse 18.04.2013	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	4.960 <i>(5%)</i>	5.490 <i>(5%)</i> +11 %	5.410 <i>(5%)</i> +9 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	5.050 (3%)	5.720 (3%) +13 %	5.530 <i>(3%)</i> +10 %

Knotenpunktausbau und Verkehrsqualität in den Spitzenstunden		Ana früh	lyse spät	Entw.s	tufe 1 spät	Entw.s	tufe 2 spät
Bestand	(Anhang 3.3)	F	F	F	F	F	7
Optimierung der Aufschaltung	(Anhang 3.4)	D	Е	E*	F*	E*	F*

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 8: Verkehrstechnische Bewertung Bahrenfelder Chaussee/Bornkampsweg

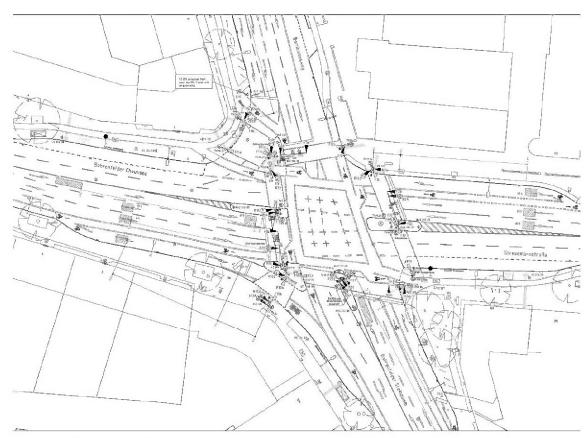


Abbildung 16: Signallageplan Bahrenfelder Chaussee/Bornkampsweg – Bestand (15/353-04-08/06)

Bestand

Der signalisierte Knotenpunkt Bahrenfelder Chaussee/Bornkampsweg ist im Bestand bei den <u>Analyse</u>belastungen auch unter normalen Verkehrsbedingungen (u.a. kein Stau auf der BAB A7 bzw. kein Umleitungsverkehr) in den Hauptverkehrszeiten mit den versorgten Festzeitprogrammen deutlich überlastet (QSV = F).

Durch eine Optimierung der zugrunde gelegten Signalprogramme (bzw. in der Praxis durch den Eingriff der verkehrsabhängigen Steuerung) sowie der LSA-Koordinierung auf der Achse Bahrenfelder Chaussee <> Stresemannstraße kann eine geringfügige Verbesserung des Verkehrsablaufes erreicht werden. Dennoch sind vor allem in der Hauptverkehrszeit spät nahezu alle Phasen sehr hoch ausgelastet; Kapazitätsreserven stehen nicht zur Verfügung. Die Verkehrsabwicklung ist insgesamt mit der Qualitätsstufe E zu beschreiben. Andererseits können Buseingriffe im Rahmen der Busbeschleunigung wieder zu qualitativ ungünstigere Verkehrsverhältnisse für die übrigen Kfz-Ströme führen.

In den Entwicklungsstufen 1 und 2 ist der Knotenpunkt im aktuellen Ausbauzustand nicht leistungsfähig. Alle Phasen sind nahezu ausgelastet oder zeitweise sogar überlastet, so dass auch eine Optimierung der Aufschaltung zu keiner nachhaltigen Verbesserung der Verkehrsabwicklung führt. Unter Berücksichtigung der vorhandenen Bebauung sind zusätzliche Ausbaumaßnahmen am Knotenpunkt unrealistisch.

3.4 Stresemannstraße / Plöner Straße (LSA 1598)

Knotenpunktbelastung (vgl. Anhang 4.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.050 (7%)	3.650 <i>(7%)</i> +20 %	3.700 <i>(7%)</i> +21 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.460 (3%)	4.320 <i>(3%)</i> +25 %	4.360 <i>(3%)</i> +26 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 4.3)	С	D	C	F	ш	F
Optimierung der Aufschaltung	(Anhang 4.4)			C	С	С	С

Tabelle 9: Verkehrstechnische Bewertung Stresemannstraße/Plöner Straße

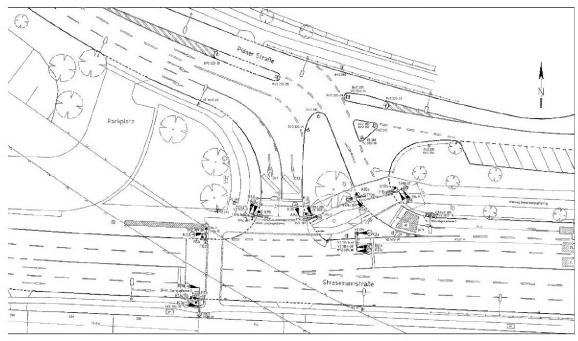


Abbildung 17: Signallageplan Stresemannstraße/Plöner Straße – Bestand (14/1568-04-04/02)

Bestand

Im <u>Analyse</u>zustand ist der signalisierte Knotenpunkt Stresemannstraße/Plöner Straße bei den aktuellen Belastungen ausreichend leistungsfähig. In den Hauptverkehrszeiten ist der Verkehrsablauf mit der Qualitätsstufe C (früh) bzw. D (spät) zu beschreiben. Bei fahrstreifenbezogenen Auslastungen morgens bis knapp 55% und nachmittags knapp 80% sind ausreichende Kapazitätsreserven vorhanden, um die üblichen täglichen bzw. stündlichen Verkehrsschwankungen qualitätsgerecht auffangen zu können.

In den <u>Entwicklungsstufen 1 und 2</u> ist bei einer Optimierung der aktuellen Aufschaltung eine insgesamt qualitätsgerechte Verkehrsabwicklung im Wertebereich der Stufe C zu gewährleisten. Die Kapazitätsreserven liegen fahrstreifenbezogen bei mindestens 25% in Stufe 1 bzw. 20% in Stufe 2.

3.5 Stresemannstraße / Kaltenkircher Platz (LSA 151)

Knotenpunktbelastung (vgl. Anhang 5.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.340 <i>(7%)</i>	4.170 (6%) +25 %	4.420 (6%) +32 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.830 (3%)	4.900 <i>(3%)</i> +28 %	5.100 <i>(3%)</i> +33 %

Knotenpunktausbau und Verkehrsqualität in den Spitzenstunden		Analyse früh spät		Entw.stufe 1 früh spät		Entw.stufe 2 früh spät	
Bestand	(Anhang 5.3)	C	D	E*	F*	F*	F*
Optimierung der Aufschaltung				D*	E (F)*	F*	F*
Planung (= Busbeschleunigung MB 3)	(Anhang 5.5)	C*	C*	С	E	Е	F
zusätzlicher Ausbau	(Anhang 5.7)			D	D	D	E
Maximalausbau	(Anhang 5.9)					D	Е

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 10: Verkehrstechnische Bewertung Stresemannstraße/Kaltenkircher Platz

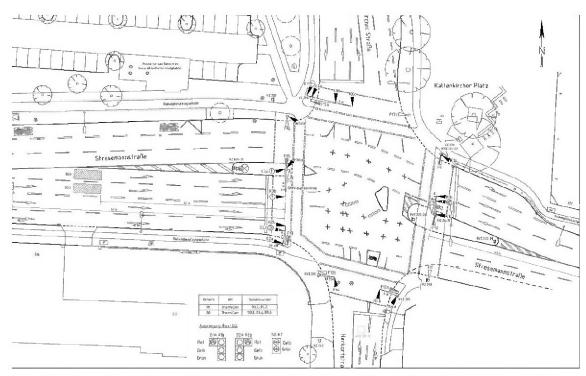


Abbildung 18: Signallageplan Stresemannstraße/Kaltenkircher Platz – Bestand (15/151-04-05/01)

Bestand

Am signalisierten Knotenpunkt Stresemannstraße/Kaltenkircher Platz ist im Bestand bei den <u>Analyse</u>belastungen theoretisch eine ausreichende Leistungsfähigkeit zu verzeichnen. Der Verkehr wird in den Hauptverkehrszeiten unter normalen Bedingungen insgesamt mit der Qualitätsstufe C (früh) bzw. D (spät) abgewickelt. Fahrstreifenbezogen liegen die höchsten Auslastungen morgens bei ca. 70% und nachmittags bei knapp 75%.

Planung (Busbeschleunigungsprogramm)

Der Knotenpunkt wird derzeit im Rahmen des Busbeschleunigungsprogramms für die Metrobuslinie 3 umgeplant (siehe Abbildung 19). Die Planung befindet sich im Stadium der Erstverschickung [15]; ein LSA-Aufschaltungskonzept liegt noch nicht vor. Die Fertigstellung des Umbaus ist im Zeitraum 2020/21 vorgesehen.

Abbildung 19: Verkehrstechnischer Lageplan Stresemannstraße/Kaltenkircher Platz – Umbauplanung [15]

Die Ergebnisse der überschlägigen verkehrstechnischen Berechnungen erfolgen auf Grundlage eines eigenen Signalisierungskonzeptes und zeigen, dass der geplante Ausbau bei den <u>Analyse</u>belastungen eine qualitätsgerechte Verkehrsabwicklung gewährleisten kann (QSV = C).

In den <u>Entwicklungsstufen 1 und 2</u> ist der Knoten als nicht leistungsfähig einzuschätzen. Hier sind in den Hauptverkehrszeiten alle Phasen nahezu ausgelastet bzw. teilweise auch überlastet; der Verkehrsablauf ist insgesamt mit der Qualitätsstufe E bzw. F zu beschreiben. Neben erheblichen Wartezeiten werden sich auch beträchtliche Rückstaus in den einzelnen Zufahrten einstellen.

U.a. sind bei einem erhöhten – von der Prognose abweichenden – Linksabbiegeaufkommen in der Stresemannstraße-Ost in die Harkortstraße (in Richtung Mitte Altona und Holsten-Areal) mit erheblichen Behinderungen durch zu lange Rückstaus zu rechnen. Insgesamt stehen vor dem Haltebalken nur zwei bis drei Aufstellplätze und im inneren Knotenbereich drei Aufstellplätze für Linksabbieger zur Verfügung.

> Zusätzlicher Ausbau

Für eine qualitätsgerechte Verkehrsabwicklung in <u>Entwicklungsstufe 1</u> ist zu den aktuellen Umbauplanungen ein zusätzlicher Ausbau des Knotens erforderlich. Als Mindestanforderung ist ein dritter Geradeausfahrstreifen in der östlichen Zufahrt Stresemannstraße (Länge ca. 130 m; Weiterführung des rechten Fahrstreifens hinter dem Knoten als Rechtsabbieger in die Plöner Straße) und eine dreistreifige Aufweitung der Zufahrt Harkortstraße (Länge rd. 40 m) vorzusehen (siehe Abbildung 20). Dieser Ausbau ist allerdings nur im Zusammenhang mit einem Brückenneubau der Bahnüberführung Harkortstraße möglich.

Nach den überschlägigen Leistungsfähigkeitsnachweisen ist mindestens die Qualitätsstufe D zu erwarten. Fahrstreifenbezogen betragen die höchsten Auslastungen ca. 85%. Aufgrund der starken Abbiegeströme wäre außerdem ein zusätzlicher separater Rechtsabbiegestreifen in der westlichen Knotenzufahrt Stresemannstraße zu empfehlen.

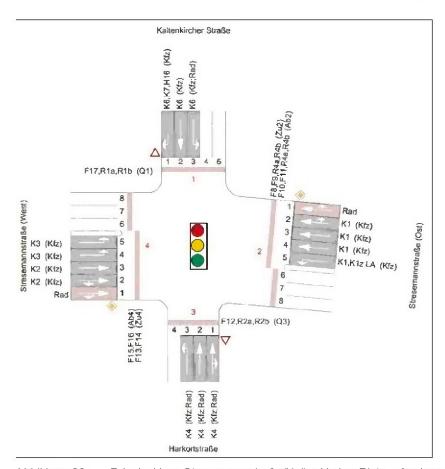


Abbildung 20: Prinzipskizze Stresemannstraße/Kaltenkircher Platz – Ausbaumaßnahme für Entwicklungsstufe 1

Bei den prognostizierten Belastungen in **Entwicklungsstufe 2** wird bei dem skizzierten Ausbau des Knotenpunktes in Abbildung 20 die Leistungsfähigkeitsgrenze zumindest in der Hauptverkehrszeit nachmittags zeitweise erreicht (QSV = E mit deutlichen Behinderungen für die Linksabbieger aus der Harkortstraße). Auch weisen die Berechnungsergebnisse auf eine Überstauung des kurzen Linksabbiegestreifens in der östlichen Knotenpunktzufahrt hin. Bei dem prognostizierten Linksabbiegeaufkommen von knapp 100 Kfz/h wäre hier eine Länge von ca. 50 m (statt 18 m wie in [15] geplant) erforderlich.

Als sinnvoller Maximalausbau in der Entwicklungsstufe 2 ist der in Abbildung 21 skizzierte Ausbau zu empfehlen: dritter Geradeausfahrstreifen in der Stresemannstraße-Ost (Länge: ca. 130 m; Weiterführung des rechten Fahrstreifens hinter dem Knoten als Rechtsabbieger in die Plöner Straße), Verlängerung des Linksabbiegestreifens in der Stresemannstraße-Ost auf ca. 40 m, zusätzlicher separater Rechtsabbiegestreifen in der Stresemannstraße-West über rd. 60 m, dreistreifige Aufweitung der Zufahrt Harkortstraße (Länge: rd. 40 m dreistreifig und mindestens 60 m zweistreifig). Allerdings ist im Zusammenhang mit dem Ausbau der Harkortstraße ein Brückenneubau der Bahnüberführung Harkortstraße zwingend erforderlich. Hierbei sind gleichzeitig auch ausreichende Seitenräume für den Fuß- und Radverkehr vorzusehen, um die Angebotsqualität deutlich zu verbessern.

Obgleich nach den theoretischen Berechnungsergebnissen auch bei diesem Maximalausbau die Verkehrsabwicklung am Knotenpunkt in der Spitzenstunde spät immer noch mit der Qualitätsstufe E zu beschreiben ist, könnten praxisbezogen a) der gesamten Verkehrsablauf am Knotenpunkt durch eine weitere Optimierung der Freigabezeiten verbessert werden (u.a. Reduzierung der Auslastungen und Wartezeiten für die kritischen Verkehrsströme Linksabbieger in der Stresemannstraße-Ost und Harkortstraße und somit deutliche Verschiebung der Qualitätsstufe E näher an die Grenze zu D), b) in der westlichen Zufahrt Behinderungen durch Rechtsabbieger vermieden werden und c) die Kapazitätsreserven und Möglichkeiten der signaltechnischen Anpassung an die tatsächliche Verkehrssituation erhöht werden. Um jederzeit eine Verkehrsqualität der Stufe D gewährleisten zu können, ist eine Reduzierung der Knotengesamtbelastung um mindestens ca. -5 bis -10% erforderlich.

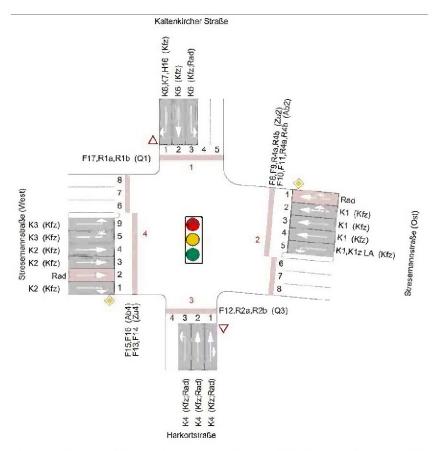


Abbildung 21: Prinzipskizze Stresemannstraße/Kaltenkircher Platz – Ausbaumaßnahme für Entwicklungsstufe 2

3.6 Stresemannstraße / Kieler Straße (LSA 7)

Knotenpunktbelastung (vgl. Anhang 6.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.470 (10%)	4.230 (9%) +22 %	4.400 (9%) +27 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.950 (4%)	5.210 <i>(4%)</i> +32 %	5.290 (4%) +34 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.s	tufe 1	Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand (Anhang	6.3)	Е	Е	F*	F*	F*	F*
Optimierung der Aufschaltung (Anhang	6.4)	С	D	D*	E(F)*	E*	F*
Planung (= Busbeschleunigung MB 3) (Anhang	6.6)	C*	C*	D	Е	D	Е
zusätzlicher Ausbau				D*	D*	D*	D*

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 11: Verkehrstechnische Bewertung Stresemannstraße/Kieler Straße

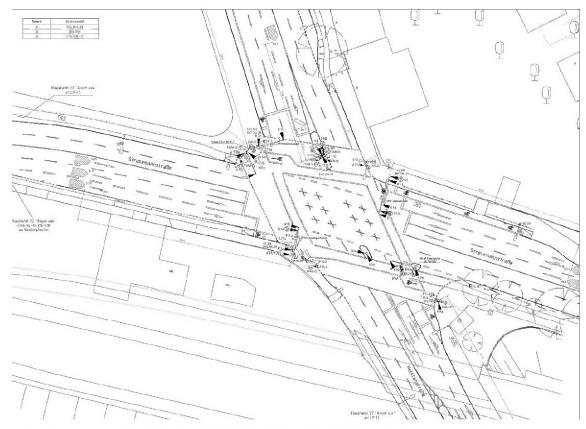


Abbildung 22: Signallageplan Stresemannstraße/Kieler Straße – Bestand (12/7-04-07/02e)

Bestand

Der Verkehrsablauf am signalisierten Knotenpunkt Stresemannstraße/Kieler Straße ist im **Analyse**zustand bei den aktuellen Belastungen in den Hauptverkehrszeiten mit den versorgten Festzeitprogrammen insgesamt als mangelhaft zu bezeichnen (QSV = E).

Eine geringfügige Optimierung der aktuellen Signalprogramme (Anpassung der Freigabezeiten bzw. in der Praxis durch den Eingriff der verkehrsabhängigen Steuerung) sowie die LSA-Koordinierung im Zuge der Stresemannstraße führt zu einer Verbesserung der Verkehrsabwicklung, so dass insgesamt die Qualitätsstufe C (früh) bzw. D (spät) erreicht werden kann. Die Kapazitätsreserven liegen fahrstreifenbezogen bei mindestens 30% (früh) bzw. knapp 20% (spät).

Planung (Busbeschleunigungsprogramm)

Der Knotenpunkt wird derzeit im Rahmen des Busbeschleunigungsprogramms für die Metrobuslinie 3 umgeplant (siehe Abbildung 23). Die Planung befindet sich im Stadium der Erstverschickung [15]; ein LSA-Aufschaltungskonzept liegt noch nicht vor. Die Fertigstellung des Umbaus ist im Zeitraum 2020/21 vorgesehen.

Abbildung 23: Verkehrstechnischer Lageplan Stresemannstraße/Kieler Straße – Umbauplanung [15]

Die <u>Analyse</u>belastungen können auch nach dem Umbau mit einer Verkehrsqualität im Wertebereich der Stufe C (früh) bzw. B (spät) abgewickelt werden.

Im Ergebnis der verkehrstechnischen Berechnungen (auf Grundlage eines eigenen Signalisierungskonzeptes) ist festzustellen, dass in den Entwicklungsstufen 1 und 2 zeitweise vsl. nur die Qualitätsstufe E erreicht werden kann. Durch das hohe Verkehrsaufkommen insbesondere in der Hauptverkehrszeit nachmittags stadtauswärts aus Richtung Stresemannstraße-Ost und Holstenstraße sind erhebliche Behinderungen zu erwarten. Aufgrund der zu kurzen Abbiegestreifen in den Zufahrten Stresemannstraße-Ost und Holstenstraße werden beträchtliche Rückstaus auftreten mit länger anhaltendem Stop-and-Go-Verkehr.

Zusätzlicher Ausbau

Zur nachhaltigen Erhöhung der Leistungsfähigkeit des Knotenpunktes ist in beiden <u>Ent-wicklungsstufen 1 und 2</u> ein Neubau der Bahnüberführung Holstenstraße verbunden mit einer Verbreiterung des Straßenraumquerschnitts (mindestens fünf Kfz-Fahrstreifen mit deutlicher Verlängerung des Linksabbiegestreifens und ausreichend breiten Seitenräumen für die bedarfsgerechte Führung des Fuß- und Radverkehrs) erforderlich. Zusätzlich ist eine Verlängerung der Rechtsabbiegestreifen in der Stresemannstraße zu empfehlen, um Stauräume und Kapazitätsreserven zu schaffen und somit die Behinderungen für den nachfolgenden Geradeausverkehr zu minimieren.

Nach den überschlägigen Leistungsfähigkeitsnachweisen ist durch den zusätzlichen Ausbau eine qualitätsgerechte Verkehrsabwicklung mindestens im Wertebereich der Stufe D zu erwarten. Die erforderlichen Längen der Abbiegestreifen sind differenziert nach beiden Entwicklungsstufen in Abbildung 24 ausgewiesen.

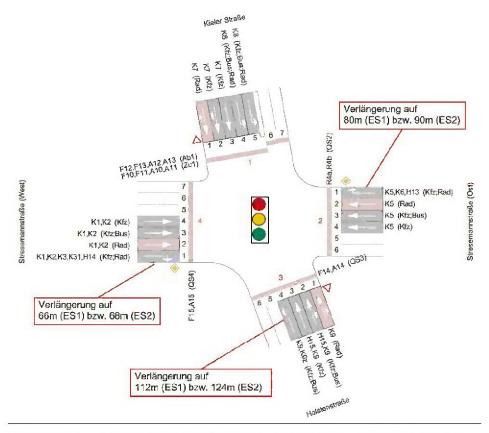


Abbildung 24: Prinzipskizze Stresemannstraße/Kieler Straße – Ausbaumaßnahme für Entwicklungsstufe 1 und 2

3.7 Stresemannstraße / Alsenstraße (LSA 153)

Knotenpunktbelastung (vgl. Anhang 7.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.610 (12%)	3.650 <i>(12%)</i> +1 %	3.690 <i>(12%)</i> +2 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.770 (4%)	4.420 (4%) +17 %	4.460 (4%) +18 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 7.3)	ш	F				
Optimierung der Aufschaltung	(Anhang 7.4)	D	D				
Planung (= Veloroute 13)	(Anhang 7.6)	C*	D*	D	D	D	D

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 12: Verkehrstechnische Bewertung Stresemannstraße/Alsenstraße

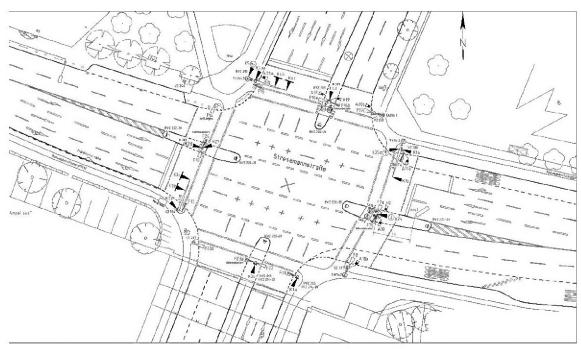


Abbildung 25: Signallageplan Stresemannstraße/Alsenstraße – Bestand (03/153-04-03/07)

Bestand

Die <u>Analyse</u> der aktuellen Verkehrsabwicklung am signalisierten Knotenpunkt Stresemannstraße/Alsenstraße zeigt, dass in den Hauptverkehrszeiten die Grenze der Leistungsfähigkeit erreicht wird. Bei den versorgten Festzeitprogrammen ist der Verkehrsablauf mit der Qualitätsstufe E (früh) bzw. F (spät) zu beschreiben.

Durch eine Optimierung der Freigabezeiten bzw. in der Praxis durch den Eingriff der verkehrsabhängigen Steuerung sowie die LSA-Koordinierung im Zuge der Stresemannstraße kann der Verkehrsablauf geringfügig verbessert werden. Obgleich in beiden Spitzenstunden

eine ausreichende Qualitätsstufe (QSV = D) berechnet wird, ist schon bei geringsten Aufkommensschwankungen oder auch bei Buseingriffen im Rahmen der ÖV-Beschleunigung mit erheblichen Behinderungen – vor allem nachmittags – zu rechnen. Zudem ist die Verkehrsqualität der Fußgänger bei einer maximalen Wartezeit knapp über 80 s nach dem Hamburger Qualitätsmaßstab zeitweise als ungenügend zu bezeichnen.

Planung (Programm zur Förderung des Radverkehrs)

Der Holstenplatz einschließlich des Knotenpunktes an der Stresemannstraße wird derzeit im Rahmen des Programms zur Förderung des Radverkehrs, Veloroute 13 umgeplant (siehe Abbildung 26). Die Planung befindet sich im Stadium der Schlussverschickung [16], die Umsetzung ist im Jahr 2020 vorgesehen.

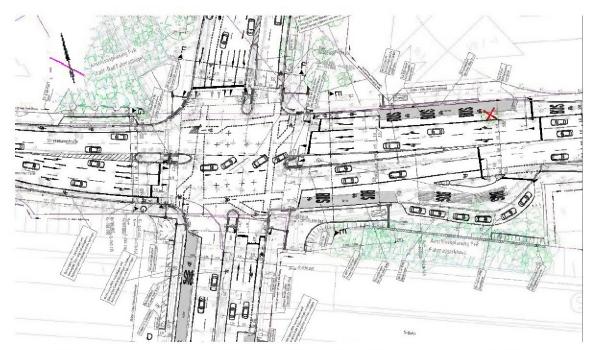


Abbildung 26: Verkehrstechnischer Lageplan Stresemannstraße/Alsenstraße – Umbauplanung [16]

Die <u>Analyse</u>belastungen können nach dem Umbau mit einer ausreichenden Verkehrsqualität abgewickelt werden. Die überschlägigen Berechnungsergebnisse weisen für die Hauptverkehrszeiten insgesamt die Qualitätsstufe C (früh) bzw. D (spät) aus.

In den Entwicklungsstufen 1 und 2 kann vsl. noch eine Verkehrsabwicklung im Bereich der Qualitätsstufe D gewährleistet werden. Allerdings sind in den Hauptverkehrszeiten relativ hohe Auslastungen – fahrstreifenbezogen bis knapp 85% bzw. 90% – zu erwarten. Schon kleinste Störungen, Aufkommensschwankungen oder auch Buseingriffe können die Verkehrsqualität deutlich verschlechtern bzw. zu einem instabilen Verkehrszustand führen. Hiervon sind vor allem die Verkehrsströme in der Stresemannstraße betroffen.

Insbesondere ist bei einem erhöhten – von der Prognose abweichenden – Linksabbiegeaufkommen in der Stresemannstraße-Ost zum Holstenplatz (in Richtung Holsten-Areal und Mitte Altona) mit erheblichen Behinderungen durch zu lange Rückstaus zu rechnen. Im inneren Knotenbereich sind derzeit nur zwei Aufstellplätze vorgesehen. Gegebenenfalls muss auf eine Linksabbiegemöglichkeit verzichtet werden.

3.8 Stresemannstraße / Max-Brauer-Allee (LSA 18)

Knotenpunktbelastung (vgl. Anhang 8.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.320 (9%)	3.890 (9%) +17 %	4.060 (9%) +22 %
Spitzenstunde spät <i>(SV-Anteil)</i> in [Kfz/h]	3.700 (4%)	4.440 (4%) +20 %	4.590 (4%) +24 %

Knotenpunktausbau und Verkehrsqualität in den Spitzenstunden		Analyse früh spät		Entw.stufe 1 früh spät		Entw.stufe 2	
Bestand	(Anhang 8.3)	F	F	F	F	F	F
Optimierung der Aufschaltung	(Anhang 8.4)	C	D	D*	F*	E*	F*
Ausbaumaßnahmen	(Anhang 8.6)			В	С	С	D

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 13: Verkehrstechnische Bewertung Stresemannstraße/Max-Brauer-Allee

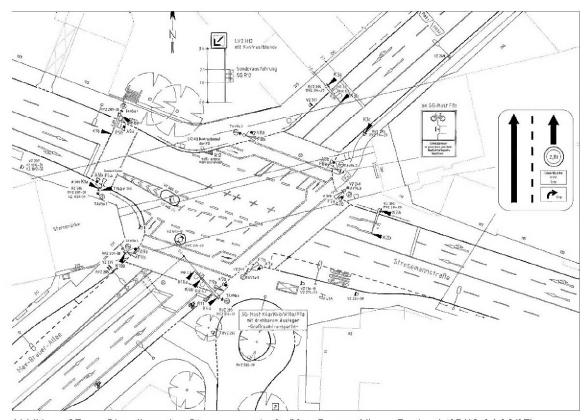


Abbildung 27: Signallageplan Stresemannstraße/Max-Brauer-Allee – Bestand (05/18-04-06/07)

Bestand

Die Leistungsfähigkeitsgrenze des signalisierten Knotenpunktes Stresemannstraße/Max-Brauer-Allee wird bei den <u>Analyse</u>belastungen in den Hauptverkehrszeiten regelmäßig erreicht. Die verkehrstechnischen Berechnungen weisen für die aktuelle (Festzeit)Steuerung eine Überlastung in den absoluten Spitzenstunden morgens und nachmittags aus (QSV = F).

Durch eine Optimierung der Freigabezeiten bzw. der verkehrsabhängigen Steuerung kann eine deutlich bessere Verkehrsabwicklung im Bereich der Qualitätsstufe C (früh) bzw. D (spät) erreicht werden. Dies bedingt allerdings zumindest nachmittags ein größtenteils zweistreifiges Vorbeifahren an der Engstelle im inneren Knotenbereich auf der Stresemannstraße stadtauswärts. Außerdem betragen die maximalen Auslastungen fahrstreifenbezogen knapp 85% (früh) bzw. 90% (spät), so dass insgesamt nur begrenzt Kapazitätsreserven vorliegen.

In den <u>Entwicklungsstufen 1 und 2</u> ist der Knotenpunkt im aktuellen Ausbauzustand nicht leistungsfähig. Da alle Phasen nahezu ausgelastet oder zeitweise sogar überlastet sind, ist auch durch eine Optimierung der Aufschaltung keine verbesserte Verkehrsabwicklung zu erzielen.

Ausbaumaßnahmen

Eine ausreichende Leistungsfähigkeit am Knotenpunkt kann in den Entwicklungsstufen 1 und 2 nur gewährleistet werden, wenn alle Knotenarme mindestens zu einem vollwertigen vierstreifigen Querschnitt umgebaut werden (siehe Abbildung 28). Dies setzt allerdings einen entsprechenden Neubau der Bahnüberführung diagonal über den Knotenpunkt voraus. In diesem Zusammenhang sind auch ausreichend breite Seitenräume für die bedarfsgerechte Führung des Fuß- und Radverkehrs zu berücksichtigen.

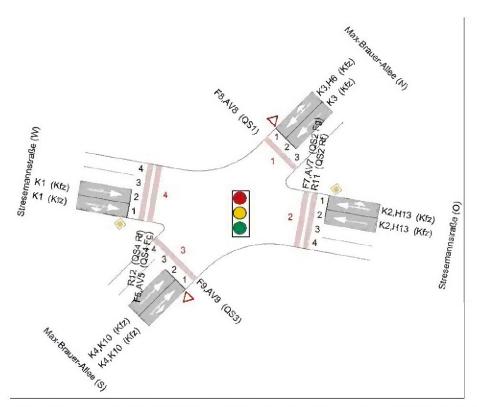


Abbildung 28: Prinzipskizze Stresemannstraße/Max-Brauer-Allee – Ausbaumaßnahme für Entwicklungsstufen 1 und 2

Ohne Ausbau des Knotenpunktes bzw. einer Brückenerneuerung müsste das Gesamtverkehrsaufkommen um ca. -10 bis -15% reduziert werden, um eine qualitätsgerechte Verkehrsabwicklung gewährleisten zu können.

3.9 Harkortstraße / Erschließungsstraße Holsten-Areal

Der Knotenpunkt Harkortstraße/Erschließungsstraße Holsten-Areal ist integraler Bestandteil der Planungen für die Entwicklungsfläche Holsten-Areal und zum **Analyse**zeitpunkt noch nicht vorhanden.

Knotenpunktbelastung (vgl. Anhang 9.1)	Analyse	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]		860 (3%)	970 (3%)
Spitzenstunde spät (SV-Anteil) in [Kfz/h]		1.130 <i>(3%)</i>	1.260 (3%)

Knotenpunktausbau und Verkehrsqualität in den	en Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden	früh spät		früh spät		früh spät	
Planung (= Erschließung Holsten-Areal) (Anhang 9.3)			В	C	В	D

Tabelle 14: Verkehrstechnische Bewertung Harkortstraße/Erschließungsstraße Holsten-Areal

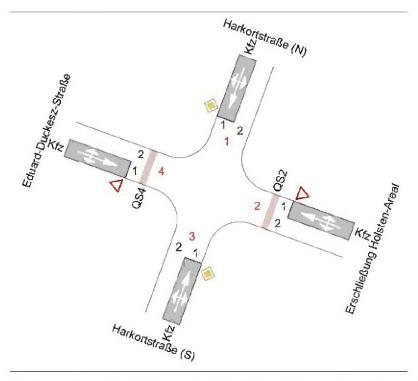


Abbildung 29: Prinzipskizze Harkortstraße/Erschließungsstraße Holsten-Areal – Planung für Entwicklungsstufen 1 und 2

Planung (Erschließung Holsten-Areal)

Für den neuen Knotenpunkt in den <u>Entwicklungsstufen 1 und 2</u> ist eine Verkehrsabwicklung mit Vorfahrtregelung ausreichend leistungsfähig. Zur Minimierung der Behinderungen durch abbiegende Kfz sind zumindest entsprechende Aufstellbereiche für Linksabbieger in der Harkortstraße zu empfehlen (bspw. durch Planung überbreiter Fahrstreifen im Kreuzungsbereich oder separater Abbiegestreifen).

3.10 Julius-Leber-Straße / Harkortstraße (LSA 709)

Knotenpunktbelastung (vgl. Anhang 10.1) und Entwicklung zur Analyse	Analyse 05.06.2013	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.850 <i>(3%</i>)	2.090 <i>(3%)</i> +13 %	2.160 <i>(3%)</i> +18 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	1.760 (1%)	2.080 (1%) +18 %	2.160 (1%) +23 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.s	tufe 1	Entw.s	tufe 2
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 10.3)	В	В				
Planung (= Umbau Harkortstraße)	(Anhang 10.5)	C*	B*	E	D	Е	С

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 15: Verkehrstechnische Bewertung Julius-Leber-Straße/Harkortstraße

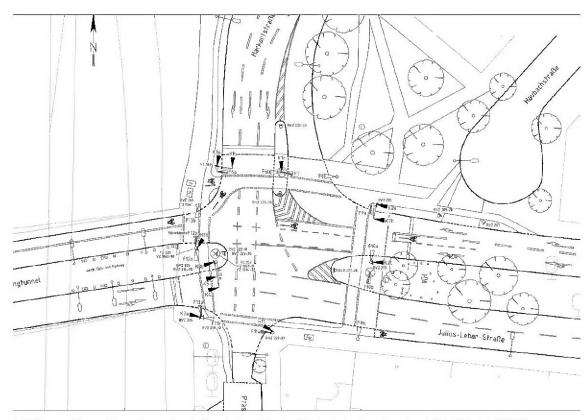


Abbildung 30: Signallageplan Julius-Leber-Straße/Harkortstraße – Bestand (09/709-04-05/02)

Bestand

Der signalisierte Knotenpunkt Julius-Leber-Straße/Harkortstraße ist bei den <u>Analyse</u>belastungen durch eine gute Verkehrsqualität gekennzeichnet (QSV = B). Selbst in den Hauptverkehrszeiten liegt die höchste Auslastung fahrstreifenbezogen unter 70%. Zeitweise ist allerdings zu beobachten, dass im Lessingtunnel die relativ schmale Fahrbahn in Richtung Knotenpunkt nur einstreifig befahren wird. Die verfügbaren Kapazitätsreserven am gesamten

Knotenpunkt sind dennoch ausreichend, um auch in diesen Situationen einen qualitativ ausreichenden Verkehrsablauf gewährleisten zu können. Verkehrliche Behinderungen treten meist nur dann auf, wenn aus dem Lessingtunnel verkehrswidrig links in die Harkortstraße abgebogen wird.

Planung (Erschließung Mitte Altona)

Der Knotenpunkt wird derzeit im Rahmen der Baumaßnahme "Mitte Altona – Äußere Erschließung" umgeplant (siehe Abbildung 31). Die Planung befindet sich im Stadium der Erstverschickung [17], die Umsetzung ist noch nicht abschließend terminiert.

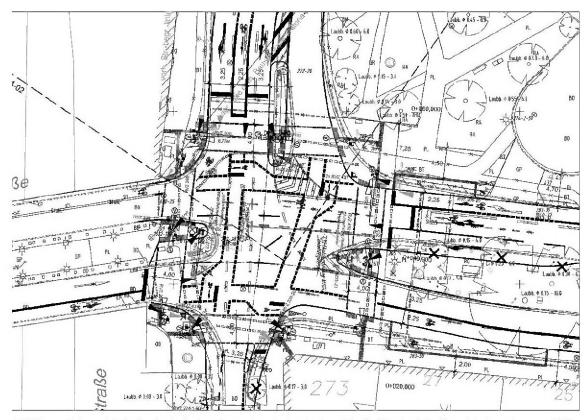


Abbildung 31: Verkehrstechnischer Lageplan Julius-Leber-Straße/Harkortstraße – Umbauplanung [17]

Die <u>Analyse</u>belastungen können auch nach dem Umbau mit einer Verkehrsqualität im Wertebereich der Stufe C (früh) bzw. B (spät) abgewickelt werden.

Bei den prognostizierten Verkehrsbelastungen in den Entwicklungsstufen 1 und 2 ist der geplante Umbau des Knotenpunktes als nicht leistungsfähig einzuschätzen. Dies liegt insbesondere im einstreifigen Rückbau der westlichen Knotenzufahrt Lessingtunnel begründet. In der Hauptverkehrszeit morgens wird hier die Kapazitätsgrenze nahezu erreicht (QSV = E); aber auch nachmittags ist eine sehr hohe Auslastung bis ca. 90% zu erwarten.

Schon ein Linksabbiegeverbot aus dem Lessingtunnel in die Harkortstraße könnte zu einer besseren Verkehrsabwicklung am Knotenpunkt führen. Die Linksabbieger müssten in diesem Fall in Höhe der Goetheallee wenden.

Anderenfalls wäre ein zweistreifiger Ausbau der westlichen Knotenzufahrt im Lessingtunnel zwingend erforderlich.

3.11 Holstenstraße / Holstenplatz (LSA 600)

Knotenpunktbelastung (vgl. Anhang 11.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	2.340 (8%)	2.930 (8%) +25 %	3.020 (8%) +29 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.740 (4%)	3.600 (4%) +31 %	3.700 (4%) +35 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.s	tufe 1	Entw.s	tufe 2
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 11.3)	C	С				
Planung (= Umbau Veloroute 13)	(Anhang 11.5)	C*	C*	D	F	D	F

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 16: Verkehrstechnische Bewertung Holstenstraße/Holstenplatz

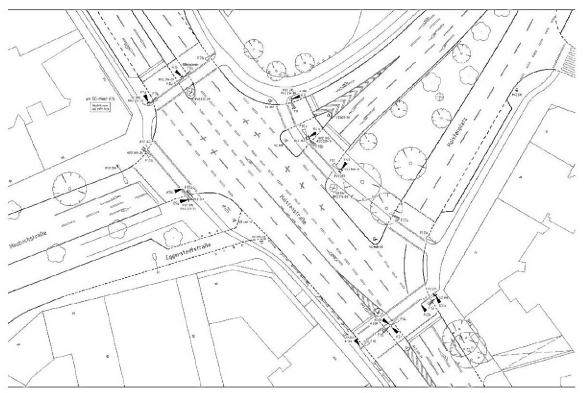


Abbildung 32: Signallageplan Holstenstraße/Holstenplatz – Bestand (13/600-04-06/00)

Bestand

Die aktuellen Belastungen am signalisierten Knotenpunkt Holstenstraße/Holstenplatz können im <u>Analyse</u>zustand mit einer zufriedenstellenden Verkehrsqualität abgewickelt werden (QSV = C). Fahrstreifenbezogen sind maximale Auslastungen von 65% (früh) bzw. 75% (spät) zu verzeichnen. Durch eine geringfügige Anpassung der Aufschaltung wäre sogar eine Verbesserung der Verkehrsqualität für die Fußgänger/Radfahrer an der Furt über die Holstenstraße (Nordwest) möglich. Hier liegt die Wartezeit knapp über dem vorgegebenen Maximalwert gemäß des Hamburger Qualitätsmaßstabes.

Planung (Programm zur F\u00f6rderung des Radverkehrs)

Der Holstenplatz einschließlich des Knotenpunktes an der Holstenstraße wird derzeit im Rahmen des Programms zur Förderung des Radverkehrs, Veloroute 13 umgeplant (siehe Abbildung 33). Die Planung befindet sich im Stadium der Schlussverschickung [16], die Umsetzung ist im Jahr 2020 vorgesehen.

Abbildung 33: Verkehrstechnischer Lageplan Holstenstraße/Holstenplatz – Umbauplanung [16]

Die <u>Analyse</u>belastungen können nach dem Umbau mit einer ausreichenden Verkehrsqualität abgewickelt werden. Die überschlägigen Berechnungsergebnisse weisen für die Hauptverkehrszeiten insgesamt die Qualitätsstufe C aus.

In den <u>Entwicklungsstufen 1 und 2</u> ist der Knotenpunkt im geplanten Ausbauzustand insgesamt als nicht leistungsfähig einzuschätzen (QSV = F). In der Hauptverkehrszeit nachmittags wird die Kapazität auf der Holstenstraße, südöstliche Zufahrt deutlich überschritten; hier sind erhebliche und länger andauernde Behinderungen zu erwarten.

Aufgrund der vorhandenen Bebauung ist ein notwendiger Ausbau in der Holstenstraße-Süd (Verlängerung des Rechtsabbiegestreifens auf ca. 180 m und zusätzlicher Linksabbiegestreifen mit einer Länge von mind. 20 m) absehbar nicht zu realisieren.

Somit wäre eine qualitätsgerechte Verkehrsabwicklung am Knotenpunkt nur zu gewährleisten bei einer Reduzierung der Gesamtbelastung um mindestens ca. -10%.

3.12 Holstenstraße / Max-Brauer-Allee (LSA 131)

Knotenpunktbelastung (vgl. Anhang 12.1) und Entwicklung zur Analyse	Analyse 04.02.2016	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.590 (5%)	4.330 <i>(5%)</i> +21 %	4.450 <i>(5%)</i> +24 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.860 (2%)	4.790 (2%) +24 %	4.890 (2%) +27 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 12.3)	Ш	Е	E	F	F	F
Optimierung der Aufschaltung	(Anhang 12.4)	Е	Е	E*	F*	E*	F*

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 17: Verkehrstechnische Bewertung Holstenstraße/Max-Brauer-Allee

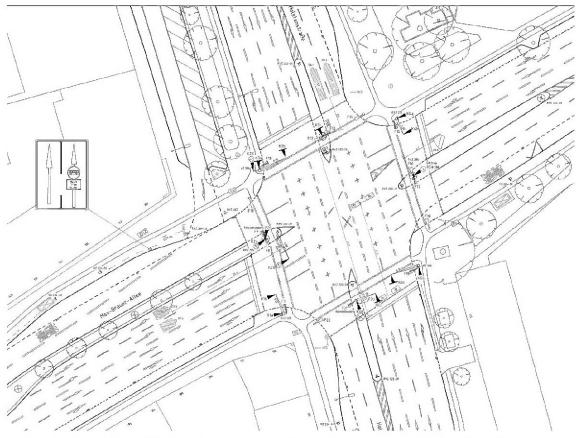


Abbildung 34: Signallageplan Holstenstraße/Max-Brauer-Allee – Bestand (10/131-04-05/02)

Bestand

Der signalisierte Knotenpunkt Holstenstraße/Max-Brauer-Allee ist bei den <u>Analyse</u>belastungen zumindest in den Spitzenstunden nach HBS-Maßstäben als unzureichend leistungsfähig einzuschätzen. Die verkehrstechnischen Berechnungen weisen früh und spät für die Links-

abbieger aus der Holstenstraße (Süd) und aus der Max-Brauer-Allee (Nord) die Qualitätsstufe E aus. Betroffen sind insgesamt jeweils zwischen 250 und 300 Verkehrsteilnehmer pro Stunde.

Auch eine Optimierung der Aufschaltung führt zu keiner wesentlichen Verbesserung der allgemeinen Verkehrsabwicklung. Die Verkehrsqualität liegt immer noch für rund 150 bis 200 Kfz/h im Wertebereich der Stufe E. Kapazitätsreserven zum Auffangen von üblichen Belastungsschwankungen sind nur auf einigen Fahrstreifen und dann auch nur äußerst begrenzt vorhanden.

In den <u>Entwicklungsstufen 1 und 2</u> ist der Knotenpunkt im aktuellen Ausbauzustand in den Hauptverkehrszeiten früh und spät nicht leistungsfähig (QSV = E bzw. F). Alle Phasen sind nahezu ausgelastet oder zeitweise sogar überlastet; auch eine Optimierung der Aufschaltung führt zu keiner verbesserten Verkehrsabwicklung.

Unter Berücksichtigung der vorhandenen Bebauung sind zusätzliche, wirksame Ausbaumaßnahmen am Knotenpunkt eher unrealistisch.

Für eine qualitativ halbwegs noch akzeptable Verkehrsabwicklung wäre eine deutliche Reduzierung der Gesamtbelastung am Knotenpunkt um mindestens etwa -25% in Entwicklungsstufe 1 bzw. rd. -30% in Entwicklungsstufe 2 erforderlich.

Planung (Busbeschleunigungsprogramm)

Die Ausbauplanung am Knotenpunkt zur Busbeschleunigung M20/25 [18] (siehe Abbildung 35) lag erst kurz vor Redaktionsschluss vor und konnte nicht mehr in die Bewertung einfließen. Mit einer wesentlichen Verbesserung der allgemeinen Verkehrsqualität ist aber nicht zu rechnen.

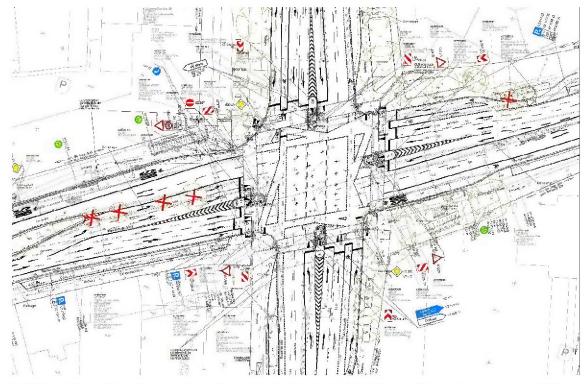


Abbildung 35: Verkehrstechnischer Lageplan Holstenstraße/Max-Brauer-Allee – Umbauplanung [18]

3.13 Max-Brauer-Allee / Julius-Leber-Straße (LSA 706)

Knotenpunktbelastung (vgl. Anhang 13.1) und Entwicklung zur Analyse	Analyse 05.06.2013	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.810 <i>(5%)</i>	1.970 <i>(5%)</i> +9 %	2.020 (5%) +12 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.000 (3%)	2.180 <i>(4%)</i> +9 %	2.240 (4%) +12 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 13.3)	D	E	Е	E	Е	Е
Optimierung der Aufschaltung	(Anhang 13.4)	C	С	D	D	D	D

Tabelle 18: Verkehrstechnische Bewertung Max-Brauer-Allee/Julius-Leber-Straße

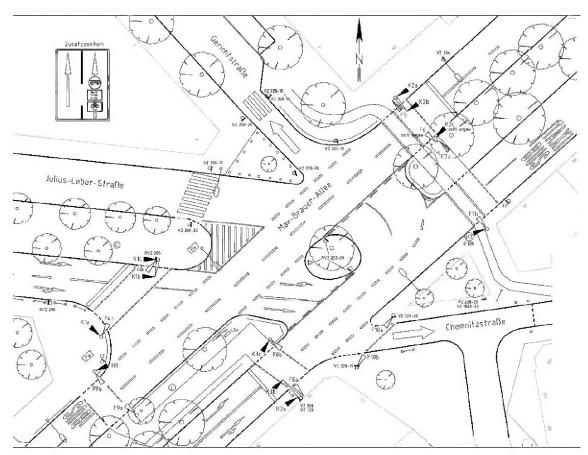


Abbildung 36: Signallageplan Max-Brauer-Allee/Julius-Leber-Straße – Bestand (16/706-04-06/01)

Bestand

Die Leistungsfähigkeitsgrenze des signalisierten Knotenpunktes Max-Brauer-Allee/Julius-Leber-Straße mit Festzeitsteuerung wird im <u>Analyse</u>zustand bei den aktuellen Belastungen in der Hauptverkehrszeit nachmittags nahezu erreicht. Hier ist der Verkehrsablauf insgesamt mit der Qualitätsstufe E zu beschreiben.

Durch eine Optimierung der Signalisierung (Anpassung der Freigabezeiten) bzw. durch eine verkehrsabhängige Steuerung kann eine deutliche Verbesserung der Verkehrsabwicklung erreicht werden (QSV = C). Die höchsten Auslastungen würden fahrstreifenbezogen bei 80% liegen.

In den <u>Entwicklungsstufen 1 und 2</u> ist bei einer Optimierung der aktuellen Aufschaltung bzw. durch eine verkehrsabhängige Steuerung eine insgesamt noch ausreichende Verkehrsqualität am Knotenpunkt zu gewährleisten (QSV = D). Fahrstreifenbezogen sind Kapazitätsreserven von mindestens etwa 15% zu verzeichnen.

Planung (Busbeschleunigungsprogramm)

Die Planung zum Ausbau des Knotenpunktes im Rahmen der Busbeschleunigungsmaßnahmen M20/25 [18] (siehe Abbildung 37) lag erst kurz vor Redaktionsschluss vor und kann nur noch nachrichtlich aufgenommen werden. Durch die vorgesehenen Abbiegeeinschränkungen – vor allem durch den Verzicht auf das Linksabbiegen mit Verlagerung auf die Goetheallee – ist eine deutliche Erhöhung der Leistungsfähigkeit des Knotenpunktes zu erwarten. Die allgemeinen Verkehrsqualität wird sich dementsprechend auch positiv entwickeln.

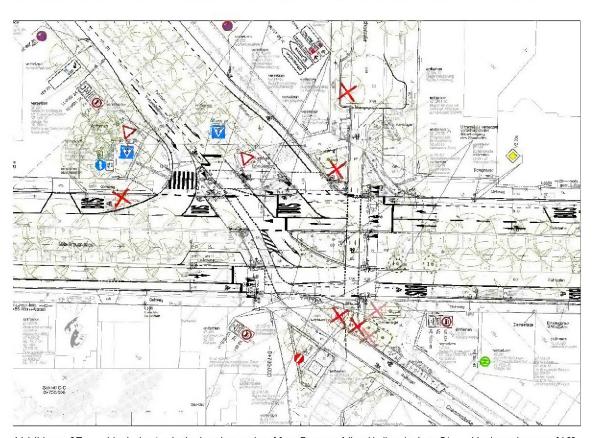


Abbildung 37: Verkehrstechnischer Lageplan Max-Brauer-Allee/Julius-Leber-Str. – Umbauplanung [18]

3.14 Max-Brauer-Allee / Goetheallee (LSA 1771)

Knotenpunktbelastung (vgl. Anhang 14.1) und Entwicklung zur Analyse	Analyse Stichprobe 26.06.2018	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.200 <i>(6%)</i>	1.290 <i>(6%)</i> +8 %	1.340 <i>(6%)</i> +12 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	1.490 (3%)	1.630 <i>(3%)</i> +9 %	1.680 <i>(3%)</i> +13 %

Knotenpunktausbau und Verkehrsqualität in den Spitzenstunden		Analyse früh spät		Entw.stufe 1		Entw.stufe 2	
Spitzeristunden	Spitzenstunden		spat	Trun	spät	Trun	spät
Bestand	(Anhang 14.3)	В	D	В	F	В	F
Optimierung der Aufschaltung	(Anhang 14.4)			B*	D	B*	D

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 19: Verkehrstechnische Bewertung Max-Brauer-Allee/Goetheallee

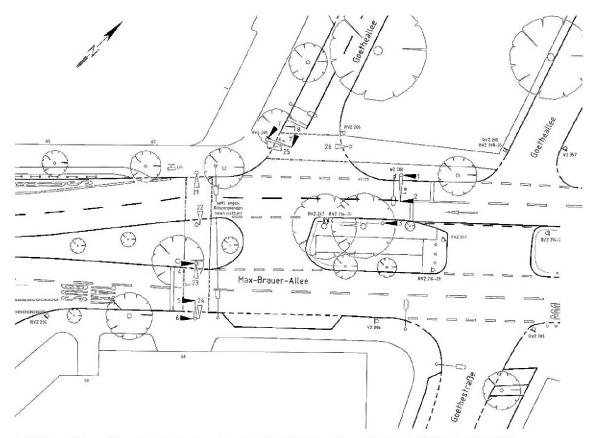


Abbildung 38: Signallageplan Max-Brauer-Allee/Goetheallee - Bestand (92/1771-04-01/03)

Bestand

Die Leistungsfähigkeitsgrenze des signalisierten Knotenpunktes Max-Brauer-Allee/Goetheallee mit Festzeitsteuerung wird bei den aktuellen **Analyse**belastungen zumindest in der Hauptverkehrszeit nachmittags fast erreicht. Die Verkehrsqualität ist insgesamt zwar noch als ausreichend zu bezeichnen (QSV = D). Die fahrstreifenbezogen höchste Auslastung liegt aber schon bei knapp über 90%. Erhöhte Behinderungen treten immer dann auf, wenn die

Linksabbieger aus der Max-Brauer-Allee (West) durch zu lange Rückstaus den nachfolgenden Verkehr beeinflussen. Die Praxis zeigt in diesem Fall, dass viele Verkehrsteilnehmer auf die Busspur ausweichen.

Durch eine Optimierung der Signalisierung (Anpassung der Freigabezeiten) bzw. durch eine verkehrsabhängige Steuerung könnte eine deutliche Verbesserung der Verkehrsabwicklung erreicht werden.

In den Entwicklungsstufen 1 und 2 ist eine Anpassung der aktuellen Aufschaltung – zumindest in der Hauptverkehrszeit nachmittags – bzw. die Ergänzung einer verkehrsabhängigen Steuerung erforderlich, um jederzeit eine qualitätsgerechte Verkehrsabwicklung am Knotenpunkt gewährleisten zu können (QSV = D). Allerdings sind fahrstreifenbezogen Auslastungen bis ca. 90% zu verzeichnen, so dass schon geringfügige Aufkommensschwankungen zu deutlichen Behinderungen führen können.

Planung (Busbeschleunigungsprogramm)

Die Planung zum Ausbau des Knotenpunktes im Rahmen der Busbeschleunigungsmaßnahmen M20/25 [18] (siehe Abbildung 39) lag erst kurz vor Redaktionsschluss vor und konnte nicht mehr in die Bewertung einfließen. In erster Linie durch die Herstellung eines separaten Linksabbiegestreifens in die Goetheallee ist insgesamt eine Verbesserung der allgemeinen Verkehrsabwicklung zu erwarten.

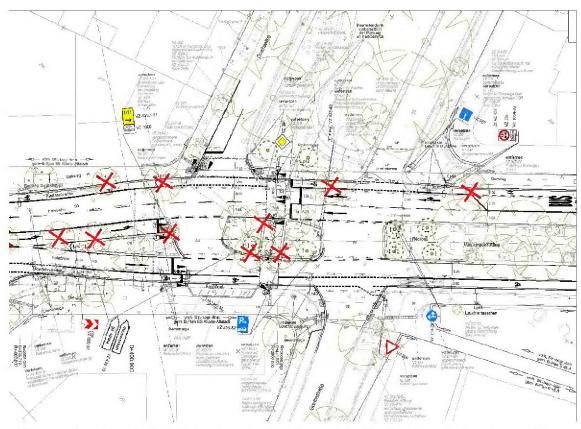


Abbildung 39: Verkehrstechnischer Lageplan Max-Brauer-Allee/Goetheallee – Umbauplanung [18]

3.15 Max-Brauer-Allee / Große Bergstraße (LSA 321)

Knotenpunktbelastung (vgl. Anhang 15.1) und Entwicklung zur Analyse	Analyse 04.03.2010	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.970 (6%)	2.140 (6%) +9 %	2.220 (6%) +13 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.330 (4%)	2.550 (4%) +9 %	2.620 (4%) +12 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 15.3)	Е	D	E	E	Е	Е
Optimierung der Aufschaltung	(Anhang 15.4)	С	С	D	С	D	С

Tabelle 20: Verkehrstechnische Bewertung Max-Brauer-Allee/Große Bergstraße

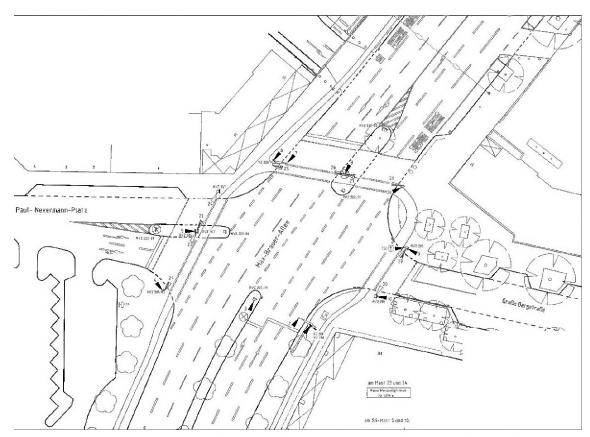


Abbildung 40: Signallageplan Max-Brauer-Allee/Große Bergstraße – Bestand (01/321-04-05/05)

Bestand

Die <u>Analyse</u> der aktuellen Verkehrsabwicklung am signalisierten Knotenpunkt Max-Brauer-Allee/Große Bergstraße zeigt, dass die derzeitige Aufschaltung nicht durchgängig leistungsfähig ist. Bei den aktuellen Belastungen wird zumindest in der Hauptverkehrszeit morgens nur die Qualitätsstufe E erreicht. In der übrigen Zeit ist die Verkehrsqualität insgesamt mindestens ausreichend.

Durch eine Optimierung der Signalisierung bzw. mit Hilfe einer verkehrsabhängigen Steuerung kann eine deutliche Verbesserung der Verkehrsabwicklung erreicht werden (QSV = C). Die höchsten Auslastungen würden dann fahrstreifenbezogen bei knapp über 60% liegen. Gleichzeitig könnten die Freigabezeiten für die Fußgänger/Radfahrer angepasst werden, so dass auch hier eine nach dem Hamburger Qualitätsmaßstab ausreichende Verkehrsqualität gewährleistet werden kann.

Bei den Belastungen in den <u>Entwicklungsstufen 1 und 2</u> ist eine Anpassung der aktuellen Aufschaltung (bzw. die Ergänzung einer verkehrsabhängigen Steuerung) erforderlich, um eine qualitätsgerechte Verkehrsabwicklung am Knotenpunkt sicherzustellen (QSV = D). Die fahrstreifenbezogenen Kapazitätsreserven liegen bei mindestens ca. 30%.

3.16 Barnerstraße / Bahrenfelder Straße (LSA 417)

Knotenpunktbelastung (vgl. Anhang 16.1) und Entwicklung zur Analyse	Analyse 06.11.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.800 <i>(5%)</i>	2.020 <i>(5%)</i> +12 %	2.040 <i>(5%)</i> +13 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.130 (3%)	2.400 (3%) +13 %	2.410 (3%) +13 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.s	stufe 1	Entw.s	stufe 2
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 16.3)	С	D	С	F	D	F
Optimierung der Aufschaltung	(Anhang 16.4)			C*	D	_ C*	D

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 21: Verkehrstechnische Bewertung Barnerstraße/Bahrenfelder Straße

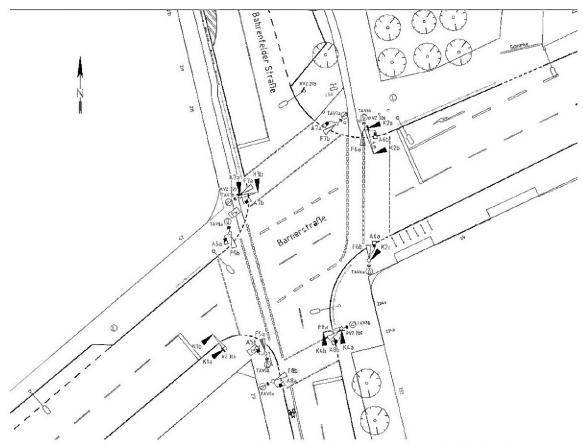


Abbildung 41: Signallageplan Barnerstraße/Bahrenfelder Straße – Bestand (14/417-04-04/00)

Bestand

Der signalisierte Knotenpunkt Barnerstraße/Bahrenfelder Straße ist im <u>Analyse</u>zustand mit der aktuellen Aufschaltung nur dann ausreichend leistungsfähig, wenn in den überbreiten Fahrstreifen in den Zufahrten Barnerstraße und Bahrenfelder Straße - Nord geradeausfahrende und abbiegende Kfz nebeneinander fahren bzw. sich nebeneinander aufstellen.

Durch die Nutzung dieser "unechten" Zweistreifigkeit ist eine Verkehrsabwicklung im Bereich der Qualitätsstufe C (früh) bzw. D (spät) möglich. Anderenfalls entstehen erhebliche gegenseitige Behinderungen, so dass der Knotenpunkt zumindest in den Hauptverkehrszeiten insgesamt überlastet ist.

In den <u>Entwicklungsstufen 1 und 2</u> kann bei einer Optimierung der aktuellen Aufschaltung bzw. durch eine verkehrsabhängige Steuerung und Nutzung der "unechten" Zweistreifigkeit insgesamt eine noch ausreichende Verkehrsqualität am Knotenpunkt gewährleistet werden (QSV = D). Allerdings sind vor allem in der Hauptverkehrszeit spät sehr hohe fahrstreifenbezogene Auslastungen bis etwa 90% zu erwarten; schon geringe Aufkommensschwankungen können einen zeitweise instabilen Verkehrszustand erzeugen.

3.17 Barnerstraße / Friedensallee (LSA 617)

Knotenpunktbelastung (vgl. Anhang 17.1) und Entwicklung zur Analyse	Analyse Stichprobe 26.06.2018	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh <i>(SV-Anteil)</i> in [Kfz/h]	1.050 (ca. 5%)	1.250 <i>(5%</i>) +19 %	1.260 (5%) +20 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	750 (ca. 5%)	980 <i>(5%)</i> +31 %	980 (5%) +31 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.stufe 1 Entw		Entw.s	.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät	
Bestand	(Anhang 17.3)	В	В	С	В	В	В	

Tabelle 22: Verkehrstechnische Bewertung Barnerstraße/Friedensallee

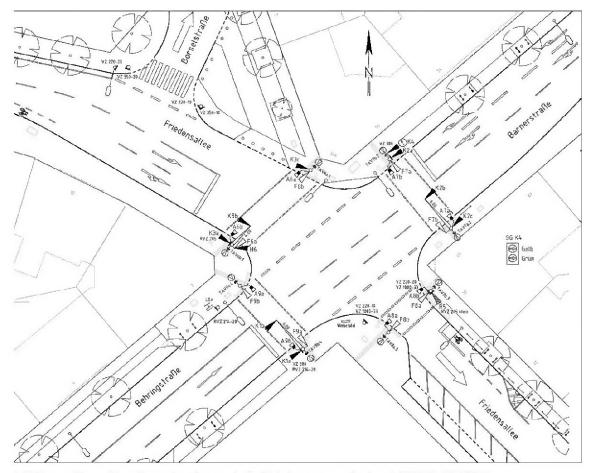


Abbildung 42: Signallageplan Barnerstraße/Friedensallee – Bestand (17/617-04-06/00)

Bestand

Am signalisierten Knotenpunkt Barnerstraße/Friedensallee ist bei den <u>Analyse</u>belastungen und der vorhandenen Festzeitsteuerung eine gute Verkehrsqualität zu verzeichnen (QSV = B). Selbst in den Hauptverkehrszeiten liegt die höchste Auslastung fahrstreifenbezogen z.T. deutlich unter 50%. Auch bei deutlich höheren Belastungen – im Abgleich mit den Zählergebnissen am benachbarten Knoten Barnerstraße/Bahrenfelder Straße im Jahr 2012

wäre ein doppelt so hohes Verkehrsaufkommen abzuwickeln – ist noch eine ausreichende Leistungsfähigkeit zu erwarten.

In den <u>Entwicklungsstufen 1 und 2</u> ist am Knotenpunkt weiterhin eine qualitätsgerechte Verkehrsabwicklung im Wertebereich der Stufe B bzw. C zu erwarten. In allen Phasen stehen noch deutliche Kapazitätsreserven zur Verfügung.

3.18 Friedensallee / Hohenzollernring (LSA 1004)

Knotenpunktbelastung (vgl. Anhang 18.1) und Entwicklung zur Analyse	Analyse Stichprobe 03.07.2018	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.230 (ca. 5%)	1.450 <i>(5%)</i> +18 %	1.460 <i>(5%)</i> +19 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	1.380 (ca. 3%)	1.660 <i>(3%)</i> +20 %	1.660 <i>(3%)</i> +20 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.stufe 1 Entw		Entw.s	v.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät	
Bestand	(Anhang 18.3)	С	D	С	D	С	D	

Tabelle 23: Verkehrstechnische Bewertung Friedensallee/Hohenzollernring

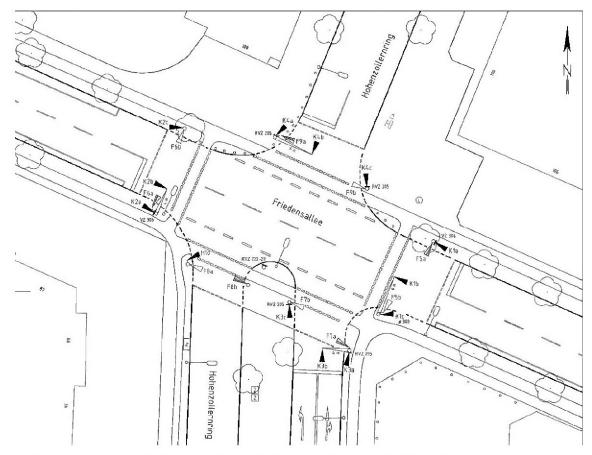


Abbildung 43: Signallageplan Friedensallee/Hohenzollernring – Bestand (17/617-04-06/00)

Bestand

Der Verkehrsablauf am signalisierten Knotenpunkt Friedensallee/Hohenzollernring ist im <u>Analyse</u>zustand mit der vorhandenen Festzeitsteuerung von einer mindestens ausreichenden Verkehrsqualität gekennzeichnet (QSV = D). Fahrstreifenbezogen liegen die höchsten Auslastungen in den Hauptverkehrszeiten bei knapp über 65% morgens und rd. 75% nachmittags. Somit sind genügend Kapazitätsreserven vorhanden, um den Knotenpunktverkehr

auch bei den üblichen tageszeitlichen und stündlichen Aufkommensschwankungen qualitätsgerecht abwickeln zu können.

Trotz der prognostizierten Verkehrszunahmen in den <u>Entwicklungsstufen 1 und 2</u> ist am Knotenpunkt eine qualitativ gute bis ausreichende Verkehrsabwicklung zu erwarten. In den Hauptverkehrszeiten werden insgesamt Verkehrsqualitäten im Wertebereich der Stufe C (morgens) bzw. D (nachmittags) ermittelt. Die fahrstreifenbezogenen Kapazitätsreserven liegen bei mindestens ca. 20%.

3.19 Von-Sauer-Straße / Friedensallee (LSA 1212)

Knotenpunktbelastung (vgl. Anhang 19.1) und Entwicklung zur Analyse	Analyse 21.02.2018	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.170 <i>(3%</i>)	3.570 <i>(3%)</i> +13 %	3.650 <i>(3%)</i> +15 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.140 (1%)	3.650 (1%) +16 %	3.680 (1%) +18 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.stufe 1			
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 19.3)	В	D	С	E	C	Е
Optimierung der Aufschaltung	(Anhang 19.4)			C*	С	C*	С

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 24: Verkehrstechnische Bewertung Von-Sauer-Straße/Friedensallee

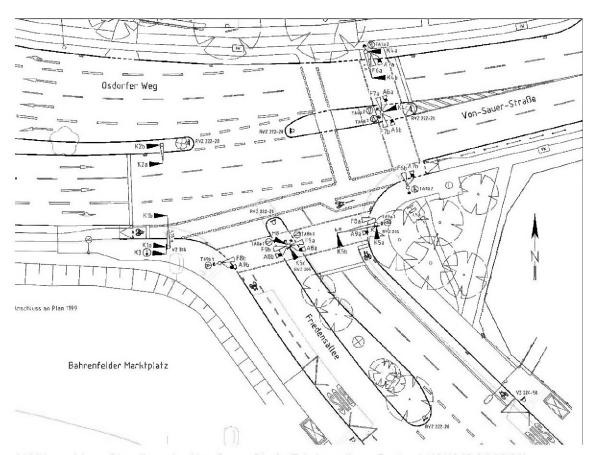


Abbildung 44: Signallageplan Von-Sauer-Straße/Friedensallee – Bestand (13/1212-04-02/00)

Bestand

Der signalisierte Knotenpunkt Von-Sauer-Straße/Friedensallee ist im Bestand bei den **Analyse**belastungen ausreichend leistungsfähig. Nach HBS-Maßstäben ist der Verkehrsablauf in den maßgebenden Spitzenstunden mit der Qualitätsstufe B (früh) bzw. D (spät) zu bewerten. Bei den verfügbaren Kapazitätsreserven von fahrstreifenbezogen mindestens

rund 40% morgens bzw. 15% nachmittags können auch die üblichen täglichen bzw. stündlichen Verkehrsschwankungen qualitätsgerecht abgewickelt werden.

In den <u>Entwicklungsstufen 1 und 2</u> ist zumindest eine Anpassung der aktuellen Aufschaltung in der Hauptverkehrszeit nachmittags erforderlich, um jederzeit eine qualitätsgerechte Verkehrsabwicklung am Knotenpunkt gewährleisten zu können (QSV = C). Die Nachrüstung einer verkehrsabhängigen Steuerung ist zu empfehlen. Fahrstreifenbezogen liegen die höchsten Auslastungen bei ca. 80%; zum Auffangen von normalen Aufkommensschwankungen sind noch genügend Kapazitätsreserven vorhanden.

3.20 Bornkampsweg / Holstenkamp (LSA 1148)

Knotenpunktbelastung (vgl. Anhang 20.1) und Entwicklung zur Analyse	Analyse 18.04.2013	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.090 (8%)	3.430 <i>(8%)</i> +11 %	4.570 (6%) +48 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.140 (5%)	3.550 <i>(5%)</i> +13 %	5.050 (4%) +61 %

Knotenpunktausbau und Verkehrsqualität in den Spitzenstunden		Ana früh	lyse spät	Entw.s	stufe 1	Entw.s	tufe 2
		F	F	F*	F*	11 411	opat
Bestand	(Anhang 20.3)	Г		Г	Г		
Optimierung der Aufschaltung	(Anhang 20.4)	D	D	Е	D		
Ausbaumaßnahmen	(Anhang 20.6)			С	D		
Planung Verlängerter Holstenkamp	(Anhang 20.8)					D	D

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 25: Verkehrstechnische Bewertung Bornkampsweg/Holstenkamp

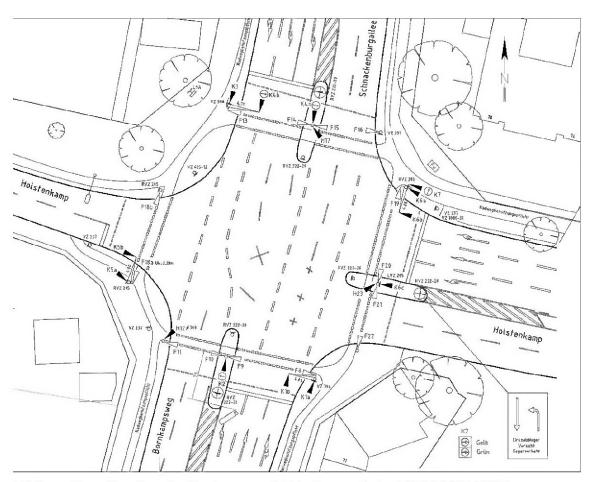


Abbildung 45: Signallageplan Bornkampsweg/Holstenkamp – Bestand (03/1148-04-04/01)

Bestand

Die aktuelle Aufschaltung am signalisierten Knotenpunkt Bornkampsweg/Holstenkamp ist bei den <u>Analyse</u>belastungen in den Hauptverkehrszeiten nicht leistungsfähig. In beiden maßgebenden Spitzenstunden früh und spät ist der Verkehrsablauf mit der Qualitätsstufe F zu beschreiben.

Bei einer Optimierung der Signalisierung bzw. durch eine verkehrsabhängige Steuerung kann eine deutlich bessere Verkehrsabwicklung erreicht werden (QSV = D). Gleichzeitig könnte an allen Furten durch eine entsprechende Freigabezeitverlängerung eine nach dem Hamburger Maßstab ausreichende Verkehrsqualität auch für Fußgänger gewährleistet werden. Bei fahrstreifenbezogen höchsten Auslastungen von knapp unter 90% sind allerdings nur noch geringe Kapazitätsreserven vorhanden, um auch Belastungsschwankungen qualitätsgerecht abzuwickeln.

Ausbaumaßnahmen

In <u>Entwicklungsstufe 1</u> ist ein Ausbau des Knotenpunktes erforderlich, um die erhöhten Verkehrsbelastungen qualitätsgerecht abwickeln zu können. Als Mindestausbauanforderung ist ein zusätzlicher Geradeausfahrstreifen in der nördlichen Knotenzufahrt Schnackenburgallee mit einer Länge von ca. 70 m vorzusehen (siehe Abbildung 46).

Nach den überschlägigen Leistungsfähigkeitsnachweisen ist mindestens die Qualitätsstufe D zu erwarten. Fahrstreifenbezogen betragen die höchsten Auslastungen ca. 85%, so dass der Knotenausbau auch bei normalen Belastungsschwankungen ausreichend leistungsfähig erscheint.

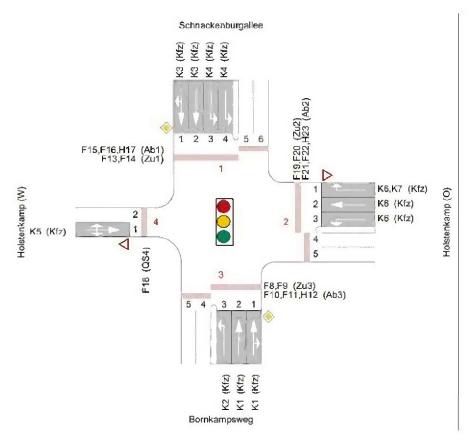


Abbildung 46: Prinzipskizze Bornkampsweg/Holstenkamp – Ausbaumaßnahmen für Entwicklungsstufe 1

Planung (verlängerter Holstenkamp)

In <u>Entwicklungsstufe 2</u> können die prognostizierten Verkehrszunahmen nur durch einen umfangreichen Ausbau des Knotenpunktes qualitätsgerecht abgewickelt werden (QSV = D). Der mindestens erforderliche Ausbau ist in Abbildung 47 dargestellt. Der Rechtsabbieger aus dem Holstenkamp-Ost ist an einer Dreiecksinsel vorbeizuführen; in der östlichen und südlichen Zufahrt sollten die Linksabbieger links von der Mittelinsel geführt werden; die Linksabbieger werden signaltechnisch gesichert geschaltet. Aus den verkehrstechnischen Berechnungen sind folgende Fahrstreifenlängen abzuleiten:

Schnackenburgallee

GA/RA = 112 m

GA = Hauptfahrstreifen

LA = Hauptfahrstreifen

 $LA = 150 \, m$

Holstenkamp – Ost

RA = 148 m

GA = Hauptfahrstreifen

GA = Hauptfahrstreifen

 $LA = 58 \, m$

 $LA = 58 \, m$

Bornkampsweg

 $RA = 93 \, \text{m}$

GA = Hauptfahrstreifen

GA = Hauptfahrstreifen

 $LA = 31 \, m$

Holstenkamp – West

GA/RA = Hauptfahrstreifen

GA = Hauptfahrstreifen

LA = 40 m

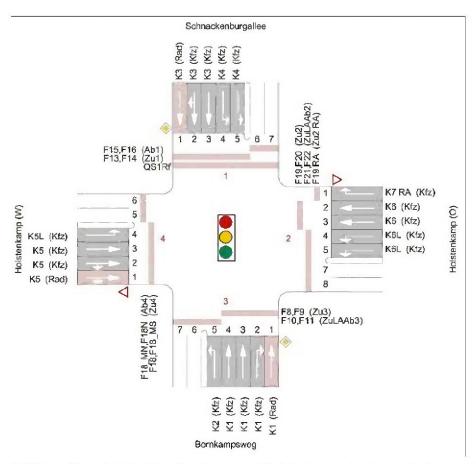


Abbildung 47: Prinzipskizze Bornkampsweg/Holstenkamp – Ausbaumaßnahmen für Entwicklungsstufe 2

Die Realisierbarkeit dieses Knotenpunktausbaus ist aufgrund der vorhandenen Grundstücksgrenzen und Bebauung allerdings im höchsten Maße fraglich.

3.21 Holstenkamp / Große Bahnstraße (LSA 1043)

Knotenpunktbelastung (vgl. Anhang 21.1) und Entwicklung zur Analyse	Analyse 22.06.2017	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	2.570 <i>(7%)</i>	2.660 (7%) +4 %	3.130 <i>(7%)</i> +22 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.410 (3%)	3.530 <i>(3%)</i> +4 %	4.090 <i>(3%)</i> +20 %

Knotenpunktausbau und Verkehrsqualität in den		Ana		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 21.3)	D	Е				
Optimierung der Aufschaltung	(Anhang 21.4)	В	Е	C*	E*	D*	F*
Ausbaumaßnahmen	(Anhang 21.6)			С	D	D	D

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 26: Verkehrstechnische Bewertung Holstenkamp/Große Bahnstraße

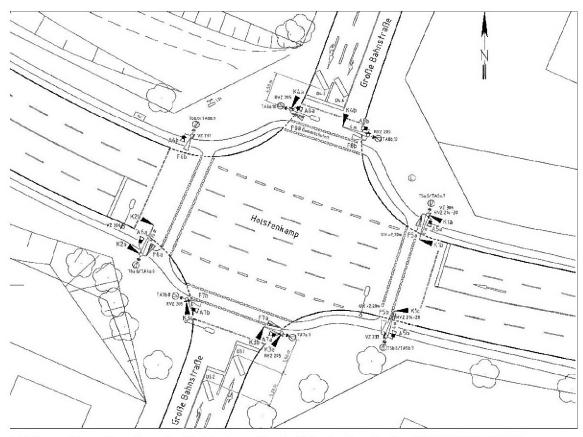


Abbildung 48: Signallageplan Holstenkamp/Große Bahnstraße – Bestand (06/1043-04-02/02)

Bestand

Bei den <u>Analyse</u>belastungen ist die aktuelle Signalisierung am Knotenpunkt Holstenkamp/Große Bahnstraße zumindest in der maßgebenden Spitzenstunde spät als nicht leistungsfähig einzuschätzen. Der Verkehrsablauf ist durch die Qualitätsstufe E gekennzeichnet. Ausschlaggebend hierfür ist der starke Linksabbiegeverkehr in die Große Bahnstraße

(Nord), für den kein separater Fahrstreifen bzw. Aufstellbereich im inneren Knotenbereich zur Verfügung steht. Dagegen kann die Verkehrsabwicklung in der übrigen Tageszeit als relativ problemlos beschrieben werden.

Auch durch eine Optimierung der Signalisierung (bzw. durch eine verkehrsabhängige Steuerung) ist keine wesentliche Verbesserung des Verkehrsablaufes in der Hauptverkehrszeit nachmittags zu erwarten. Die einzelnen Phasen sind relativ hoch ausgelastet, so dass nur noch begrenzte Kapazitätsreserven zur Verfügung stehen.

Ausbaumaßnahmen

In den Entwicklungsstufen 1 und 2 ist – neben der Verkehrszunahme im Holstenkamp – auch ein erhöhtes Quell- und Zielverkehrsaufkommen in der Großen Bahnstraße (Süd) durch die Verlegung des Fernbahnhofes HH-Altona nach Diebsteich zu erwarten. Zur qualitätsgerechten Abwicklung der prognostizierten Verkehrsnachfrage ist der Knotenpunkt auszubauen. Prinzipiell sind als Mindestausbauanforderung zusätzliche Linksabbiegestreifen im Holstenkamp vorzusehen (siehe Abbildung 49). Die erforderliche Länge kann in beiden Szenarien mit rund 20 m in der östlichen Zufahrt und ca. 65 m in der westlichen Zufahrt angegeben werden.

Überschlägige Leistungsfähigkeitsnachweise zeigen, dass die Linksabbieger separat geschaltet werden müssen. Dadurch kann in beiden Entwicklungsstufen mindestens die Qualitätsstufe D gewährleistet werden. Die höchsten fahrstreifenbezogenen Auslastungen betragen ca. 70% in Entwicklungsstufe 1 bzw. 85% in Stufe 2, so dass noch Kapazitätsreserven zum Auffangen von Aufkommensschwankungen vorhanden sind.

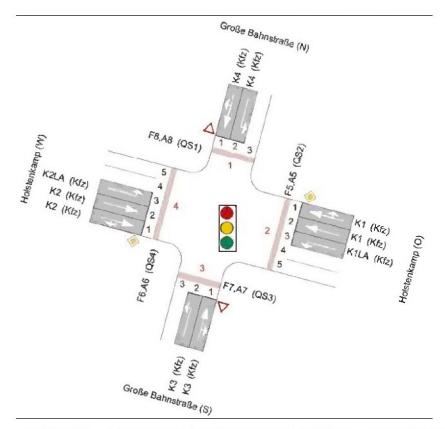


Abbildung 49: Prinzipskizze Holstenkamp/Große Bahnstraße – Ausbaumaßnahmen

3.22 Eimsbütteler Marktplatz (LSA 1601 und 475)

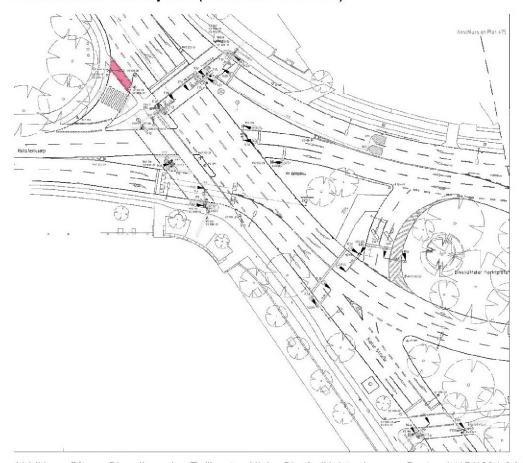


Abbildung 50: Signallageplan Teilknoten Kieler Straße/Holstenkamp – Bestand (15/1601-04-06/03)

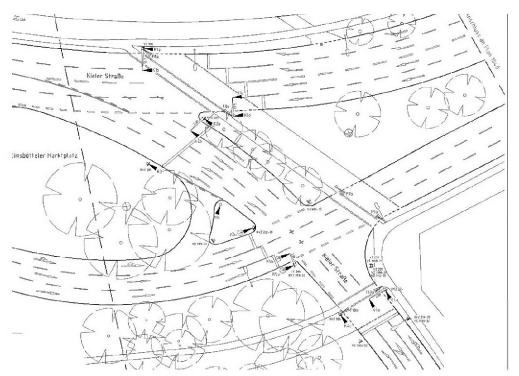


Abbildung 51: Signallageplan Teilknoten Kieler Str./Eimsbütteler Marktplatz – Bestand (15/475-04-13/02)

Knotenpunktbelastung (vgl. Anhang 22.1) und Entwicklung zur Analyse	Analyse 07.09.2010	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	5.060 <i>(7%)</i>	5.750 <i>(7%)</i> +14 %	6.160 <i>(7%)</i> +22 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	5.520 (4%)	6.520 (4%) +18 %	6.980 (4%) +26 %

Knotenpunktausbau und Verkehrsqualität in den Spitzenstunden		Analyse früh spät		Entw.stufe 1 früh spät		Entw.stufe 2 früh spät	
Bestand	(Anhang 22.3/6)	D	D	E	E	E	F
Optimierung der Aufschaltung	(Anhang 22.4)			D	D	D	D

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 27: Verkehrstechnische Bewertung Gesamtknoten Eimsbütteler Marktplatz

Bestand

Der Gesamtknoten Kieler Straße/Eimsbütteler Marktplatz ist im Analysezustand bei den aktuellen Verkehrsbelastungen als ausreichend leistungsfähig einzuschätzen.

Am signalisierten Teilknotenpunkt Kieler Straße/Holstenkamp kann der Verkehrsablauf in den absoluten Spitzenstunden morgens und nachmittags unter normalen Bedingungen insgesamt mit der Qualitätsstufe D beschrieben werden. Fahrstreifenbezogen liegen die höchsten Auslastungen bei ca. 85%, so dass auch die üblichen täglichen bzw. stündlichen Belastungsschwankungen i.d.R. noch qualitätsgerecht abgewickelt werden können.

Am signalisierten Teilknotenpunkt Kieler Straße/Eimsbütteler Marktplatz ist jederzeit eine gute Verkehrsqualität (QSV = B) zu gewährleisten. Die Kapazitätsreserven betragen fahrstreifenbezogen mindestens 40%.

Auch bei den prognostizierten Belastungen in den <u>Entwicklungsstufen 1 und 2</u> ist der Gesamtknoten ausreichend leistungsfähig. In den Hauptverkehrszeiten kann an beiden Teilknoten mindestens eine Verkehrsqualität im Wertebereich der Stufe D erwartet werden. Allerdings ist hierfür am Teilknotenpunkt Kieler Straße/Holstenkamp eine Optimierung der aktuellen Aufschaltung (Anpassung der Freigabezeiten) erforderlich. Die höchsten Auslastungen liegen fahrstreifenbezogen bei 80 bis 90%, so dass Kapazitätsreserven nur im gewissen Umfang zur Verfügung stehen.

3.23 Kieler Straße / Waidmannstraße (LSA 1332)

Knotenpunktbelastung (vgl. Anhang 23.1) und Entwicklung zur Analyse	Analyse 02.03.2010	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.890 (8%)	2.150 (8%) +14 %	2.330 (8%) +23 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.170 (5%)	2.620 (5%) +21 %	2.780 (5%) +28 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 23.3)	D	E	D	F	Е	F
Optimierung der Aufschaltung	(Anhang 23.4)	C	С	С	С	С	D

Tabelle 28: Verkehrstechnische Bewertung Kieler Straße/Waidmannstraße

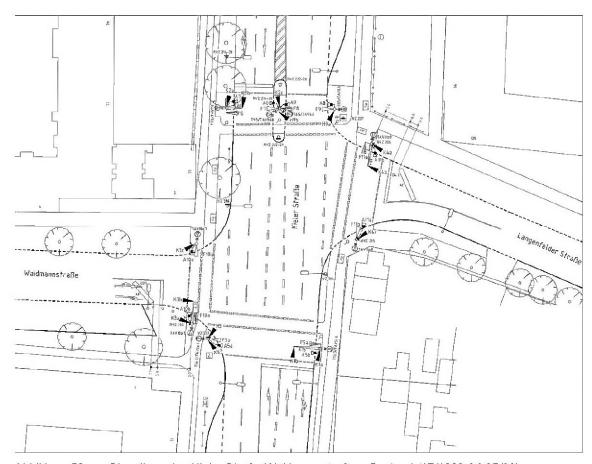


Abbildung 52: Signallageplan Kieler Straße/Waidmannstraße – Bestand (17/1332-04-05/00)

Bestand

Die <u>Analyse</u> der aktuellen Verkehrsabwicklung am signalisierten Knotenpunkt Kieler Straße/Waidmannstraße zeigt, dass die derzeitige Aufschaltung im Bestand nicht durchgängig leistungsfähig ist. Bei den Belastungen in der Hauptverkehrszeit nachmittags wird nur die Qualitätsstufe E erreicht. In der übrigen Zeit ist der Verkehrsablauf mindestens mit einer ausreichenden Verkehrsqualität zu beschreiben.

Durch eine Optimierung der Signalisierung oder auch nur durch eine zweistreifige Nutzung der überbreiten Zufahrt Waidmannstraße kann eine deutliche Verbesserung der Verkehrsabwicklung erreicht werden (QSV = C). Die höchsten Auslastungen würden dann fahrstreifenbezogen bei etwa 65% liegen.

In den <u>Entwicklungsstufen 1 und 2</u> ist eine Optimierung der aktuellen Signalisierung erforderlich, um jederzeit eine mindestens ausreichende Verkehrsqualität gewährleisten zu können. Fahrstreifenbezogen sind Auslastungen von höchstens 70 bis 80% zu erwarten.

Grundsätzlich könnte die Leistungsfähigkeit des Knotenpunktes durch einen echten zweistreifigen Ausbau der Zufahrt Waidmannstraße weiter erhöht werden.

3.24 Kieler Straße / Augustenburger Straße (LSA 621)

Knotenpunktbelastung (vgl. Anhang 24.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	2.330 (9%)	2.900 (9%) +24 %	3.130 <i>(9%)</i> +34 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.730 (4%)	3.630 <i>(4%)</i> +33 %	3.810 (4%) +40 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	lyse	Entw.s	tufe 1	Entw.s	tufe 2
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 24.3)	C	Е	Ш	F	ш	F
Optimierung der Aufschaltung	(Anhang 24.4)	В	С	С	D	С	D

Tabelle 29: Verkehrstechnische Bewertung Kieler Straße/Augustenburger Straße

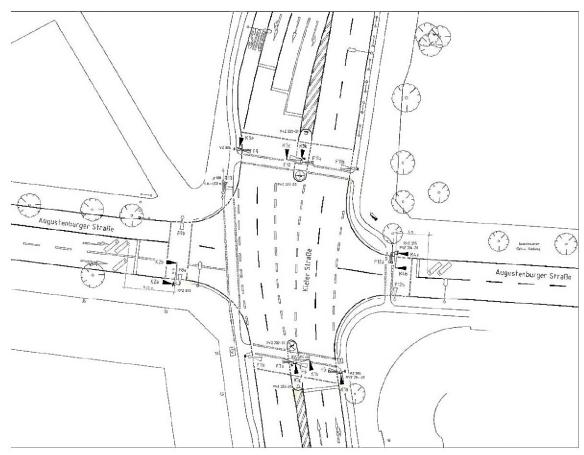


Abbildung 53: Signallageplan Kieler Straße/Augustenburger Straße – Bestand (02/621-04-02/01)

Bestand

Am signalisierten Knotenpunkt Kieler Straße/Augustenburger Straße können die aktuellen **Analyse**belastungen im Bestand nicht durchgängig qualitätsgerecht abgewickelt werden. Zumindest in der Hauptverkehrszeit nachmittags führt die Aufschaltung zu einer Verkehrsabwicklung, die mit der Qualitätsstufe E zu beschreiben ist. In der übrigen Zeit liegt i.d.R. eine mindestens ausreichende Verkehrsqualität vor.

Durch eine Optimierung der Signalisierung und/oder ggf. eine Anpassung der verkehrsabhängigen Steuerung ist eine deutliche Verbesserung des Verkehrsablaufes möglich (QSV = C oder besser). Dabei würden die fahrstreifenbezogen höchsten Auslastungen in den Spitzenstunden morgens bei etwa 65% bzw. nachmittags bei knapp 80% liegen.

Bei den prognostizierten Verkehrszunahmen in den <u>Entwicklungsstufen 1 und 2</u> kann durch eine Optimierung der aktuellen Signalisierung und ggf. der verkehrsabhängigen Steuerung jederzeit eine qualitativ ausreichende Verkehrsabwicklung im Wertebereich der Stufe C (früh) bzw. D (spät) gewährleistet werden. Allerdings sind fahrstreifenbezogene Auslastungen von knapp 90% – insbesondere in den Spitzenzeiten nachmittags – zu verzeichnen, so dass nur noch relativ geringe Kapazitätsreserven zur Verfügung stehen.

3.25 Alsenstraße / Augustenburger Straße (LSA 942)

Knotenpunktbelastung (vgl. Anhang 25.1) und Entwicklung zur Analyse	Analyse 23.08.2012	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	2.280 (4%)	2.510 (4%) +10 %	2.480 (4%) +9 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	2.460 (2%)	2.770 (2%) +13 %	2.710 (2%) +10 %

Knotenpunktausbau und Verkehrsqualität in den		lyse	Entw.s	tufe 1	Entw.s	tufe 2
Spitzenstunden	früh	spät	früh	spät	früh	spät
Bestand (= Umbau Metrobus M20/25) (Anhang 25.3)		В	IL.	E	IL.	F
Optimierung der Aufschaltung (Anhang 25.4)			C	С	C	В

Tabelle 30: Verkehrstechnische Bewertung Alsenstraße/Augustenburger Straße

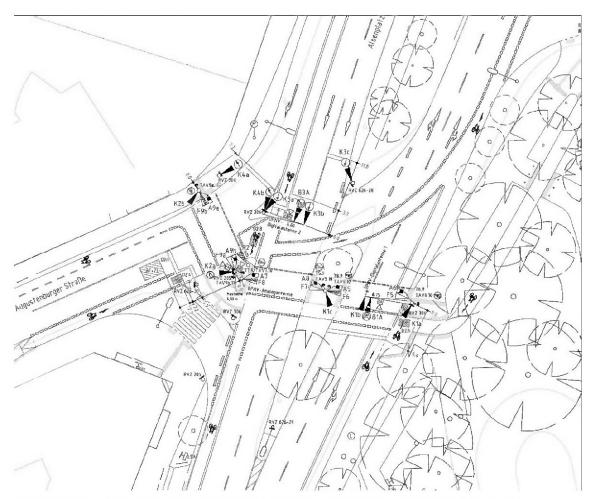


Abbildung 54: Signallageplan Alsenstraße/Augustenburger Straße – Bestand (17/942-04-04/00)

Bestand (Busbeschleunigungsprogramm)

Der signalisierte Knotenpunkt Alsenstraße/Augustenburger Straße wird derzeit im Rahmen des Busbeschleunigungsprogramms für die Metrobuslinien M20 und M25 umgeplant. Die Fertigstellung des Umbaus ist bis Ende April 2019 vorgesehen.

Der Umbau des Knotenpunktes ist bei den <u>Analyse</u>belastungen als durchgängig leistungsfähig einzuschätzen. In den maßgebenden Spitzenstunden wird der Kfz-Verkehr mit der Qualitätsstufe B (früh) bzw. C (spät) abgewickelt. Die höchsten Auslastungen liegen fahrstreifenbezogen z.T. deutlich unter 70%, so dass auch noch ausreichende Kapazitätsreserven zum Auffangen von Belastungsschwankungen vorhanden sind.

In den <u>Entwicklungsstufen 1 und 2</u> kann durch eine Optimierung der aktuellen bzw. geplanten Signalisierung bzw. durch die verkehrsabhängige Steuerung eine jederzeit gute bis zufriedenstellende Verkehrsqualität gewährleisten werden. Fahrstreifenbezogen sind Auslastungen von maximal knapp über 80% zu erwarten.

3.26 Fruchtallee / Doormannsweg (LSA 813)

Knotenpunktbelastung (vgl. Anhang 26.1) und Entwicklung zur Analyse	Analyse 29.03.2012		
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	6.510 (4%)	7.080 <i>(4%)</i> +9 %	7.320 (4%) +12 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	6.840 (2%)	7.650 (2%) +12 %	7.790 (2%) +14 %

Knotenpunktausbau und Verkehrsqualität in den Spitzenstunden		Analyse früh spät		Entw.stufe 1		Entw.stufe 2	
Spitzeristunden		Trun	spat	Trun	spät	Trun	spät
Bestand	(Anhang 26.3)	Е	Е	F	F	F	F
Optimierung der Aufschaltung	(Anhang 26.4)	E*	E*	E*	F*	F*	F*

^{* ...} ohne Leistungsfähigkeitsnachweis

Tabelle 31: Verkehrstechnische Bewertung Fruchtallee/Doormannsweg

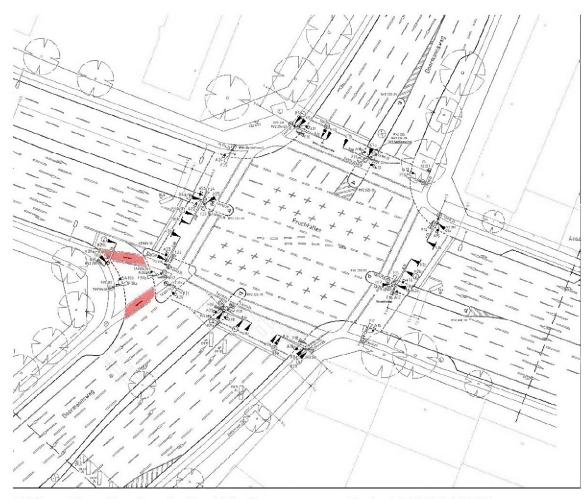


Abbildung 55: Signallageplan Fruchtallee/Doormannsweg – Bestand (16/813-04-03/03)

Bestand

Der signalisierte Knotenpunkt Fruchtallee/Doormannsweg ist im Bestand bei den <u>Analyse-</u>belastungen in den Hauptverkehrszeiten morgens und nachmittags nach HBS-Maßstäben nahezu ausgelastet. Die Verkehrsabwicklung ist mit der Qualitätsstufe E zu beschreiben; die Behinderungen sind beträchtlich. Schon geringe Aufkommensschwankungen können zu einem instabilen Verkehrszustand mit sehr hohen Wartezeiten und erheblichen Staubildungen führen.

Eine wirksame Optimierung der Aufschaltung (Festzeit und verkehrsabhängige Steuerung) ist nicht möglich, da alle Phasen sehr hoch ausgelastet sind. Ohnehin ist die Verkehrsqualität der Fußgänger nach dem Hamburger Qualitätsmaßstab z.T. als ungenügend zu bezeichnen. Eine entsprechende Anpassung mit ausreichend langen Grünzeiten an den Furten und vollständiger progressiver Signalisierung würde aber die Freigabezeiten für den Kfz-Verkehr auf der Fruchtallee deutlich einschränken.

In den <u>Entwicklungsstufen 1 und 2</u> ist der Knotenpunkt in den Hauptverkehrszeiten überlastet und insgesamt als nicht leistungsfähig einzuschätzen. Aufgrund der sehr hohen Auslastung bzw. Überlastung der einzelnen Phasen sind auch keine Optimierungsmöglichkeiten an der Aufschaltung gegeben.

Unter Berücksichtigung der vorhandenen Bebauung sind zusätzliche Ausbaumaßnahmen am Knotenpunkt unrealistisch.

Planung (Busbeschleunigungsprogramm)

Die Ausbauplanung am Knotenpunkt zur Busbeschleunigung M20/25 [19] (siehe Abbildung 56) lag erst kurz vor Redaktionsschluss vor und konnte nicht mehr in die Bewertung einfließen. Im Unterschied zum Bestand sind neben der Busbeschleunigung im Doormannsweg 4-Strich-Furten am östlichen und nördlichen Knotenpunktarm geplant. Eine Verbesserung der aktuellen Leistungsfähigkeit und Verkehrsabwicklung wird sich allein durch die Baumaßnahme nicht einstellen; vielmehr ist durch die vielen Buseingriffe mit einer spürbaren Zunahme der Verkehrsbehinderungen auf der Fruchtallee (erhöhte Wartezeiten) zu rechnen.

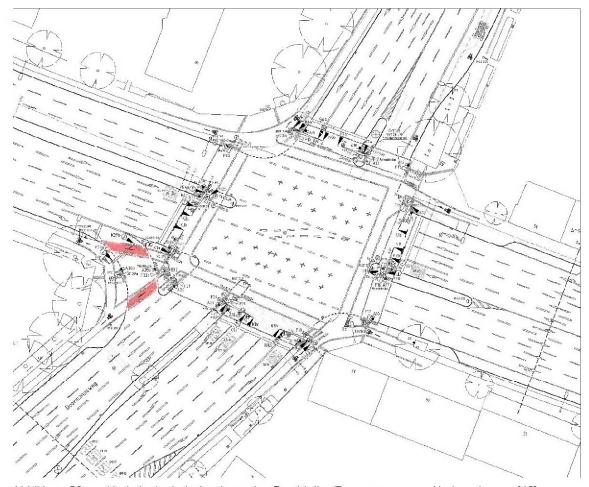


Abbildung 56: Verkehrstechnischer Lageplan Fruchtallee/Doormannsweg – Umbauplanung [18]

12.04.2019

3.27 Schäferkampsallee / Kleiner Schäferkamp (LSA 203)

Knotenpunktbelastung (vgl. Anhang 27.1) und Entwicklung zur Analyse	Analyse 08.04.2015	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	3.580 (6%)	3.870 (6%) +8 %	4.010 (6%) +12 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	3.790 (3%)	4.230 <i>(3%)</i> +12 %	4.340 <i>(3%)</i> +15 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse		Entw.stufe 1		Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 27.3)	D	D	D	E	D	E
Optimierung der Aufschaltung	(Anhang 27.4)			C*	D	С	D

Tabelle 32: Verkehrstechnische Bewertung Schäferkampsallee/Kleiner Schäferkamp

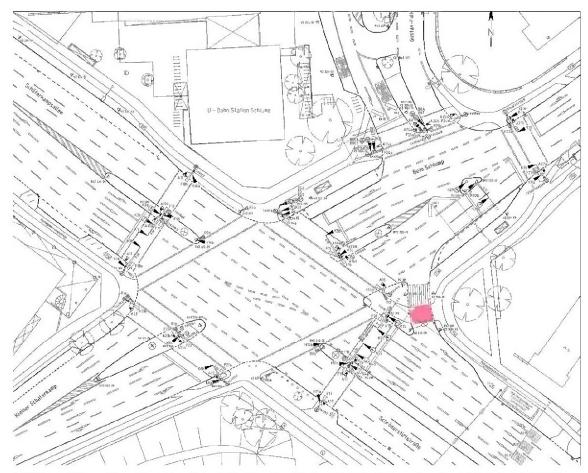


Abbildung 57: Signallageplan Schäferkampsallee/Kleiner Schäferkamp – Bestand (16/813-04-03/03)

Bestand

Die <u>Analyse</u> des aktuellen Verkehrsablaufes zeigt, dass der signalisierte Knotenpunkt Schäferkampsallee/Kleiner Schäferkamp im Bestand ausreichend leistungsfähig ist. In den Hauptverkehrszeiten morgens und nachmittags wird der Verkehr insgesamt mit der Qualitätsstufe D abgewickelt. Bei fahrstreifenbezogenen Auslastungen bis maximal rund 70% sind

auch noch ausreichende Kapazitätsreserven vorhanden, um die üblichen täglichen bzw. stündlichen Verkehrsschwankungen qualitätsgerecht auffangen zu können.

In der <u>Entwicklungsstufe 1</u> ist der Knotenpunkt mit seiner aktuellen Aufschaltung noch als leistungsfähig einzuschätzen. Bei normalen Verkehrsverhältnissen kann jederzeit eine qualitativ ausreichende Verkehrsabwicklung gewährleistet werden (QSV = D). Fahrstreifenbezogen werden Auslastungen bis maximal ca. 80% berechnet.

In <u>Entwicklungsstufe 2</u> ist zumindest in der Hauptverkehrszeit nachmittags eine geringfügige Optimierung der vorhandenen Signalisierung erforderlich, um eine insgesamt ausreichende Verkehrsqualität im Wertebereich QSV = D sicherstellen zu können. Ggf. wird aber auch schon durch den Einsatz der verkehrsabhängigen Steuerung eine leistungsfähige Verkehrsabwicklung gewährleistet. Die Auslastungen liegen fahrstreifenbezogen bei höchstens knapp 80%.

3.28 Kleiner Schäferkamp / Weidenallee (LSA 219)

Knotenpunktbelastung (vgl. Anhang 28.1) und Entwicklung zur Analyse	Analyse 07.07.2015	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.370 (6%)	1.390 <i>(6%)</i> +1 %	1.390 <i>(6%)</i> +1 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	1.560 (3%)	1.580 <i>(3%)</i> +1 %	1.590 (3%) +2 %

Knotenpunktausbau und Verkehrsqualität in den		Ana	Analyse Entw.stufe 1		tufe 1	Entw.stufe 2	
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand (= Umbau Veloroute 2) (Anhang	28.3)	В	В	В	В	В	В

Tabelle 33: Verkehrstechnische Bewertung Kleiner Schäferkamp/Weidenallee

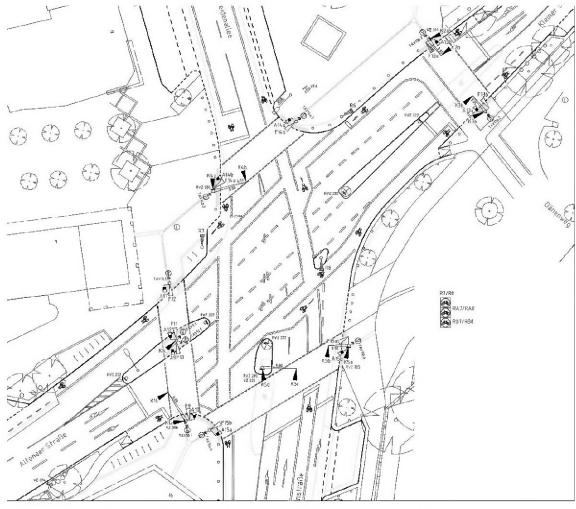


Abbildung 58: Signallageplan Kleiner Schäferkamp/Weidenallee – Bestand (18/219-04-06/00)

Bestand (Programm zur Förderung des Radverkehrs)

Der signalisierte Knotenpunkt Schäferkampsallee/Kleiner Schäferkamp wird derzeit im Rahmen des Programms zur Förderung des Radverkehrs, Veloroute 2 umgeplant (siehe Abbildung 58). Die Umsetzung ist bis Ende März 2019 vorgesehen.

Bei den <u>Analyse</u>belastungen ist eine Verkehrsabwicklung in den Hauptverkehrszeiten im Wertebereich der Qualitätsstufe B zu erwarten. Bei fahrstreifenbezogenen Auslastungen bis maximal rund 65% sind ausreichende Kapazitätsreserven vorhanden, um auch Aufkommensschwankungen qualitätsgerecht bewältigen zu können.

In den <u>Entwicklungsstufen 1 und 2</u> ist am Knotenpunkt ebenfalls eine durchweg gute Verkehrsqualität zu erwarten (QSV = B). Fahrstreifenbezogen liegen die höchsten Auslastungen bei maximal knapp 70%.

3.29 Max-Brauer-Allee / Schulterblatt (LSA 221)

Knotenpunktbelastung (vgl. Anhang 29.1) und Entwicklung zur Analyse	Analyse Stichprobe 03.07.2018	Entw.stufe 1	Entw.stufe 2
Spitzenstunde früh (SV-Anteil) in [Kfz/h]	1.760 (ca. 5%)	1.790 <i>(5%</i>) +2 %	1.800 <i>(5%)</i> +2 %
Spitzenstunde spät (SV-Anteil) in [Kfz/h]	1.820 (ca. 3%)	1.880 <i>(3%)</i> +3 %	1.880 <i>(3%)</i> +3 %

Knotenpunktausbau und Verkehrsqualität in den		Analyse Entw.stufe 1		tufe 1	Entw.stufe 2		
Spitzenstunden		früh	spät	früh	spät	früh	spät
Bestand	(Anhang 29.3)	C	D	C	D	С	D

Tabelle 34: Verkehrstechnische Bewertung Max-Brauer-Allee/Schulterblatt

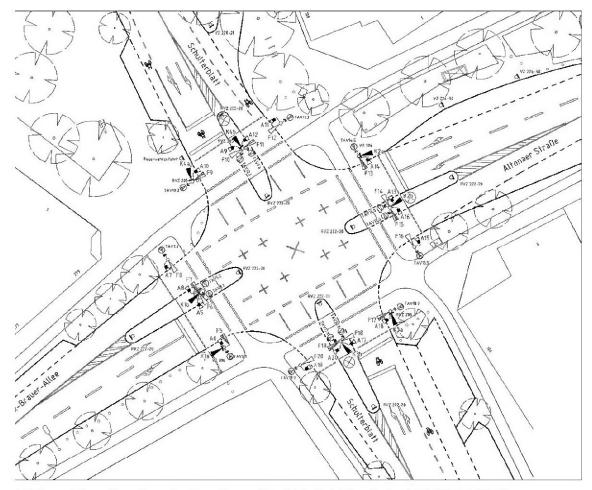


Abbildung 59: Signallageplan Max-Brauer-Allee/Schulterblatt – Bestand (16/221-04-04/00)

Bestand

Der Verkehrsablauf am signalisierten Knotenpunkt Max-Brauer-Allee/Schulterblatt ist im **Analyse**zustand mit der vorhandenen Festzeitsteuerung von einer mindestens ausreichenden Verkehrsqualität gekennzeichnet (QSV = D). Fahrstreifenbezogen liegen die höchsten Auslastungen in den Hauptverkehrszeiten bei 75% morgens und knapp 85% nachmittags,

so dass auch die üblichen tageszeitlichen und stündlichen Aufkommensschwankungen qualitätsgerecht abgewickelt werden können.

In den <u>Entwicklungsstufen 1 und 2</u> ist weiterhin eine qualitativ gute bis ausreichende Verkehrsabwicklung zu erwarten. In den Hauptverkehrszeiten werden insgesamt Verkehrsqualitäten im Wertebereich der Stufe C (morgens) bzw. D (nachmittags) ermittelt. Die fahrstreifenbezogenen Kapazitätsreserven liegen bei mindestens ca. 15%.

12.04.2019

3.30 Weitere Knotenpunkte

In Tabelle 35 sind diejenigen Knotenpunkte im Untersuchungsraum aufgelistet, für die in den vorherigen Verkehrsuntersuchungen zur "Neuen Mitte Altona" [2] und zum Entwicklungsvorhaben Bahrenfeld-Nord [4] mindestens eine Verkehrsqualität im Bereich der Stufe D mit z.T. noch deutlichen Kapazitätsreserven ermittelt wurde.

Aus dem quantitativen Vergleich der maßgebenden werktäglichen Prognosebelastungen kann für alle Knotenpunkte auch in der Entwicklungsstufe 2 eine ausreichende Leistungsfähigkeit abgeleitet werden.

Die Abweichungen der Prognosebelastungen resultieren in erster Linie aus

- den aktuellen, in der Regel geringeren Analysebelastungen im Vergleich zu den Grundlagen in den alten Untersuchungen,
- den Verkehrsverlagerungen im Zusammenhang mit einem verlängerten Holstenkamp (diese Netzergänzung wird im Prognoseszenario S0-P1 in [2] nicht berücksichtigt),
- den Auswirkungen der Maßnahmen aus der Luftreinhalteplanung [6] und
- dem unterschiedlichen Detailierungsgrad der verwendeten Verkehrsnetz- bzw. Umlegungsmodelle.

Knotenpunkt	Vorherige V	'erkehrsu	ntersuchung	Prognose	Vergleich der	
[Quelle]	Prognose [Kfz/d]			ES 2 [Kfz/d]	Prognosen [ES 2/"alt"]	
Luruper Hauptstraße/ Stadionstraße [4]	35.000	В	30%	37.700	+5%	
Schnackenburgallee/ A7-AS Volkspark – Ostrampe [2]	52.100	С	25%	49.300	-5%	
Bornkampsweg/ Leunastraße/Boschstraße [2]	28.500	D	10%	26.700	-6%	
Stresemannstraße/ Ruhrstraße [2]	48.800	С	20%	45.200	-7%	
Stresemannstraße/ Schützenstraße [2]	45.700	В	20%	39.300	-14%	
Bahrenfelder Steindamm/ Schützenstraße [2]	19.900	[в]	30%	17.200	-13%	
Barnerstraße/ Lessingtunnel [2]	29.600	C	15%	24.600	-17%	
Julius-Leber-Straße/ Goetheallee [2]	27.500	D	10%	20.700	-24%	
Max-Brauer-Allee/ Paul-Nevermann-Platz [2]	28.300	С	25%	26.400	-6%	

Tabelle 35: Weitere Knotenpunkte - Kapazitätsreserven und Entwicklung der Verkehrsprognose

4 Maßnahmen zur Verbesserung der Verkehrsabwicklung

4.1 Einzelmaßnahmen an den Knotenpunkten

4.1.1 Bestandssituation

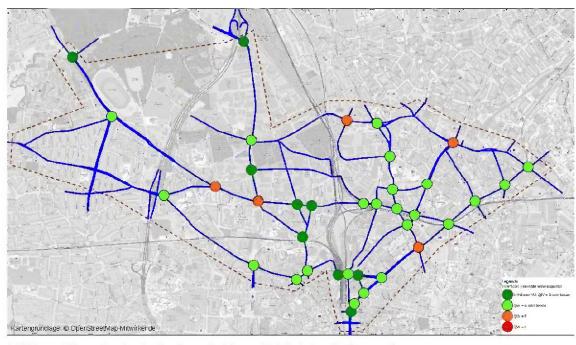


Abbildung 60: Bestandssituation – Leistungsfähigkeit der Knotenpunkte

Die Bewertung der Verkehrsabwicklung in der Analyse zeigt (siehe Abbildung 60), dass bei normalen Verkehrsverhältnissen im Untersuchungsraum überwiegend eine mindestens ausreichende Verkehrsqualität (QSV = D, "grün" markiert) gewährleistet wird. Unter Umständen sind die aktuellen LSA-Aufschaltungen (Festzeit und ggf. verkehrsabhängige Steuerung) zu optimieren und/oder eine vorhandene teilverkehrsabhängige Steuerung den verkehrlichen Anforderungen entsprechend zu ergänzen.

Die kritischen Knotenpunkte ("orange" dargestellt) mit zeitweiligen Behinderungen im Wertebereich der Qualitätsstufe E-u.a. in Form von spürbar längeren Wartezeiten und Rückstaus, in der Regel mit Reststau bei Grünende – und ggf. notwendige Maßnahmen zur Verbesserung der Verkehrsabwicklung (vgl. dazu Kapitel 3) sind in Tabelle 36 aufgelistet.

Knotenpunkt	QSV	Maßnahmen
Bahrenfelder Chaussee/Von-Sauer-Straße	Е	Ausbau oder LSA-Optimierung nicht möglich
Bahrenfelder Chaussee/Bornkampsweg	E	Ausbau oder LSA-Optimierung nicht möglich
Holstenstraße/Max-Brauer-Allee	Е	Ausbau oder LSA-Optimierung nicht möglich
Holstenkamp/Große Bahnstraße	Е	Ausbau im Holstenkamp erforderlich (zusätzliche Linksabbiegestreifen)
Fruchtallee/Doormannsweg	Ш	Ausbau oder LSA-Optimierung nicht möglich

Tabelle 36: Bestandssituation – Kritische Knotenpunkte

4.1.2 Entwicklungsstufe 1

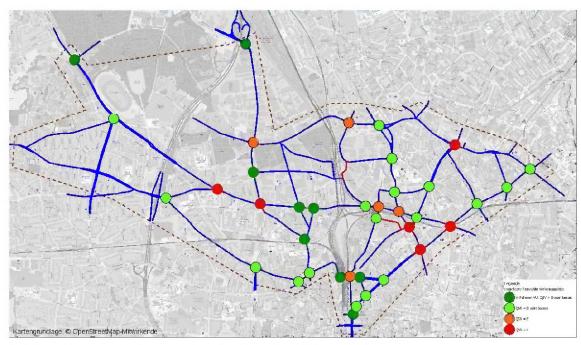


Abbildung 61: Entwicklungsstufe 1 – Leistungsfähigkeit der Knotenpunkte

In der Entwicklungsstufe 1 werden z.T. deutliche Verkehrszunahmen an den Knotenpunkten prognostiziert. Die Bewertungsergebnisse zeigt Abbildung 61.

An der überwiegenden Anzahl an Knotenpunkten kann dennoch im Normalfall – ggf. unterstützt durch verkehrstechnische Maßnahmen (LSA-Optimierung und/oder Ergänzung der verkehrsabhängigen Steuerung) – eine ausreichende Verkehrsqualität gewährleistet werden (in grün eingefärbt). Hier ist eine regelmäßige Überprüfung der Verkehrsabwicklung und ggf. Anpassung der aktuellen Aufschaltung an die tatsächlichen Verkehrsverhältnisse zu empfehlen. Dies gilt sinngemäß auch für diejenigen Knotenpunkte, für die in früheren Verkehrsuntersuchungen ausreichende Kapazitätsreserven festgestellt wurden ("dunkelgrün" gekennzeichnet).

Im Vergleich zur Ist-Situation sind neben den schon bekannten problematischen Knotenpunkten vor allem zunehmende Behinderungen an einigen Hauptverkehrsknotenpunkten im näheren Umfeld der Mitte Altona und des Holsten-Quartiers zu verzeichnen.

Zeitweise kritische Verkehrszuständen (QSV = E) sind an den "orange" dargestellten Knotenpunkte zu erwarten. Die erforderlichen Ausbaumaßnahmen an den beiden Knotenpunkte Stresemannstraße/Kaltenkircher Platz und Stresemannstraße/Kieler Straße in Verbindung mit einem Brückenneubau sind voraussichtlich nur langfristig realisierbar.

Mit einer mehr oder weniger starken Überlastung mit länger anhaltenden Behinderungen (QSV = F mit sehr hohen Wartezeiten und ständig zunehmenden Rückstaus) zumindest in den Hauptverkehrszeiten morgens und nachmittags ist an den sechs "rot" gekennzeichneten Knotenpunkten im Untersuchungsraum zu rechnen. LSA-Optimierungen und/oder notwendige Ausbaumaßnahmen sind aufgrund der aktuellen Bebauung allerdings voraussichtlich nicht möglich bzw. eher unrealistisch. Somit können hier prinzipiell nur verkehrslenkende

und/oder verkehrspolitische Maßnahmen (siehe Kapitel 4.4) die erforderliche Reduzierung des Gesamtaufkommens an den Knotenpunkten bewirken.

Für die Entwicklungsstufe 1 sind die kritischen und überlasteten Knotenpunkte sowie die jeweils erforderlichen Maßnahmen zusammenfassend in Tabelle 37 ausgewiesen.

Knotenpunkt	QSV	Maßnahmen
Stresemannstraße/Kaltenkircher Platz	E	umfangreicher Ausbau in Verbindung mit einem Brückenneubau Harkortstraße erforderlich
Stresemannstraße/Kieler Straße	Е	umfangreicher Ausbau in Verbindung mit einem Brückenneubau Holstenstraße erforderlich
Julius-Leber-Straße/Harkortstraße	Е	Verzicht auf Linksabbiegemöglichkeit aus dem Lessingtunnel erforderlich
Bornkampsweg/Holstenkamp	Е	Ausbau in der Schnackenburgallee erforderlich (zusätzlicher Geradeausfahrstreifen)
Holstenkamp/Große Bahnstraße	E	Ausbau im Holstenkamp erforderlich (zusätzliche Linksabbiegestreifen)
Bahrenfelder Chaussee/Von-Sauer-Straße	F	Ausbau oder LSA-Optimierung nicht möglich
Bahrenfelder Chaussee/Bornkampsweg	F	Ausbau oder LSA-Optimierung nicht möglich
Stresemannstraße/Max-Brauer-Allee	F	Ausbau in Verbindung mit einem Brückenneubau erforderlich
Holstenstraße/Holstenplatz	F	Ausbau oder LSA-Optimierung vsl. nicht möglich
Holstenstraße/Max-Brauer-Allee	F	Ausbau oder LSA-Optimierung nicht möglich
Fruchtallee/Doormannsweg	F	Ausbau oder LSA-Optimierung nicht möglich

Tabelle 37: Entwicklungsstufe 1 – Kritische und überlastete Knotenpunkte

12.04.2019

4.1.3 Entwicklungsstufe 2

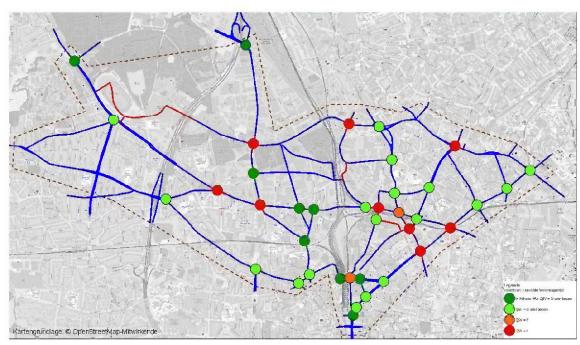


Abbildung 62: Entwicklungsstufe 2 – Leistungsfähigkeit der Knotenpunkte

In der Entwicklungsstufe 2 sind im Vergleich zur Stufe 1 nochmals z.T. erhebliche Verkehrszunahmen an den Knotenpunkten zu erwarten. Die Verlängerung des Holstenkamp mit einem Lückenschluss zwischen Bornkampsweg und Luruper Chaussee wird zwar gewisse Verkehrsverlagerungen von der Stresemannstraße auf den Straßenzug Holstenkamp/Fruchtallee bewirken, andererseits sind im Untersuchungsraum aber auch zusätzliche Verkehrsmengen abzuwickeln, die vor allem die Stresemannstraße belasten.

Die Ergebnisse der verkehrstechnischen Knotenpunktbewertungen zeigt Abbildung 62.

Im Rahmen der Verlängerung des Holstenkamp sind die äußeren Verknüpfungspunkte mit dem vorhandenen Straßennetz an der Luruper Chaussee/Ebertplatz und am Bornkampsweg leistungsgerecht auszubauen. Für die Anbindung am Ebertplatz liegen schon Vorentwürfe vor; die Realisierbarkeit des erforderlichen Ausbaubedarfs am Bornkampsweg ist aufgrund der derzeitigen Bebauung mehr als fraglich.

Die bereits in Stufe 1 deklarierten kritischen und überlasteten Knotenpunkte sind auch in Entwicklungsstufe 2 nicht mehr ausreichend leistungsfähig. Zum Teil werden vorher qualitativ kritisch eingeschätzte Knotenpunkte (QSV = E) in einen zeitweiligen Zustand der Überlastung mit QSV = F übergehen. Neue bzw. zusätzliche Knotenpunkte mit einer unzureichenden Verkehrsqualität sind nicht zu verzeichnen.

An den "grün" markierten Knotenpunkten ist bei normalen Verhältnissen i.d.R. ein qualitativ ausreichender Verkehrsablauf zu gewährleisten; ggf. ist die aktuelle Aufschaltung den tatsächlichen Verkehrsverhältnissen anzupassen (LSA-Optimierung, Ergänzung der verkehrsabhängigen Steuerung). Diese Einschätzung ist auch auf die Knotenpunkte zu übertragen, die nicht explizit in der vorliegenden Untersuchung bewertet wurden ("dunkelgrün" eingefärbt). Die in früheren Untersuchungen aufgezeigten Kapazitätsreserven sind offensichtlich auch bei einer Verkehrsentwicklung gemäß Stufe 2 ausreichend leistungsfähig.

Zeitweise kritische Verkehrszustände (QSV = E) sind an den "orange" dargestellten Knotenpunkten zu erwarten. Der erforderliche Brückenneubau Holstenstraße zur Erhöhung der Leistungsfähigkeit am Knotenpunkt Stresemannstraße/Kieler Straße ist voraussichtlich nur langfristig zu realisieren.

Mit zeitweiligen, aber meist länger andauernden Überlastungszuständen (QSV = F) sind an den in Abbildung 62 "rot" markierten Knotenpunkten zu rechnen. Größtenteils sind die erforderlichen baulichen Maßnahmen aufgrund der vorhandenen Bebauung aber nicht umzusetzen. Die notwendigen Brückenerneuerungen über die Harkortstraße und Stresemannstraße/Max-Brauer-Allee sind auch eher nur langfristig realisierbar.

Dementsprechend ist eine akzeptable Verkehrsqualität an den kritischen und überlasteten Knotenpunkten meist nur durch eine Reduzierung des Gesamtaufkommens an den einzelnen Knotenpunkten zu erreichen. Hierfür kommen letztlich nur verkehrslenkende und/oder verkehrspolitische Maßnahmen (siehe Kapitel 4.4) in Frage.

Die kritischen und überlasteten Knotenpunkte sowie die jeweils erforderlichen Maßnahmen bezogen auf die Entwicklungsstufe 2 sind in Tabelle 38 aufgelistet.

Knotenpunkt	QSV	Maßnahmen
Luruper Chaussee/Ebertplatz/ verlängerter Holstenkamp		Neubau mit Anbindung des verlängerten Holstenkamp
Stresemannstraße/Kieler Straße	Е	Ausbau in Verbindung mit einem Brückenneubau Holstenstraße erforderlich
Julius-Leber-Straße/Harkortstraße	E	Verzicht auf Linksabbiegemöglichkeit aus dem Lessingtunnel erforderlich
Bornkampsweg/Holstenkamp	F	umfangreicher Ausbau in allen Knotenpunkt-ar- men erforderlich aber u.U. nicht realisierbar
Stresemannstraße/Kaltenkircher Platz	F	umfangreicher Ausbau in Verbindung mit einem Brückenneubau Harkortstraße erforderlich
Holstenkamp/Große Bahnstraße	F	Ausbau im Holstenkamp erforderlich (zusätzliche Linksabbiegestreifen)
Bahrenfelder Chaussee/Von-Sauer-Straße	F	Ausbau oder LSA-Optimierung nicht möglich
Bahrenfelder Chaussee/Bornkampsweg	F	Ausbau oder LSA-Optimierung nicht möglich
Stresemannstraße/Max-Brauer-Allee	F	Ausbau in Verbindung mit einem Brückenneubau erforderlich
Holstenstraße/Holstenplatz	F	Ausbau oder LSA-Optimierung vsl. nicht möglich
Holstenstraße/Max-Brauer-Allee	F	Ausbau oder LSA-Optimierung nicht möglich
Fruchtallee/Doormannsweg	F	Ausbau oder LSA-Optimierung nicht möglich

Tabelle 38: Entwicklungsstufe 2 – Kritische und überlastete Knotenpunkte

4.2 Stärkung der Querverbindung Holsten-Areal

Eine straßenverkehrliche Stärkung der Fahrbeziehung Holstenplatz <> Querverbindung Holsten-Areal <> Harkortstraße in den **Entwicklungsstufen 1 und 2** ist aus gutachterlicher Sicht <u>nicht zu empfehlen</u>. Insgesamt würden sich die verkehrlichen Probleme im näheren Umfeld eher nur verlagern.

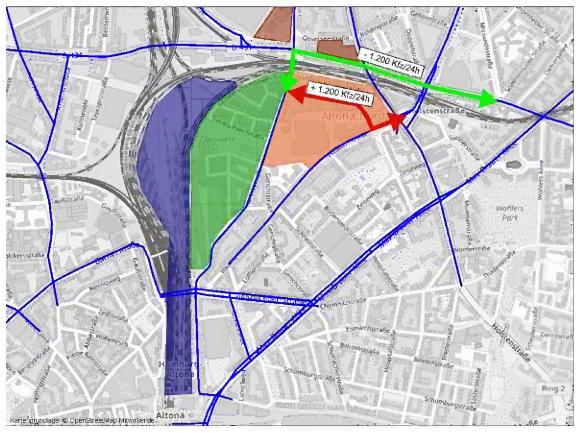


Abbildung 63: Auswirkungen einer Stärkung der Querverbindung Holsten-Areal

Einerseits könnte zwar durch eine Verflüssigung des Verkehrs auf der Quartiersdurchfahrt eine spürbare Verkehrsverlagerung des Quell- und Zielverkehrs des Holsten-Quartiers und teilweise der Mitte Altona erreicht werden und somit zu einer Entlastung der Stresemannstraße bzw. an den Knotenpunkten Kaltenkircher Platz und Kieler Straße führen.

Andererseits würde sich aber der Mehrverkehr vor allem an den ohnehin kritischen bzw. überlasteten Knotenpunkten Holstenstraße/Holstenplatz und Holstenstraße/Max-Brauer-Allee sowie am Knotenpunkt Stresemannstraße/Alsenstraße (mit der geringen Kapazität für Linksabbieger) nachteilig auswirken. Zudem sind auch die erhöhten Verkehrsbelastungen im Holsten-Quartier für die Wohn-, Aufenthalts- und Verkehrsqualität negativ zu bewerten.

4.3 Westliche Anbindung Mitte Altona

Für die straßenverkehrliche Erschließung der Mitte Altona wurde in der Vergangenheit auch eine zusätzliche westliche Anbindung über die Kohlentwiete zur Schützenstraße diskutiert. Im Zusammenhang mit der zwischenzeitlich zurückgestellten Entwicklung des 3. Bauabschnitts der Mitte Altona (Gleisdreieck) ist jedoch auch ein westlicher Durchstich nicht mehr weiter verfolgt worden.

Unter Verwendung des projektbezogenen Umlegungsmodells sind die <u>positiven Wirkungen</u> einer westlichen Erschließung der Mitte Altona als <u>nur begrenzt</u> einzuschätzen. Zumindest könnten die Entlastungen am Knotenpunkt Stresemannstraße/Kaltenkircher Platz dazu führen, dass der umfangreiche Ausbau bezogen auf die <u>Entwicklungsstufe 1</u> (siehe Kapitel 3.5) auch für die <u>Entwicklungsstufe 2</u> ausreichend leistungsfähig ist.

An den anderen kritischen Knotenpunkten westlich der Mitte Altona ist dagegen keine maßgebliche Reduzierung des Gesamtverkehrs zu erwarten. Sowohl am Knoten Bahrenfelder Chaussee/Bornkampsweg als auch am Knoten Bahrenfelder Chaussee/Von-Sauer-Straße ist weiterhin mit einer Überlastung zu rechnen.

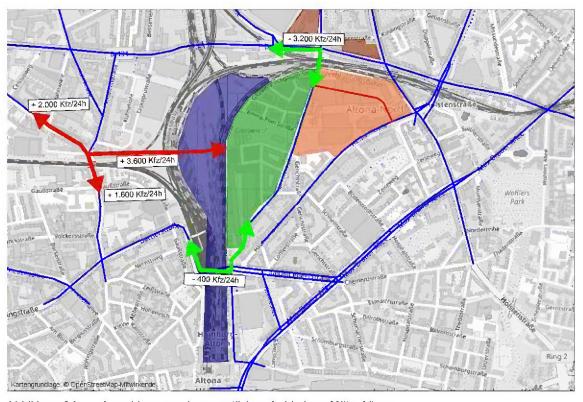


Abbildung 64: Auswirkungen einer westlichen Anbindung Mitte-Altona

Allerdings ist aus gutachterlicher Sicht zu prüfen, inwiefern die Möglichkeit einer direkten westlichen Anbindung der Mitte Altona an den Bahrenfelder Steindamm ausschließlich für den Fuß- und Radverkehr besteht. Hierdurch könnten die Wege deutlich verkürzt werden; die westliche Abgrenzung des Quartiers Mitte Altona durch die vorhandenen Bahnanlagen würde durch einen Durchlass zumindest für Fußgänger und Radfahrer aufgehoben werden und eine unmittelbare und attraktive westliche Anbindnung bedeuten.

4.4 Verkehrspolitische und städtebauliche Maßnahmen

Aufgrund der vorhandenen Bebauung bzw. begrenzten Ausbaumöglichkeiten vor allem im Zuge der Stresemannstraße als auch des verlängerten Holstenkamp/Fruchtallee sind in beiden <u>Entwicklungsstufen 1 und 2</u> prinzipiell auch verkehrspolitische sowie städtebauliche Maßnahmen in Betracht zu ziehen, um das prognostizierte Gesamtaufkommen nachhaltig zu verringern und dadurch eine weitgehend ausreichende Leistungsfähigkeit an den Knotenpunkten vorhalten zu können.

Vor diesem Hintergrund gilt ein verstärktes Augenmaß den Potenzialen alternativer Mobilitätsangebote. Um Anreize zur Nutzung alternativer Verkehrsmittel nicht nur für Neubauvorhaben, sondern auch für den Bestand zu schaffen und die Verkehrserzeugung des motorisierten Individualverkehrs insgesamt zu verringern, sind vor allem folgende Angebote und Maßnahmen – ohne dass die Reihenfolge einer Wichtung gleichzusetzen ist – vorzuhalten, auszudehnen und zu verstärken:

- Erarbeitung einer Verkehrsentwicklungsplanung für die Freie und Hansestadt Hamburg unter Beachtung der Wechselwirkungen zu den Nachbarkommunen der Metropolregion und intensive Abstimmung und Beteiligung der interessierten (Fach-) Öffentlichkeit,
- enge Abstimmung zwischen Stadtplanung und Verkehrsplanung über alle Planungsphasen von den ersten Ideen bis zur Umsetzung (gegebenenfalls inklusive eines Monitorings nach der Umsetzung, ob die im Planungsprozess definierten (verkehrlichen) Ziele erreicht wurden und Ableitung von Hinweisen für zukünftige Projekte),
- (städtebauliche) Begrenzung der Pkw-Verkehrsnachfrage (bspw. durch einen geringen Stellplatzschlüssel bei neuen Wohnbauvorhaben mit konsequenter, vertraglich abgesicherter Durchsetzung der Vereinbarungen zum eigenen Pkw-Besitz, konsequente Umund Durchsetzung von Mobilitätskonzepten),
- Vergrößerung und Ergänzung der P+R-Anlagen am Stadtrand (und auch im erweiterten Einzugsbereich außerhalb von Hamburg) sowie Überprüfung preispolitischer Maßnahmen zur Steuerung der Nutzung dieser Anlagen,
- Erschließung der westlichen/nordwestlichen Stadtteile von Hamburg durch einen leistungsfähigen Schienenpersonennahverkehr (SPNV) bspw. durch den Bau der U5 und/oder der S32, stadtweiter Ausbau des Schienenpersonennahverkehrs,
- verbesserte und ergänzende Busanbindungen (konsequente Umsetzung von Busbeschleunigungsmaßnahmen, Verbesserung der Erreichbarkeit, kürzere Taktzeiten, Erhöhung des Platzangebotes, Optimierung von Umsteigeverbindungen bzw. der Anschlusssicherung, Minimierung der Verspätungen etc.),
- Parkraumbewirtschaftung insbesondere in innerstädtischen Zonen ausdehnen,
- Verbesserung der vorhandenen und Intensivierung der Planung von weiteren Velorouten sowie zielgerichtete Umsetzung der Radschnellwegekonzeption in der Metropolregion,
- Förderung von Bikesharing,
- Erweiterung und Ergänzung von Fahrradabstellanlagen,
- Errichtung von Mobilitätsstationen,
- Förderung von Carsharing und Ridesharing als Ergänzung zum "klassischen" öffentlichen Verkehr insbesondere in den Randbereichen.

5 Zusammenfassung

Allgemeines

Durch die mittel- bis langfristig geplanten städtebaulichen Entwicklungen im östlichen Bereich des Bezirkes Hamburg-Altona ist bei der derzeit vorhandenen Verkehrsinfrastruktur auch mit einem erheblichen Mehraufkommen des Kfz-Verkehrs auf den Hamburger Straßen zu rechnen. Allerdings sind Kapazitätsreserven teilräumig nur äußerst begrenzt vorhanden, da das Straßenverkehrsnetz insbesondere in den Hauptverkehrszeiten morgens und nachmittags schon heute von hohen Auslastungen an einzelnen Knotenpunkten und Streckenzügen gekennzeichnet ist.

In der vorliegenden Untersuchung, die eine Fortschreibung und Aktualisierung der Ergebnisse aus den bisherigen bauvorhabenbezogenen Verkehrsuntersuchungen und -gutachten beispielsweise zur Mitte Altona und Bahrenfeld-Nord darstellt, werden auf Grundlage konkretisierter Nutzungskonzepte und der Gesamtheit der erwarteten Entwicklungsvorhaben die straßenverkehrlichen Auswirkungen im Untersuchungsraum Altona-Ost analysiert. Erforderliche bauliche und/oder verkehrstechnische Maßnahmen zur Gewährleistung einer ausreichenden Leistungsfähigkeit bzw. Verkehrsqualität an den Hauptverkehrsknotenpunkten werden im Sinne von Mindestanforderungen definiert.

Als räumliche Entwicklungsschwerpunkte sind die Bauvorhaben Mitte Altona, Holsten-Areal, Bahrenfeld-Nord und die Verlagerung des Fernbahnhofs Hamburg-Altona nach Diebsteich zu nennen. Zusätzlich werden explizit Bauvorhaben in Altona und den angrenzenden Bezirken Mitte und Eimsbüttel berücksichtigt, für die eine Nutzung von mindestens 200 Wohneinheiten bzw. bei Gewerbeentwicklungen von 5.000 m² Bruttogrundfläche (BGF) vorgesehen sind.

Alle anderen – im ersten Quartal 2017 bekannten (Grundlage des Verkehrsmodells der Firma Argus Stadt und Verkehr) – kleineren Entwicklungsvorhaben im Untersuchungsraum sowie alle relevanten größeren Bauvorhaben im gesamten Stadtgebiet der Freien und Hansestadt Hamburg wie beispielsweise HafenCity, Kleiner Grasbrook, Rothenburgsort und Oberbillwerder sind im Rahmen der Prognose zur allgemeinen Verkehrsentwicklung ("Prognosenullfall") enthalten.

Auf Basis aktueller Verkehrsbestandsdaten und unter Berücksichtigung der Maßnahmen und Auswirkungen der Luftreinhalteplanung (z.B. hinsichtlich der allgemeinen Verkehrsentwicklung und des Modal Split-Ansatzes für Neubauvorhaben) werden zwei Prognoseszenarien betrachtet: Die Entwicklungsstufe 1 bezieht sich auf eine mittelfristige Umsetzung städtebaulicher Entwicklungen und den Ausbau diverser Knotenpunkte bis etwa 2025. In der Entwicklungsstufe 2 wird eher langfristig bis zum Prognosehorizont 2030 die Realisierung aller relevanten Bauvorhaben und maßgeblicher Ergänzungen im Straßennetz (u.a. Verlängerung des Holstenkamp bis zum Ebertplatz und Überdeckelung der Autobahn A7 zwischen der Anschlussstelle Othmarschen bis nördlich der Straßenachsen Holstenkamp/Schulgartenweg) berücksichtigt.

Prognostizierte Verkehrsentwicklung

Die Prognosen zur Verkehrserzeugung lassen bei Realisierung aller betrachteten Bauvorhaben in Entwicklungsstufe 2 insgesamt rund +36.000 zusätzliche Kfz-Fahrten pro Werktag erwarten. Der Anteil des Schwerverkehrs wird bei etwa 3% liegen.

Rund 70% des gesamten zusätzlichen Kfz-Verkehrsaufkommens (= ca. +26.000 Kfz-Fahrten/d) werden dabei schon in der Entwicklungsstufe 1 generiert.

Neben den üblichen, allgemein anerkannten Parametern zur Verkehrserzeugung liegen den Prognoseabschätzungen auch "Hamburg-spezifische" Kenngrößen zugrunde. Vor allem spiegeln die verwendeten Modal-Split-Ansätze die neuesten Erkenntnisse zur Verkehrsmittelwahl in Hamburg aus der MID-Studie 2017 wider und wurden projektbezogen je nach räumlicher Lage der einzelnen Entwicklungsvorhaben nochmals differenziert. Demnach wird von einem MIV-Anteil für die Flächen in Altona (bzw. im Bezirk Mitte) von 35% und für Flächen in Bahrenfeld und Eimsbüttel von 40% ausgegangen. Zusätzlich wird für die Bauvorhaben im Einzugsbereich von S- bzw. U-Bahnhaltestellen nochmals ein um 5%-Punkte reduzierter Modal-Split angesetzt.

In Abbildung 65 sind die relevanten städtebaulichen Entwicklungen im erweiterten Untersuchungsraum differenziert nach den beiden Entwicklungsstufen 1 und 2 dargestellt und der jeweils prognostizierte Neuverkehr ausgewiesen.

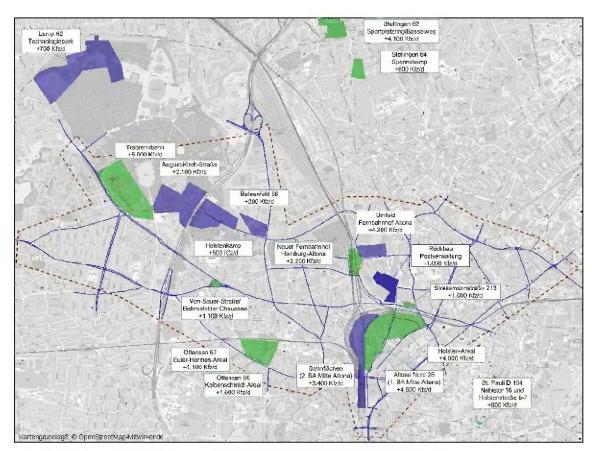


Abbildung 65: Städtebauliche Entwicklungen und prognostizierter Neuverkehr (Entwicklungsstufe 1 – grün; Entwicklungsstufe 2 – blau)

Untersuchungsergebnisse

Die Ergebnisse der einzelnen Knotenpunktbewertungen und differenzierten Betrachtungen zu notwendigen bzw. realisierbaren Ausbaumaßnahmen im betrachteten Straßennetz zeigen, dass bei den "kritischen" Knotenpunkten, bei denen die Kapazitätsgrenze nahezu erreicht oder sogar überschritten wird, größtenteils keine klassischen und konventionellen

Lösungsmöglichkeiten zur Erhöhung der Leistungsfähigkeit (Anpassung der Lichtsignalsteuerung, Knotenpunktumbau und -ausbau) vorliegen.

Bezogen auf die Entwicklungsstufe 2 ist die jeweils erreichbare Verkehrsqualität an den untersuchten Knotenpunkten im Bestand bzw. nach Realisierung aktueller Ausbauplanungen – z.B. im Rahmen der Busbeschleunigung oder des Programms zur Förderung des Radverkehrs – in Abbildung 66 dargestellt:

- An den hell und dunkel "grün" markierten Knotenpunkten ist der vorhandene Knotenausbau ausreichend leistungsfähig; ggf. ist zur Anpassung an die tatsächliche Verkehrsentwicklung eine Optimierung der aktuellen LSA-Steuerung erforderlich.
- An den "orange" eingefärbten Knotenpunkten wird die Kapazitätsgrenze nahezu erreicht. Zumindest in den Hauptverkehrszeiten ist eine Verkehrsqualität im Wertebereich der Stufe E zu erwarten, die durch erhebliche Behinderungen (hohe Wartezeiten und Rückstaus, Reststaus bei Grünende) charakterisiert wird.
 - Für Hamburger Verhältnisse können diese qualitativ eingeschränkten Verkehrszustände jedoch als noch hinnehmbar gewertet werden.
- An den "rot" gekennzeichneten Knotenpunkten ist eine zum Teil starke Überlastung zu erwarten; der Verkehrsablauf ist nachhaltig und länger andauernd gestört. Ausbaumöglichkeiten sind aufgrund der vorhandenen Bebauung nur vereinzelt, äußerst begrenzt bzw. gar nicht vorhanden.
- An den mit "A" gekennzeichneten Knotenpunkten wäre ein leistungsfähigkeitssteigernder Ausbau grundsätzlich denkbar, müsste aber räumlich-geometrisch detaillierter sowie gegebenenfalls auch konstruktiv geprüft werden.
 - Die deklarierten Ausbaubedarfe in der Stresemannstraße an den drei Knotenpunkten Kaltenkircher Platz, Kieler Straße und Max-Brauer-Allee sind jeweils verbunden mit einer kompletten Brückenerneuerung in der Harkortstraße und Holstenstraße bzw. am Knoten Stresemannstraße/Max-Brauer-Allee, die nur langfristig realisierbar sind. Neben der Ausbaunotwendigkeit der Brücken zur nachhaltigen Erhöhung der Leistungsfähigkeit der Knotenpunkte sind gleichermaßen ausreichend breite Seitenräume für die bedarfsgerechte Führung des Fuß- und Radverkehrs herzustellen.

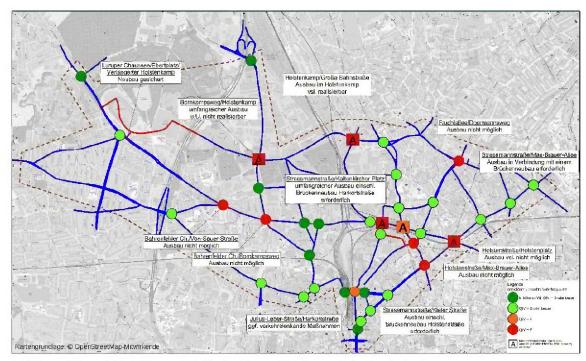


Abbildung 66: Entwicklungsstufe 2 – Leistungsfähigkeit und Ausbaubedarf an den Knotenpunkten im Untersuchungsraum

Bei der knotenübergreifenden Beurteilung der Untersuchungsergebnisse ist insgesamt festzuhalten, dass Verbesserungen an einzelnen Knotenpunkten nicht zwangsläufig zu einem
besseren Verkehrsablauf am jeweiligen Knotenpunkt selbst und im erweiterten Umfeld
führen werden. Es besteht die Möglichkeit – das bestätigen die Erfahrungen aus der Vergangenheit –, dass geschaffene Kapazitätsreserven durch räumliche, zeitliche oder sogar Modal-Split-Verlagerungen gefüllt werden und sich letztlich eine relativ unveränderte Verkehrssituation einstellt. Um eine akzeptable Verkehrsqualität (nahezu) überall auf den Hamburger
Straßen gewährleisten zu können, ist die mindestens notwendige Reduzierung des Gesamtverkehrsaufkommens im Untersuchungsraum (Summe des Binnen-, Ziel-, Quell- und Durchgangsverkehrs) auf ungefähr -10 bis -15% zu beziffern. Inwieweit sich dieser Befund auf
andere Bereiche der Stadt übertragen lässt, wäre in weiteren Schritten zu untersuchen.

Eine zeitliche Verdrängung bzw. Verlagerung von Kfz-Fahrten zur Verbreiterung und damit Abschwächung der absoluten Verkehrsspitzen kann mittlerweile nicht mehr als Argument oder Handlungsempfehlung für eine verbesserte Verkehrsabwicklung angeführt werden. Wie die aktuellen Verkehrsdaten zeigen, ist diese Verhaltensweise schon heute Realität. Beispielsweise schwankt der Spitzenstundenanteil am gesamten Tagesaufkommen am Knotenpunkt Luruper Chaussee/Ebertplatz zwischen gerade einmal 5 und 8%.

Schließlich sei darauf hingewiesen, dass sich neben Schall- und Luftschadstoffemissionen und des volkswirtschaftlichen Schadens durch Stausituationen auf den Hauptverbindungsachsen auch die Erreichbarkeit für Feuerwehr und Rettungsdienst zunehmend verschlechtert (trotz Sonder- und Wegerechten).

Ausblick

Die geplanten Entwicklungen einer "Science City Bahrenfeld" im Bereich der Luruper Chaussee, Höhe Trabrennbahn sind in der vorliegenden Untersuchung nicht berücksichtigt. Mit

einer vollständigen Entwicklung dieses Bereichs ist nach derzeitigem Kenntnisstand nicht vor 2025 zu rechnen. Durch das neue Innovationszentrum wird ein zusätzlicher Neuverkehr von grob geschätzt knapp 5.000 Kfz-Fahrten pro Werktag erzeugt. Vor dem Hintergrund der vorliegenden Ergebnisse ist im Untersuchungsraum vor allem auf den Straßenzügen Bahrenfelder Chaussee/Stresemannstraße und Holstenkamp/Fruchtallee teilweise eine zunehmende Aus- bzw. Überlastung zu erwarten. In diesem Zusammenhang ist in der Quintessenz eine leistungsfähige Schnellbahnanbindung bis Lurup als alternatives Verkehrsangebot dringend erforderlich.

Als Schlussfolgerung der Verkehrsuntersuchung ist festzuhalten, dass in Zukunft die Nachfrage an Kfz-Fahrten nachhaltig gesenkt werden muss, damit im Hamburger Straßennetz auch in den Hauptverkehrszeiten eine qualitativ noch akzeptable Verkehrsabwicklung gewährleistet werden kann. Hierfür ist das Mobilitätsverhalten nicht nur in Hamburg, sondern auch in der angrenzenden Metropolregion insbesondere zugunsten einer verstärkten ÖV-Nutzung zu ändern. Diese Forderung kann nur erfüllt werden, wenn das flächendeckende ÖV-Angebot nicht nur im östlichen Altona, sondern in der gesamten Stadt als attraktive Beförderungsalternative weiter entwickelt und ständig weiter verbessert wird. Neben der Intensivierung des Busangebotes und des Schienenpersonennahverkehrs (u.a. Regional-Express und Regionalbahn) ist insbesondere die Ergänzung des Hamburger S- und U-Bahnnetzes von allergrößter Bedeutung und aus gutachterlicher Sicht alternativlos. Aber auch die Verknüpfungspunkte zwischen Kfz-Verkehr und dem (schienengebundenen) öffentlichen Nahverkehr insbesondere in den Hamburger Randbereichen und in der angrenzenden Metropolregion können hierbei einen wesentlichen Beitrag leisten.

Gleichermaßen sind die vielfältigen Möglichkeiten von sogenannten Mobilitätsstationen zu nutzen (u.a. mit Bike- und Carsharing-Angeboten) sowie nachhaltige Maßnahmen zur Förderung des Radverkehrs im gesamten Stadtgebiet (z.B. Ausbau der Velorouten) weiter voranzutreiben.

Literaturverzeichnis

- [1] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH, Verkehrsgutachten für die Entwicklung der "Bahnflächen Altona", Hamburg, Juli 2009.
- [2] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH, Verkehrsuntersuchung "Neue Mitte Altona", Hamburg, Dezember 2010.
- [3] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH, Ergänzung zur Verkehrsuntersuchung "Neue Mitte Altona", Hamburg, Oktober 2011.
- [4] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH, Verkehrsuntersuchung Bahrenfeld-Nord, Hamburg, Juni 2014.
- [5] Freie und Hansestadt Hamburg Behörde für Wirtschaft, verkehr und Innovation, Amt für Verkehr V5, Verkehrszählungen im Stadtgebiet, Hamburg, zwischen 2005 und 2017.
- [6] ARGUS Stadt- und Verkehrsplanung, Verkehrsmodell Altona-Ost, Hamburg, 2018.
- [7] infas Institut für angewandte Sozialforschung GmbH, Mobilität im Großraum Hamburg, Bonn, 2011.
- [8] Bundesministerium für Verkehr und digitale Infrastruktur, Mobilität in Deutschland -Kurzreport - Verkehrsaufkommen - Struktur - Trends, Bonn/Berlin, Juni 2018.
- [9] infas Institut für angewandte Sozialwissenschaft GmbH, Mobilität in Deutschland -Kurzreport Hamburg und Metropolregion, Bonn, 2018.
- [10] Schlothauer & Wauer Ingenieurgesellschaft für Straßenwesen, Lisa+ -Planungssoftware für Lichtsignalanlagen im Straßenverkehr (Version 5.1.2), Berlin, 2015.
- [11] Forschungsgesellschaft für Straßen- und Verkehrswesen, Handbuch für die Bemessung von Straßenverkehrsanlagen HBS Teil S Stadtstraßen, Köln, 2015.
- [12] Freie und Hansestadt Hamburg Landesbetrieb Straßen, Brücken und Gewässer (LSBG), Fachbereich S1, LSA-Unterlagen für die maßgebenden Knotenpunkte (jeweils aktuelle Signalzeitenpläne und Signallageplan), Hamburg, 2018.
- [13] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH,
 Busbeschleunigungsprogramm Metrobuslinie 2/3, Umbau Ebertplatz Lageplan
 Ausführung, Hamburg, 05/2018.
- [14] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH, LSA 421 Luruper Chaussee/verlängerter Holstenkamp und LSA 450 Luruper Chaussee/Ebertallee: Planung der Festzeitsteuerung im Endzustand, Hamburg, 11/2018.
- [15] Schmeck Junker Ingenieurgesellschaft mbH, Busbeschleunigungsprogramm Metrobuslinie 3, Stresemannstraße zwischen Plöner Straße und Holstenplatz, Erstverschickung, Hamburg, 20.06.2017.
- [16] Ingenieurplanung-Ost GmbH, Veloroute 13, Abschnitt 1 und 2: Schlussverschickung Lageplan (Zeichnungs-Nr. 13-12279-04-01 und -02), Greifswald/Hamburg, Stand: 27.04.2018.

- [17] Masuch + Olbrisch Ingenieurgesellschaft mbH, Mitte Altona, Äußere Erschließung: Umplanung des Knotenpunktes Harkortstraße/Julius-Leber-Straße/Präsident-Krahn-Straße Verkehrstechnischer Lageplan, Oststeinbek, Stand: 31.05.2017.
- [18] Mecklenburgisches Ingenieurbüro für Verkehrsbau GmbH, Busbeschleunigung M20/25 Umbau Max-Brauer Allee und Holstenstraße (Z-Nr. 16-11860-04-03, -04, -07), Schwerin, 11/18.
- [19] Freie und Hansestadt Hamburg Landesbetrieb Straßen, Brücken und Gewässer (LSBG), Fachbereich S1, LSA Fruchtweg/Doormannsweg (Z-Nr. 19/0813-04-04), Hamburg, 01/2019.
- [20] Freie und Hansestadt Hamburg Behörde für Umwelt und Energie, Luftreinhalteplan für Hamburg (2. Fotschreibung), Hamburg, Stand: 07/2017.

12.04.2019

Anlagenverzeichnis

Anlage 1	Verkehrserzeugungsrechnung für die maßgebenden Entwicklungsvorhaben
Anlage 2	Analyseverkehrsstärken
Anlage 3	Prognosenullfall ohne verlängerten Holstenkamp (bis ca. 2025)
Anlage 4	Prognosenullfall mit verlängertem Holstenkamp (ab ca. 2025)
Anlage 5	Prognoseplanfall Entwicklungsstufe 1
Anlage 6	Differenzenplot Prognoseplanfall Entwicklungsstufe 1 –
	Prognosenullfall ohne verlängerten Holstenkamp
Anlage 7	Prognoseplanfall Entwicklungsstufe 2
Anlage 8	Differenzenplot Prognoseplanfall Entwicklungsstufe 2 –
	Prognosenullfall mit verlängertem Holstenkamp
Anlage 9	Differenzenplot Prognoseplanfall Entwicklungsstufe 2 –
	Prognosenullfall ohne verlängerten Holstenkamp

12.04.2019

Anhangverzeichnis

<u>Anmerkung:</u> Der Anhang enthält für alle untersuchten Knotenpunkte die Übersichten der Knotenstrombelastungen in den maßgebenden Spitzenstunden früh und spät (Analyse, Entwicklungsstufen 1 und 2) und die durchgeführten Leistungsfähigkeitsnachweise (jeweils Signalzeitenplan und HBS-Bewertung). Aufgrund des Umfangs, der Datenmenge und der sehr fachspezifischen verkehrstechnischen Unterlagen ist der Anhang nicht integraler Bestandteil der Verkehrsuntersuchung. Er kann aber bei Bedarf bzw. Interesse und auf Anfrage zur Verfügung gestellt werden.

- 1 Luruper Chaussee / Ebertplatz (LSA 450)
- 2 Bahrenfelder Chaussee / Von-Sauer-Straße (LSA 167)
- 3 Bahrenfelder Chaussee / Bornkampsweg (LSA 353)
- 4 Stresemannstraße / Plöner Straße (LSA 1598)
- 5 Stresemannstraße / Kaltenkircher Platz (LSA 151)
- 6 Stresemannstraße / Kieler Straße (LSA 7)
- 7 Stresemannstraße / Alsenstraße (LSA 153)
- 8 Stresemannstraße / Max-Brauer-Allee (LSA 18)
- 9 Harkortstraße / Erschließungsstraße Holsten-Areal
- 10 Julius-Leber-Straße / Harkortstraße (LSA 709)
- 11 Holstenstraße / Holstenplatz (LSA 600)
- 12 Holstenstraße / Max-Brauer-Allee (LSA 131)
- 13 Max-Brauer-Allee / Julius-Leber-Straße (LSA 706)
- 14 Max-Brauer-Allee / Goetheallee (LSA 1771)
- 15 Max-Brauer-Allee / Große Bergstraße (LSA 321)
- 16 Barnerstraße / Bahrenfelder Straße (LSA 417)
- 17 Barnerstraße / Friedensallee (LSA 617)
- 18 Friedensallee / Hohenzollernring (LSA 1004)
- 19 Von-Sauer-Straße / Friedensallee (LSA 1212)
- 20 Bornkampsweg / Holstenkamp (LSA 1148)
- 21 Holstenkamp / Große Bahnstraße (LSA 1043)
- 22 Eimsbütteler Marktplatz (LSA 1601 und LSA 475)
- 23 Kieler Straße / Waidmannstraße (LSA 1332)
- 24 Kieler Straße / Augustenburger Straße (LSA 621)
- 25 Alsenstraße / Augustenburger Straße (LSA 942)
- 26 Fruchtallee / Doormannsweg (LSA 813)
- 27 Schäferkampsallee / Kleiner Schäferkamp (LSA 203)
- 28 Kleiner Schäferkamp / Weidenallee (LSA 219)
- 29 Max-Brauer-Allee / Schulterblatt (LSA 221)
- 30 Legende der Bewertungstabellen

Altona-Nord 26 (1. BA)						
NUTZUNGSKONZEPT (stadtebauliche	e Kenngroßen gemäß Tabel	NUTZJNGSKONZEPT (städtehauliche Kenngrößen gemäß Tähelle mit städtebaulichen Rahmendaten vom 16. Februar 2019 (Vörgaben sind "blau" unterlegt!))	16. Februar 2018 (Vórgaben sind "blau" ur	terlegt!))		
	Wohnen	Wohnen Nahvers orgung/Einzelhande VG astro	Būra/Dienstleistung	Kleingewerbe	Schule	Summe
Hächen anteile	% 638	%.‡	4%	3%	Klassenstuten 5-13	7007
					1.JUU Schuler, 150 Lehrer	
m*BGF	nnnsı	7.500	7.500	9000		180,000
Gesamtsummen (gerundet)	000'091	005'2	7.500	5,000		180,000

VERKEHRSERZEUGUNG ^{3, 5}															
Kenngraße	Woh	Wohnen	Nahversorgi	Nahvers orgung/EinzelhandeVG astro	ndeVGastro	Bur	Bura/Dienstleistung	Bu		Kleingewerbe		Sch	Schule	Summe (rd.)	(rd.)
Bezugspersonen/-große	Білмойпег	AMA	Beschaftigte	Kunden	NW	Beschaftigte	Kunden	VWV	Beschaftigte	Kunden	AWA	Schuler	Besch attigte	Beschaftigte Ktz-Fahrten SV-Anteil	SV-Anteil
m² pro flachenbezogene Bezugsgroße			8	2		49			8						
ldz-Fahrten/Bezugsperson		1,0			0,2			0,2			0,2				
Kundenwege/Beschäftigten							90			15					
Spannweite			20 bis 140 m²/ Beschärtigten (Mix)	0,3.5 m²/ <unde< td=""><td></td><td>20 bis 150 m³/ Seschäftigtem (Mix.)</td><td>0,5-1 Wege/ Beschaftglem</td><td></td><td>20 bis 150 m²/ Beschärtigtem (Mbc)</td><td>1,02,0 Wege/ Beschaftgtem</td><td></td><td></td><td></td><td></td><td></td></unde<>		20 bis 150 m ³ / Seschäftigtem (Mix.)	0,5-1 Wege/ Beschaftglem		20 bis 150 m²/ Beschärtigtem (Mbc)	1,02,0 Wege/ Beschaftgtem					
Wohneinheiten	1,600														
EWWE	2р			***************************************	***************************************				-	-		-		-	
Anzahl Bezugspersonen	3200		ਤ	3790		1/0			33			1,000	150		
умеделидsperson/d	¢£.		2,5	ff7,		5.5			2,5			77	47.		
Wegeanzahi	11 2UU	320	nz.	UUG'/	19	430	n.	34	MZ.	UZL	16	7,200	38		
mM-Anteil - Status Quo*	%9£	100%	45%	% ()	100%	45%	%%	1UU%	%AR	% %	1U%	1U%	45%		
Pers./Pkw	8,1		1,10	8,1		1,10	1,30		1,10	130		3,00	1,10		
Verbund-Mtnahmeettekt u. Quartersverkehr²-3	10%			% BS											
Schwerverkehrsanteif		30%			30%			30%			30%				
Neuverkehr [Pkw24h] und [WNV24h]	DZ97Z	320	JUL .	ULUL	nz	180	30	30	UCT TSU	40	ΠZ	晃	U9L	4.760	2%

QUELL-ZIELVERKEHR															
pitzenstunde früh	Wohnen	nen	Nahversorg	Nahversorgung/Einzelhandel/Gastro	deVG astro	Bûi	Būra/Dienstleistung	Bur		Kleingewerbe		Sc	Schule	Summe (rd.)	(rd.)
	Einwohner	WIV	Beschäftigte	Kunden	WIV	Beschäftigte	Kunden	VWV	Beschäftigte	Kunden	WW	Schüler	Beschäftigte	Beschäftigte Kfz-Fahrten SV-Anteil	SV-Anteil
Queliverkehr [Ant. DTV]	15%	%9	%5	1%	%9	%/	1%	%9	%9	1%	969	40%	%0		
Zielverkehr (Ant. DTV)	2%	8%	% R3	1%	%B	% EE	%	8%	% PR	1%	%8	40%	82%		
ueliverkehr [Kfz/h]	197	8	3	5	-	9	0	1	4	0	1	91,	0	250	1%
Zielverkehr [Kfz/h]	92	13	5	5	-	30	0	-	15	0	-	92	89	200	3%
Spitzenstunde spat	Wohnen	nen	Nahversorg	Nahversorgung/EinzelhandeVGæstro	deVG astro	Bui	Bura/Dienstleistung	Bul		Kleingewerbe				Summe (rd.)	(rd.)
	Einwohner	WIV	Beschaftigte	Kunden	WIV	Beschaftigte	Kunden	VWV	Beschaftigte	Kunden	WIN	Schuler	Beschaftigte	Beschaftigte Kfz-Fahrten SV-Anteil	SV.Antei
Queliverkehr (Ant. DTV)	8%	7%2	14%	16%	4%	14%	15%	2%	30%	15%	7%	9%9	15%		
Jelverkehr (Ant. DTM)	14%	89	1%	18%	9%9	1%	13%	969	%B	13%	9%9	9%9	%0		
Quellverkehr [Kfz/h]	105	11	,	84	-	13	2	-	15	e	-	2	12	360	2%
Zielverkehr [Kfz/h]	183	80	-	94	-	-	2	-	9	63	-	2	0	300	1%

Verkehrserzeugung Altona Nord 26 (1.BA)

Verlegung Fernbahnhof HH-Altona (an den S-Bhf. Diebsteich)	Altona (an den S-Bhf	: Diebsteich)			
NUTZUNGSKONZEPT¹ (stadtebaulich	ne Kenngroßen gemäß Tabe	NUTZUNGSKONZEPT (stadtebauliche Kenngrößen gemäß Tahelle mit städtebaulichen Rahmendaten vom 16. Februar 2018 (Vörgaben sind "blai" unterlegt))	n 16. Februar 2018 (Vorgaben sind "blar" u	unterlegt!))	
Annahmen	Bahnhof	Hotel	Buro	Shops/Fitness	Summe
Hachenanteile		37%	45 %	761	100%
Hachenanteile					
m* BGF		9,500	11.500	4.800	25.800
Ges antsummen (gerundet)		9.500	11:500	4.800	25.800

VERKEHRSERZEUGUNG ^{3, 5}													
Kenngraße	Bahnhof	ıhaf		Hotel			Buro		s	Shops/Fitness		Summe (rd.)	(rd.)
Bezugspersonen-graße	Fahrgaste		Beschaftigte	Gaste	WIV	Beschaffigte	Kunden	WIV	Beschaffigte	Kunden	AWA	Kfz-Fahrten SV-Anteil	SV.Anteil
Parkstånde (allgemein)	West and the second sec	WATER TO THE TOTAL PARTY OF THE		26	Avanta Av	130		- A TOTAL CONTRACTOR AND A STATE OF THE STAT	A TOTAL CONTRACTOR OF THE PARTY	55	***************************************	-	- Company of the Comp
Carshanng-Parkstande	1												
Kurzzent-Parkstande (K&K)	20												
Taxi-Parkstände	8												
Fahrten pro Parkstand ³ allgemeth/Car	80			4,1		9,1				26,0			
Fahrten pro Parkstand ³ K&R	102												
Fahrten pro Parkstand ² I axu	13µ												
Lieferungen/d²					циг			10,0			цę		
Anzahl Bezugspersonen ³			∩#				na Ma		40				
Wegeanzahl			7.				7.		7.				
mM-Anteil - Status Quo ⁵			%.D#				40%		40%				
Pers./Pkw			1,10				8,1		1,10				
Schwerverkehrsantelf ²					80%			30%	-		20%)	
Neuverkehr [Pkw24h] und [WW24h]	n/Z	n	ne	140	nz zn	[nLZ	40	nz.	3.0	1.430	II.	0.02.2	1%

						10.75						
Spitzenstunde fruh	Bahnhot		Hotel			Buro		JI.	Shops/Htness		Summe (rd.)	<u>a</u>
	Fahrgäste	Deschattigte	Gaste	VMV	Beschäftigte	Kunden	WIV	Heschäftigte	Kunden	VWV	Kfz-Fahrten SV-Anteil	SV-Antel
Queliverkehr [Ant, DTV]	10%	10%	% % 8	%5	%2	1%	%9	2%	2%	2%		
Zielwerkehr (Ant. D.I.V.)	200%	75%	%.5	%A	3/75	₹	%A	%RZ	2%	% P		
Queliverkehr [Kfz/h]	41	z	22	-	,	n	-	-	14	1	99	%7
Zielverkehr [Ktz/h]	17.	4	4	-	£	-	-	4	4	-	UUL	1%
Spitzenstunde spat	Bahnhot		Hotel			Billro					(rpi) awwins	(m)
	Einwohner	Beschäftigte	Kunden	WIV	Beschäftigte	Kunden	WIV	Heschäffigte	Kunden	VWV	Ktz-Fahrten SV-Anteil	SV.Antei
Queliverkehr [Ant, DTV]	20%	15%	1%	%/	14%	15%	%2	14%	16%	2%		
Zielverkehr [Ant. DTV]	10%	2%	% %	9%5	1%	13%	2%	1%	18%	5%		
Queliverkehr [Kfz/h]	12	2	ç	1	15	3	1	7	114	1	180	1%
Zielverkehr Kfz/hl	14	-	=	-			-	=	1.74		1711	345

1... Information zu den äktuellen Nutzungen und stadtebanlichen Kermdaten; F.H., Behorde für Stadtenwickbung und Wohnen, Arri für Landesplanung LP 23, E-Mail vom 14,02,2018
2... Assonblazung unter Beröckschügung sich serbenbiss ohne stütprobenandigen Fahrgastbefragung am Bif. Attens und Dammfor, SBI, 12,2010
3... Annahmen unter Beröckschügung von Erfahrungswerten, des geschäften Natzendralls und der Stelpiatz-Aufeitung
4... Annahmen unter Beröckschügung von Erfahrungswerten und der ER-R, 2005
5... Die mV-Annelle orenteren sich an den Ergebnissen der NiU Z.U.B. - Sonderauswertung febru. 9 zw. Sonderauswertung Mitte Attona.

Fernbahnhof HH-Altona Verkehrserzeugung

Holsten-Areal								
NU TZINGSKONZEPT 1 (stadtebaulic)	he Kemgroßen gemaß Tab.	NUTZINGSKONZEPT (stadtebauliche Keringroßen gemaß Tabelle mit stadtebaulichen Rahmendaten vom fb. Februar 2019 (Vorgsben sind **viert* unberlegt)). Stand 9/2017	m 16. Februar 2018 (Vorgaben sind "blau"	unterlegt()) - Stand 9/2017				
	Wohnen	Nativersorgung/Einzelhandel/Gastro	Buro/Dienstleistung	Hotel	Kleingewerbe	offentliche Gerneinbedarfseinrichtung Private soziale Einrichtungen ((Ound-) Schule/ Demunky Orter) (3 B. Kax)	Private soziale Einrichtungen (2 B.Ka)	Summe
F lachen anteile	78%			22%	*			100%
F lachen anteile		%0	%62	%BZ	746	21%	7%	100%
m² BGF	162.500	3.500	12,800	12.700	3.000	9.500 , davon 6.000 m² Bestand	3.200	207.200
Gesantsummen (gerundet)	162.500	3.500	12,800	12,700	3.000	005'6	3.200	207.200

VERKEHRSERZEUGUNG*: 3																			
Kenngroße	Wohnen	Z	dhversorgur	Nativersorgung.Einzelhandel/Gastro	tel/Gastro	Barc	Buro/Dienstleistung	Bu		Hotel		Α.	Kleingewerbe		offentliche G	öffentliche Gemeinbedarfseinrichtung		Private soziale Einrichtung	Summe (rd.)
Bez ugspersonen-große	Einwohner W	WfV Be	Beschaftigte	Kunden	VIVV	Beschaftigte	Kunden	ANA	Beschaftigte	Gaste	WIV	Beschaftigte	Kunden	why	Schuler	Beschaftigte	Begleter	Beschafügte	Kfz-Fahrten SV-Anteil
m² pro flac henbezogene Bezugsgroße	100		08	2		45						98							
Kfz-Fahrten/Bezugsperson		0,1			0,2			0,2			0,4			0,2				The State of the S	
Kundenwege/Beschaftigten							9'0						1,5					Oplin	
Spannweite:		8 &	20 bis 140 m ² / Beschäftigtem (Mtx)	0,3-5 m²/ Kunde		20 bis 150 m²/ Beschaftigtem (Mis)	0,5-1 W ege/ Bes challigtem					20 bis 150 m²/ Beschaftigtem (Mtx)	1,0-2,0 Wir ege/ Bes chaffigtem			e11900 : in		(e, (, g))	
Wohneinheiten	1.650																Carried States		
EWIWE	2,0															19,	STORE OF THE PERSON OF THE PER		
Anzahl Bezugspersonen	3.300		40	1.750		280			8	300		90				Car Car	ties,		
Wegelbezugspersonid	3,5		2,5	2,0		2,5			2,0	2,0		2,5				To a series			
Wegeanzahl	11.550	330	100	3 500	00	2007	140	99	100	009	20	130	8	10		TOW /			
mIV-Anteil - Status Quo*	30%	100%	8 7 8	30%	100%	40%	30%	100%	40%	30%		75%	30%	100%		io _k q			
Pers/Phow	1,86		1,10	1,30		1,10	1,30		1,10	96,1		1,10	1,30			6 B			
Verbund-Mitnahmeeffeld u Quartiersverkehr ^{2,3}			-	20%									-			es,			***************************************
		-		-	30%			ē			80%	****		30%					
InestVivol in Interventing Intervention	2.570	330	40	4.10	10	260	070	09	40	120	20	06	W.	40					4020 76

QUELL-ZELVERKEHR ³																
Spitz enstunde früh	Wohnen	nen	Namersong	Nahversorgung/Einzelhandel/Gastro	leliGastro	Bürofl	Buro/Dienstleistung			Hotel		A	Kleingewerbe		munS	Summe (rd.)
	Einwohner	NAN	Beschäftigte Kunden	Kunden	VWIV	Beschäffigte	Kunden	WIN	Beschäftigte	Gaste	Why	Beschäftigte	Kunden	NW	Kfz-F ahrte	Kfz-Fahrten SV-Anteil
Queliverkehr (Ant. DTV)	15%	96	86	* -	2%	7%	%-	9%9	10%	25%	989	989	**	5%		
Ziekerkehr [Ant. DTV]	2%	888	29%	*	8%8	33%	8 +	9%8	25%	989	88	20%	**	8%		
Queliverkehr [Kfz/h]	193	8	-	2	0	6	0	2	2	15	1	2	0	0	540	240 2%
Zielverkehr [Kfzh]	56	13	9	2	0	43	0	2	5	3	-	6	0	0	110	110 5%
Spitzenstunde spat	Wohnen	ueu	Nahversorgi	Nahversorgung/Einzelhandel/Gastro	lel/Gastro	Buroll	Buro/Dienstleistung			Hotel		H.	Kleingewerbe		uuns	Summe (rd.)
	Einwohner	WW	Beschäftigte Kunden	Kunden	WIV	Beschaffigte	Kunden	WIN	Besc haftigte	Kunden	VIVV	Beschaftigte	Kunden	WW	Kfz.F ahrte	Kfz-Fahrten SV-Anteil
Queliverkehr (Ant. DTV)	968	7%	14%	16%	7%	14%	15%	%2	15%	1%	7%	30%	15%	7%		
Ziekerkehr (Ant. DTV)	14%	5%	1%	18%	9%9	1%	13%	9%9	5%	25%	9%9	8%8	13%	5%		
Queliverkehr [Kfz/h]	103	42	3	33	0	18	3	2	3	4	1	6	2	0	107	200 3%
Zielverkehr [Kfzh]	180	8	0	37	0	_	е	2	-	15	-	4	-	0	260	260 1%

^{1...} Quelle: Angaben vom Projekenhickste GERCH Development GmbH, Stand 08.09.2017

2... eigene Messhäbt ung und des in Ankehning an "Abschäbung des Verleinsaukenmens durch Vorhaben der Bauletplanung", Dr. Bossenhoff, 2007/2011

3... Quelle: Hamburg spezifische Werte und der in Anhehning an "Abschäbung des Verleinsaukenmens durch Vorhaben der Bauletplanung", Dr. Bossenhoff, 2007/2011

4... Die mNAmiel ordertieren sich an den Ergebnissen der Herd 2008- Sonderauswartung Größaum Hamburg, izw. Sonderauswartung Hamburg, izw. So

Verkehrserzeugung Holsten-Areal

Suresemannsmane z io			
NUTZUNGSKONZEPT* (stadtebaulict (Yorgaben sind "blau" unterledt)).	he Kenngroßen gemaß 1	NU I ZUNGSKONZEPT i (statlebauliche Kenngroßen gemaß i abelie mit stattebaulichen Rahmendaten vom 16. Februar ZU18 Vooraben snof "Dau" unterleut".	m 16. Februar ZU18
	Wohnen	Nahvers or gung/Einzelhande VGastro	auums
m* BGF		2,600	norz
Ges antsummen (gerundet)		2.600	009°Z

VERKEHRSERZEUGUNG ^{8, 4}							
Kenngraße	Wohnen	nen	Nahversorg	Nahvers or gung/Einzelhande VGastro	deVGastro	Summe (rd.)	(rd.)
Bezugspersonen/-graße	Einwohner	W/W	Beschaftigte	Kunden	AWA	Kfz-Fahrten SV-Antei	SV.Anteil
m² pro flachenbezogene Bezugsgröße		www.mawwww.mawww.mawww.mawww.mawww.mawww.mawww.mawww.mawww.maww.mawww.maww.maww.maww.maww.maww.maww.maww.maww.	08	2	WHEN WAS A STREET	***************************************	***************************************
Ktz-Fahrten/Bezugsperson		ľ,U			U,2		
Kundenwege/Beschalligten							
Spannwerte			20 bis 140 m²/ Beschaftigtem (Mix)	0,3.5 m²/ /unde			
Wohneinheiten	780						
EVIVVE	1,0					-	
Anzahl Bezugspersonen	NR/		3	1300			
VVege/bezugsperson/d	d'E		2,5	7,0			
Wegeanzahl	∏6/7.	8/	3	M97.	9		
mlV-Anteil - Status Quo*	%F.	1UU%	%∏#	%/DE	1W%		
Pers./Pkw	光-		1,10	1,30			
Verbund-Mitnahmeettekt u. Guartiersverkehr ^{2,3}	10%			20%			
Schwerverkehrsanteif ²		30%			%Œ		
Neuverkehr [Pkw24h] und [WW24h]	nos	NR	ne an	me.	UL	D/G	3%

QUELL-/ZELVERKEHR?							
Spitzenstunde fruh	Wohnen	nen	Nahversorg	Nahversorgung/Einzelhande//Gastro	ndeVGastro	Summe (rd.)	(rd.)
	Einwohner	ANA	Heschaftigte	Kunden	VWV	Ktz-Fahrten SV-Anteil	SV-Antell
Queliverkehr [Ant, DTV]	15%	2%	%9	1%	%5		
Zielwerkehr (Ant. D.I.V.)	%7.	%.A	%67	**	%A		
Queliverkehr [Kfz/h]	41	7.	1	7.	-	RG	1%
Zielverkehr [Kfz/h]	9	3	4	7	n	ZU	6%
Spitzenstunde spat	Wohnen	nen	Nahversorg	Nahversorgung/EinzelhandeVGastro	ndeVGastro	Summe (rd.)	(rd.)
	Einwohner	NAN	Heschäftigte	Kunden	VWV	Ktz-Fahrten SV-Anteil	SV-Anteil
Queliverkehr [Ant, DTV]	%8	2%	14%	16%	%2		
Zielverkehr [Ant. DTV]	14%	28%	1%	18%	2%		
Queliverkehr [Kfz/h]	22	3	2	24	0	09	2%
Zielverkehr Kfz/h	8	7	0	17.	-	2	1%

Stresemannstraße 213 Verkehrserzeugung

Irabrennbann				
NUTZUNGSKONZEPT¹ (stadtek	auliche Kenngrößen gemäß Tab	NUTZJNGSKONZEPT (stattebauliche Kenngrößen gemäß Tabelle mit städtebaulichen Rahmendaten vom 16. Februar 2018 (Vorgaben sind "blau" unterlegtli))	om 16. Februar 2018 (Vorgaben sind "blau"	' unterlegt!))
	Wohnen	Nahversorgung/EinzelhandeVGastro	Buro/Dienstleis tung	Summe
Hachenanteile	75%	3%	22%	100%
Rachenanteile				
m* BGF	135.000	nors	40,000	180.000
Ges ands ummen (gerunded)	135.000	000'5	40.000	180.000

VERKEHRSERZEUGUNG ^{3,,5}										
Kenngroße	Wohnen	nen	Nahversorgi	Nahvers or gung/E inz elhande VG astro	deVGastro	Bür	Bûro/Dienstleis tung	Bul	Summe (rd.)	(rd.)
Bezugspersonen/-graße	Einwohner	\JW\	Beschaftigte	Kunden	WIV	Beschaffigte	Kunden	VWV	Kfz-Fahrten SV-Anteil	SV-Anteil
m² pro flachenbezogene Bezugsgroße		WATER TO THE TOTAL PARTY OF THE	8	2	Walley Walley Brown Brown	45		**************************************		***************************************
Ktz-Fahrten/Bezugsperson		ľ,U			70			u,z		
Kundenwege/Beschaftigten							ďΠ			
Spannwerte			20 bis 140 m²/ Beschaftgtem (Mix)	0,3.5 m²/ Kunde		20 ks 150 m²/ Beschafigten (Mix)	0,5-1 Wege/ Beschäftigtem			
Wohneinheiten	1.350									
EWW	20									
Anzahl Bezugsperson en	M1/7.		3	M97.						
уVege/berugsperson/d	d'S		2,5	7,0		7,5				
Wegeanzahl	9,450	N/7.	150	97m	17	7.280	ng#	1/8		
mN-Artell - Status Quo*	40%	*INI	% ₽	43%	1U%	48%	%£4	%ML		
Pers./Plow	¥.		1,10	氏.		1,10	1,30			
Verbund-Mtnahmeettekt u, Quartiersverkehr ^{2,3}	10%			20%						
Schwerverkehrsantell ²		30%			30%			30%		
Neuverkehr [Pkw/24h] und [WW/24h]	DZG:Z	Z/U	n/	RERI	111	nra	UCL	180	nurs	3%

QUELL-/ZELVERKEHR?										
Spitzenstunde fruh	Woh	Wohnen	Nahversorg	Nahvers or gung/E inz elhande VG astro	deVGastro	Bűr	Būro/Dienstlek tung	Bul	Summe (rd.)	(rd.)
	Einwohner	NAN	Heschättigte	Kunden	VWV	Beschättigte	Kunden	WIV	Ktz -Fahrten SV-Anteil	SV-Antei
Queliverkehr [Ant, DTV]	15%	2%	%9	1%	%5	%/	1%	%5		
Zielwerkehr [Ant. D.I.V.]	%7.	%A	%67	%_	%A	%PS	1%	%.B		
Queliverkehr [Kfz/h]	189	,	7.	4	n	¥	-	ç	NGZ	1%
Zielverkehr [Kfz/h]	52	11	UL	4	U	162	1	,	NZZ	%Z
Spitzenstunde spat	Wohnen	nen	Nahversorg	Nahversorgung/E inzelhandel/Gastro	deVGastro	JUSA .	Būro/Dienstleis tung	Bul	Summe (rd.)	(rd.)
	Emwohner	NAN	Heschäftigte	Kunden	VWV	Beschäftigte	Kunden	WIV	WIV Ktz -Fahrten SV-Anteil	SV.Ante
Queliverkehr [Ant, DTV]	%8	2%	14%	16%	%2	14%	15%	7%		
Zelverkehr [Ant DTV]	14%	2%	1%	18%	2%	1%	13%	2%		
Queliverkehr [Kfz/h]	101	6	G	98	0	69	11	9	270	%7
Zielverkehr [Kfz/h]	1/6	,	-	£	0	ç	2	ç	naz.	1%

1... Information zu den aktuellen Nutzungen und stadtebaufchen Kermdaten; F.H., Behorde für Stadtenwickblung und Wohnen, Amt für Landesplanung (D-13, E-Meil vom 08.02, 2016).
2... eigene Arschätzung und der Er Arschätzung des Verleitssaufkommens such Verhaben der Bauleiphanung; (Dr. Bosserhorf, 2007/2011).
3... Joher Hamburgspestens Weiter undboden in Anfahrdag an "Abschätzung des Verleitssaufkommens such verhaben gestellsten und der Bauleiphanung; (Dr. Bosserhorf, 2007/2011).
4... Die mit Variele er instellsten der Am den Ergebnissen der MID 2018-Sonderausvertung Gordzum Hamburg, 12 zw. Sonderauswertung Mitte Aftona.
5... Der Anteil der Erw.Wege außerhalb des Prlangebodes entsproft in etwa der Summe des gebetsteszigenen Essuchenerkehrs?

Verkehrserzeugung Trabrennbahn

Bahrenfelder Chaussee / Von-Sauer-Straße	n-Sauer-Straße			
NUTZUNGSKONZEPT¹ (stadtebaulic	he Kenngroßen gemäß Tabe	lle mit stadtebaulichen Ra	NUTZUNGSKONZEPT" (stadtehauliche Kenngrößen gemäß Tabelle mit stadtebaulichen Rahmendaten vom 16. Februar 2018 (vongaben sind "blau" unterlegti),	en sind "blau" unterlegt!))
	Wohnen (Apartments)	Wohnen	Nahversorgung/Einzelhandel/Gastro	Summe
Hachenanteile	35%	55%	10%	100%
Hachenanteile				
m* BGF	0006	14.000	2,500	25,500
Ges ands unmen (gerunded)	000'6	14.000	2.500	25.500

VERKEHRSERZEUGUNG ^{8, 5}									
Kenngroße	Wohnen (Apartments)	partments)	Wohnen	ner	Nahversorg	Nahversorgung/Einzelhandel/Gastro	del/Gastro	Summe (rd.)	(rd.)
Bezugspersonen/-graße	Efinvohner	AWA	Enwohner	AMA	Beschaffigte	Kunden	WIV	Kfz-Fahrten SV-Anteil	SV-Anteil
m² pro flachenbezogene Bezugsgroße	The state of the s	Workston Control of the Control of t	S S S S S S S S S S S S S S S S S S S	MANAGON MANAGO	08	2	***************************************	-	Addition to the second
Ktz-Fahrten/Bezugsperson		ľ'n		1,1			Z'N		
Kundenwege/Beschaftigten									
Spannwerte					20 bs 140 m²/ Beschafügtem (Mix)	0,3.5 m ² / Kunde			
Wohneinheiten	180		140						
EVVVME	1,0		2,0						
Anzahl Bezugspersonen	180		N97.		ns.	1.25.0			
Wege/dezugsperson/d	g'A		GE.		¢7.	7,0			
Wegeanzahl	DESS.	130	380	*	ns.	7.5UL	20		
mM-Anteil - Status Quo*	%⊕	*M1	%∏#	100%	%.P 4	43%	1U%		
Pers./Pkw	1,10		1,3K		1,10	E,1			
Verbund-Mthahmeettekt u, Quartiersverkehr ^{2,3}						%09			
Schwerverkehrsanteil ²		30%		30%			%Œ		
Neuverkehr [Pkw/24h] und [MW/24h]	NSZ	nz	nne	ne.	40	4ZU	UL	ngn'l	2%
									I

OUELL-/ZELVERKEHR									
Spitzenstunde fruh	Wehnen (A	Wohnen (Apartments)	Wohnen	nen	Nahversorg	Nahversorgung/Einzelhandel/Gastro	ndel/Gastro	Summe (rd.)	(rq.)
	Einwohner	NAN	Enwohner	VWV	Beschättigte	Kunden	VWV	VVV K1z-Fahrten SV-Anteil	SV-Antei
Queliverkehr [Ant, DTV]	15%	2%	15%	2%	%4	1%	969		
Zielwerkehr [Ant. D.I.V.]	%7.	%.A	%7	%.A	35%	3%	%A		
Queliverkehr [Kfz/h]	11	-	52	-	-	7.	n	35	1%
Zielverkehr [Kfz/ħ]	2	1		1	,	2	n	NZ	4%
Spitzenstunde spat	Wohnen (A	Wohnen (Apartments)	nandow	nen	Nahversorg	Nahversorgung/Einzelhandel/Gastro	ndel/Gastro	Summe (rd.)	(rd.)
	Einwohner	NAN	Einwohner	VMV	Beschäftigte	Kund en	AMA	Ktz-Fahrten SV-Anteil	SV-Antei
Queliverkehr (Ant, DTV)	%	2%	%8	7%	14%	15%	7%		
Zielwerkehr [Ant DTV]	14%	28%	14%	28%	1%	13%	969		
Queliverkehr [Kfz/h]	6	1	15	1	3	32	0	09	1%
Zielverkehr [Kfz/h]	16	-	17	-	-	17.	-	2	8.

1... Quelle...
2... eigene Agschätzung und/oder in Anlehnung an "Abschätzung des Verkehrsaufkommens durch Nohhaten der Bauleitplanung". Dr. Bosserhoff, 2007/2011
3... eigene Agschätzung und/oder in Anlehnung an "Abschätzung des Verkehrsaufkommens durch Vorhäten der Bauleitplanung". Dr. Bosserhoff, 2007/2011
4... Die inf-Annelle orientleten sich an den Eigebinssen der hith 2003-. Sonderauswertung Großsaum Hambung zum Sonderauswertung Mitte Aftens.
5... Der Annel der Exik Wege außerhalb des Plangebietes entsprort in erwa der Summe des gebietsbezogenen besuchernerkehrs²¹

ANLAGE 1-6 Verkehrserzeugung Von-Sauer-Straße Bahrenfelder Chaussee/

Ottensen 66 (Kolbenschmidt-Areal)	-Areal)			
NUTZUNGSKONZEPT' (stadtehaulich	ie Kenngroßen gemäß Tabe	NUTZJNGSKONZEPT' (stattebauliche Kenngroßen gemäß Tabelle mit stattebaulichen Rahmendaten vom 16. Februar 2019 (Vorgaben sind "blau" umbriegt!))	n 16. Februar 2018 (Vorgaben sind "blau"	unterlegt!))
	Wohnen	Nahversorgung/Einzelhandel/Gastro	Buro/Dienstleis tung	Summe
Hachenanteile	100%			400%
Flachenanteile				
m* BGF	00089			09.000
Gesantsummen (gerundet)	68.000			68.000

Reungrake Wohlnen NAV Beschaftige Kunden Winden Winden <th< th=""><th>VERKEHRSERZEUGUNG^{5, 5}</th><th>Verkehrserzeugungsparamter gemäß VU B Plan Ottensen BG "Schwarzkopfareal" (intodal Spit projektbezogen angepasst)</th><th>gungsparamter</th><th>gemäß VU B.F</th><th>Plan Ottensen 8</th><th>6 "Schwarzk</th><th>opfareal"⁶ (Mbd</th><th>al Split projekt</th><th>laɓwe uaɓozaq</th><th>passt)</th><th></th></th<>	VERKEHRSERZEUGUNG ^{5, 5}	Verkehrserzeugungsparamter gemäß VU B Plan Ottensen BG "Schwarzkopfareal" (intodal Spit projektbezogen angepasst)	gungsparamter	gemäß VU B.F	Plan Ottensen 8	6 "Schwarzk	opfareal" ⁶ (Mbd	al Split projekt	laɓwe uaɓozaq	passt)	
e DecuggeGGe 100 MAV Beschaftigte Konnièn Will Roncher Konnièn Konnièn <th< th=""><th>Kenngroße</th><th>чом</th><th>nen</th><th>Nahversorgi</th><th>ıng/Einz elhan</th><th>deVGastro</th><th>ng</th><th>o/Dienstleistu</th><th>Bur</th><th>Summe (rd.)</th><th>(rd.)</th></th<>	Kenngroße	чом	nen	Nahversorgi	ıng/Einz elhan	deVGastro	ng	o/Dienstleistu	Bur	Summe (rd.)	(rd.)
en unit of the control of the contro	Bezugspersonen/-graße	Einwohner	AWA	Beschaffigte	Kunden	VWV	Beschaffigte	Kunden	AM	Kfz Fahrten SV-Anteil	SV-Anteil
Senn U.1 Glan 1800 2.7 1 1805 1 3.7 1 195 K4 1 30%	m² pro flachenbezogene Bezugsgröße	8									
1800	Ktz-Fahrten/Bezugsperson		L'n								
600 0 27 1 186 8 7 8 6 7 9 7 1 3 3 7 4 1 3 5	Kundenwege/Beschaftigten										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Spannwerte										
1 186 37 8 2/40 1 33/8 4 1,36	Wohneinheiten	089				***************************************	-	-	***************************************	-	-
1 1456 3 2 5 5 4 0 1 3 5 6 4 1 3 5 6 4 3 3 5 6	EWWE	17.									
1 31% 6.541 1 31% 4 1.35	Anzahl Bezugspersonen	1.836									
1 33%		_									
- 57%										_	
136	mM-Anteil - Status Quo*	%/E									
¥	Pers /Pkw	1,38									
	Verbund-Mtnahmeettekt u. Quartiersverkehr ^{2,3}										
	Schwerverkehrsanteif ²		30%								
Neuverkehr [Pkw24h] und [MM/24h] 1.510 90	Neuverkehr [Pkw/24h] und [MN/24h]	UTC.T	98							ULBA T	2%

QUELL-/ZIELVERKEHR										
Spitz enstunde früh	Wohnen	nen	Nahversorg	Nahversorgung/EinzelhandeVGastro	deVGastro	JŪB BŪL	Būro/Dienstleis tung	Bun	(rp.) emme (rd.)	(rd.)
	Einwohner	WW	Beschäftigte	Kunden	VMV	Beschäftigte	Kunden	VWV	W/V Kfz -Fahrten SV-Anteil	SV-Antei
Queliverkehr [Ant. DTV]	15%	9%9								
Zielwerkehr [Ant. D.I.V.]	%7.	%A								
Queliverkehr [Kfz/h]	113	7.							NZ.L	1%
Zielverkehr [Kfz/h]	15	4							02	%9
Spitzenstunde spat	Wohnen	nen	Nahversorg	Nahversorgung/Einzelhande//Gastro	deVGastro	JUG BULL	Buro/Dienstleis tung	6un	Summe (rd.)	(rd)
	Einwohner	WW	Beschäffigte	Kunden	WIV	W/V Beschaftigte Kunden	Kunden	VWV	WIV Kfz-Fahrten SV-Anteil	SV.Antei
Queliverkehr [Ant. DTV]	9%	%/								
Zielverkehr [Ant. D.I.V.]	14%	9%9								
Queliverkehr [Kfz/h]	N9	3							N	1%
Zielverkehr [Kfz/h]	106	2		****					11	1%

1... Quelle Angelen vom Bezinksant Albna, I-achant für Stadt, und Landschaftsglanung (25.10.2.110)
2... diese Assinatung unförder in Afeitenium ges Verleitrestenkommens duch Vintaken der Bauleitlanung. Dr. Bassehoff, 2007.2011
3... Quellet Hamburg-specifische Werte undoder in Areibnung an "Abschätung des Verleitrast körnmens duch Vichtaken der Bauleitlanung, 10. Bassehoff, 2007.2011
4... Die nick Annielle oneinieren sich an den Ergebrüssen der MD 2008- Sonder assevertung Gondsaum Hamburg, bzw. Sonder assewertung Mitta Altona.
5... Der Anneil korteinieren sich an den Ergebrüssen der MD 2008- Sonder assevertung Gondsaum Hamburg, bzw. Sonder assewertung Mitta Altona.
5... Der Anneil kort Erwissen Schalbergebrüssen der National Statume des gelöffenden Erste Besucherverteiter².
6... Der Anneil kort Schwarzsoprasia "Verkentsschnache Sallungsmine, jüllor Agas, "2010)

Ottensen 66 Verkehrserzeugung Kolbenschmidt-Areal ANLAGE 1-7

Ottensen 67 (Euler-Hermes-Areal)	real)			
NUTZJNGSKONZEPT¹ (stadtebaulic	ne Kenngroßen gemäß Tabe	NUTZUNGSKONZEPT' (städtebauliche Kenngrößen gemäß Tabelle mit städtebaulichen Rahmendaten vom 16. Februar 2018 (Vorgaben sind *blau* unterlegt!))	m16. Februar 2018 (Vorgaben sind Tolau"	unterleg#))
	Wohnen	Nahversorgung/EinzelhandeVGastro	Buro/Dienstleis tung	Summe
Hachenanteile	100%			100%
Flächenanteile				
m* BGF	47.000			47.000
Ges antsummen (gerundet)	47.000			47.000

VERKEHRSERZEUGUNG*.	Verkehrserzeugungsparamter gemaß VU B-Plan Ottensen bb. "Schwarzkoptareal" is (Modal Split projektbezogen angepasst)	annig sparanne								
Kenngraße	Wohnen	nen	Nahversorgi	Nahvers or gung/E inz elhande VG astro	deVGastro	ng	Buro/Dienstleistung	Bur	Summe (rd.)	(rd.)
Bezugspersonen/-graße	Einwohner	VWV	Beschaffigte	Kunden	WIV	Beschaffigte	Kunden	\W\	Kfz-Fahrten SV-Anteil	SV.Anteil
m² pro flachenbezogene Bezugsgrõße	8									
Ktz-Fahrten/Bezugsperson		ľ'n								
Kundenwege/Beschaftigten										
Spannwerte										
Wohneinheiten	470	***************************************	-		***************************************	***************************************		***************************************		
EWWE	77									
Anzahl Bezugspersonen	1.268									
Wege/Bezugsperson/d	37									
Wegeanzahl	4./00									
mN:Antell - Status Quo*	%/16	***************************************			***************************************					
Pers./Pkw	% 1	****								
Verbund-Mitnahmeettekt u. Quartiersverkehr ^{2,3}										
Schwerverkehrsanteif ²		30%								
Neuverkehr [Pkw24h] und [MN24h]	1.045	09	**********						ULT.T	2%

QUELL-/ZIELVERKEHR										
Spitzenstunde früh	Wohnen	nen	Nahversorg	Nahversorgung/EinzelhandeVGastro	ndeVGastro	ng .	Būro/Dienstleis tung	Bun	Summe (rd.)	(rd.)
	Einwohner	WW	Beschäftigte	Kunden	WW	Beschäftigte	Kunden	VMV	W/V Kfz-Fahrten SV-Anteil	SV-Antei
Queliverkehr [Ant. DTV]	15%	9%9								
Zielwerkehr [Ant. D I V]	%7.	%A								
Queliverkehr [Kfz/h]	R/	7.							nn n	1%
Zielverkehr [Kfz/h]	10	2							20	2%
Spitzenstunde spat	Wohnen	nen	Nahversorg	Nahversorgung/EinzelhandeVGastro	ndeVGastro	ng Bu	Būro/Dienstleis tung	Bun	Summe (rd.)	(rd.)
	Einwohner	WNV	Beschaftigte Kunden	Kunden	WW	Beschäftigte Kunden	Kunden	VWIN	WIV Kfz -Fahrten SV-Anteil	SV.Ante
Queliverkehr [Ant. DTV]	9%,0	%/								
Zielverkehr [Ant. D I V]	14%	5%								
Queliverkehr [Kfz/h]	7.5	7.							ns .	1%
Zielverkehr [Kfz/h]	2	7							B	1%

1... Quelle Angelen vom Bezinksant Albna, I schant für Stadt, und Landschaftsglanung (25.10.2.110)

2... diegen Assistatung unförder in "Alsteintagung seit Veiterfarseitkommers duch Vinhalen der Bauleitlanung". Dr. Bossenhoff, 2007/2011

3... dueller Hamburg-specifische Werte undöder in Areikhaung an "Abschätzung des Verleitnsatkömmers duch Vichken der Bauleitlanung". Dr. Bossenhoff, 2007/2011

4... Die nick Annielle oneindenen sich an den Engelsissen der MÖ 2018. Sondersasswertung Gordisam Hamburg, bzw. Sondersasswertung Mitta Altona.

5... Lor Annel der Eaw Wogge aufschaft des Periodent in netwa der Eummer des geberspeszogenen Besuchenverlehre²¹.

5... Lor Annel der Eaw Vogge aufschaft des Arkenvisschnerze Sallungmanne, [Jaho Agas, "22.10.]

ANLAGE 1-8 Verkehrserzeugung Euler-Hermes-Areal Ottensen 67

Stellingen 62 Sportplatzring / Basselweg	Basselweg							
NUTZUNGSKONZEPT¹ (stādtebaulid	he Kenngroßen gemaß Tab	elle mit stadte	sbaulichen Ra	ımendaten vo	NUTZJNGSKONZEPT (staktebauliche Kenngroßen gemäß Tahelle mit staktebaulichen Rahmendaten vom 16. Februar 2019 (Vorgaben sind "blau" unterlegt!))	unterleg#))		
	Wohnen Nahversorgung/EinzelhandeVGastro) Nahversor	yung/Einzelha	ndeVGastro	Būra/Dienstleistung	Stadtteilhaus	Kita	Summe
Hachenanteile	%68		2%		9%	4%	0	100%
		Meinfl. EH	Meinfl.EH großfl.EH Gestro	Gestro			12U Kinder	
m² BGF (bzw. VKF)	66 200	1.200	1.200 2.500	360	6.850	3,000		80.110
Ges antsummen (gerundet)	00799		4.060		6.850	3,000		80.110

VERKEHRSERZEUGUNG ³⁵ Verkehrs	euzendnudaba	ramter gemäß	erkehrserzeugungsparamter gemäß VU Entwicklung Stellingen ¹ (Modal Spit projektbezogen angepasat)	Stellingen 1 (M	odal Split proje	ktbezogen ang	epasst)								
Kennyroße	Wel	Wohnen	Nahversorgi	Nahversorgung/EinzelhandeVGastro	deVGastro	Bûr	Bura/Dienstleistung	Bi		Stadtteilhaus		2	Kita	Summe (rd.)	rd.)
Bezugspersonen/-graße	Einwohner	AWA	Beschaftigte	Kunden	WIV	Beschafligte	Kunden	WIV	Beschaftigte	Kunden	AWA	Begleiter	Beschafligte	Beschaftigte Kfz-Fahrten SV-Anteil	N-Anteil
m² pro flachenbezogene Bezugsgröße	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BOOKS TO CHISTON TO THE TOTAL THE TOTAL TO T	-		44	-	***************************************	99	A		Mark Commerce of the Commerce	A THE PARTY OF THE	***************************************	-
Ktz-Fahrten/Bezugsperson		r'n						ι,υ			5,0				
Kunderwege/Beschaftigten							ų			u,ur					
Spannweite			20 bis 140 m²/ Beschaftigtem (Mix)	0,3.5 m²/ Kunde		20 bis 150 m²/ Beschafigten (Mix)	0,5-1 Wege/ Beschäftigten		20 bis 150 m²/ Beschatigtem (Mix)	10,0 Wege/ Beschaftigten					
Wohneinheiten	019														
EWWE	2,0														
Anzahl Bezugspersonen	1,280		8			æ			13G			30	77.		
Wege/bezugsperson/d	36		7,5	7,0		7,5			47.			4,0	ζZ		
Wegeanzahl	4,610		740	านรกเ	34	ヌ	1/1	15	USU	ma	15	430	ਜ਼		
mN-Arteil - Status Quof	40%		%₽	42%	1U%	48%	%E₩	%DOL	48%	43%	100%	%B	25%		
Pers./Pkw	1,20		1,06 84	1,218		1,06	1,10		1,05	1,10		1. 8.	1,05		
Verbund-Mitnahmeettekt u, Quartiersverkehr ^{2,3}	0%			30.80%								%05			
Schwerverkehrsanteil ²		30%			30%			30%			30%				
Neuverkehr [Pkw/24h] und [MN/24h]	1.54U	60	ULL	1.550	34	130	ıν	ZU	19	240	ZI	UST	IV.	4.090	1%

GOLLL-ZILL VLARLIIA															
Spitzenstunde fruh	Wohnen	nen	Nahversorgu	Nahversorgung/Einzelhandel/Gastro	deVGastro	Bün	Būra/Dienstleistung	Bui		Stadtteilhaus		~	Kita	Summe (rd.)	(m.)
	Einwohner	AMA	Deschattigte	Kunden	VWV	Beschäftigte	Kunden	WIV	Beschäftigte	Kunden	VWV	Degleter	Hes chättigte	Hes chättigte Ktz-Hahrten SV-Anteil	SV-Ante
Queliverkehr [Ant, DTV]	15%	2%	9%5	1%	%5	1%	1%	2%	%9	1%	2%	4D%	%0		
Zielwerkehr [Ant. D.I.V.]	%7.	%A	78%	*	%A	36.3%	3%	%.R	20%	1%	%9	40%	%9A		
Queliverkehr [Kfz/h]	116	7	77	R	1	9	n	-	Z	-	1	98	n	nar.	1%
Zielverkehr [Ktz/h]	t)	7	16	20	-	8	n	-	9	-	-	**	50	UEL	1%
Spitzenstunde spat	Wohnen	nen	Nahversorgu	Nahversorgung/EinzelhandeVGastro	deVGastro	Bün	Būra/Dienstleistung	Bui	-	Stadtteilhaus				(m) awwnS	(m,)
	Einwohner	NAN	Deschäftigte	Kunden	VWV	Beschäftigte	Kunden	WIN	Beschäftigte	Kunden	VWV	Degleter	Hes chartigte	Beschäftigte Ktz-Fahrten SV-Anteil	SV.Ante
Queliverkehr [Ant, DTV]	%8	%2	14%	16%	%/	14%	15%	7%	20%	15%	2%	9%9	15%		
Zielwerkehr [Ant DTV]	14%	2%	1%	18%	2%	1%	13%	2%	%8	13%	28%	9%5	%0		
Quellverkehr [Kfz/h]	29	2	8	124	1	13	ç	1	9	18	1	ç	2	052	1%
Zielverkehr [Ktz/h]	108	7	-	4	-	1	ç	-	7	16	1	ç	n	nsz.	1%

Jouelle, "VD Enwickburg Stalingen", ARGAS, 00.09. 2015 (par EMel)
 See dopen Abschätzung undeder In-Arbehung an "Asschätzung des Verleitreaufkommens durch Vohaben der Bauletplanung". Dr. Bosserhoff 2007/2011
 Jouelle Hamburg spezifische Weite undeberung "Abschätzung des Verleitreaufkommens durch Vohaben der Bauletplanung". Dr. Bosserhoff, 2007/2011
 Der M-Anneke orienteen sich an den Engebnissen der MD 2002. Sonderaus wertung Gerdaum Hamburg zum Sonderauswertung Mitte Atona.
 Der Anteil der Ew-Wege außenhalb des Plangebreits entsprictt in etwa der Summe des gebietsbezogenen Besurberverkehrs?"

Sportplatzring/Basselweg ANLAGE 1-9 Verkehrserzeugung Stellingen 62

NUIZINGSKONZEFT istaltebauliche Kerngrößen gemöß Tabelle mit städtebaulichen Rahmendaten vom 16. Februar 2019 (Vorgaben sind "bla." unterlegti))	ngroßen gemäß Tabelk	e mit stadtebaulichen Rahmendaten vom 1	16. Februar 2018 (Vorgaben sind "blau" u	mterlegt!))	
	Wohnen	Nahvers or gung/Einz elhande VGastro	Bitro/Dienstleis tung		Summe
Hachenanteile	100%				100%
Hachenanteile					
m* BGF	25.000				25.000
Ges antsummen (gerundet)	25.000				25.000

Resultation of the minimal definition of the m	VERKEHRSERZEUGUNG ³⁵												
Ebecuty-ground Emworthmer With Ebecth-filting Kannden With Ebecth-filting E	Kenngroße	Wol	nen	Nahversorga	ıng/Einz elha	ndeVGastro	Bur	o/Dienstleistu	- Bu			Summe (r	d.)
Pacugagnotic Pacu	Bezugspersonen ² -graße	Einwohner	AWA	Beschaftigte	Kunden	AWA	Beschaffigte		WIV		Kfz	Fahrten S	V.Anteil
Fight Light Light <th< td=""><td>m² profachenbezogene Bezugsgroße</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	m² profachenbezogene Bezugsgroße			-									
Early	Kiz-Fahrten/Bezugsperson		L,U										
The control of the	Kundenwege/Beschattigten												
20 20 20 20 20 20 20 20 20 20 20 20 20 2	Spannwarte									***************************************			
20	Wohneinheiten	092											
31 32 32 32 32 32 32 32	EWWE	20	-								_		
1.54] 1.54	Anzahl Bezugsperson en	nns Pnn							_			_	
17-54 41-55	Wege/bezugsperson/d	gg.											
135 20 30 30 30 30 30 30 30	Wegeanzahl	1,75U											
1.35	mN-Anterl - Status Quo*	₩.											
10 30% 30% 30% 30% 30% 30% 30% 30% 30% 30	Pers./Plow	Æ											
30% and PA6/224h] 5.01 5.0 5.0	Verbund-Mthahmeettekt u. Guartiersverkehr ^{2,3}												
D/S D/S D/S	Schwerverkehrsanteif ²		30%										
	Neuverkehr [Pkw/24h] und [MN/24h]		nc en							1)000004		n/G	3%

QUELL/ZELVERREHR											
Spitzenstunde fruh	Wohnen	en	Nahversorgi	Nahvers or gung/E inz elhande VG astro	ndeVGastro	Bûr	Būro/Dienstleis tung	Bu		Stimus	Summe (rd.)
	Einwohner	VVV	VVV Beschättigte Kunden	Kunden	VMV	VVIV Beschättigte Kunden	Kunden	WIV	******	 Ktz-Fahrten SV-Anteil	n SV-Ant
Queliverkehr [Ant, DTV]	15%	2%								Ī	
Zielwerkehr [Ant. D.I.Y]	%7.	% A									
Queliverkehr [Kfz/h]	88	1							•	 40	1%
Zielverkehr [Kfz/h]	ç	7								<u>ا</u>	9.6
Spitzenstunde spat	Wohnen	en	Nahversorgi	Nahversorgung/E inz elhande VG astro	ndeVGastro	Bür	Būro/Dienstleis tung	Bu		Summ	Summe (rd.)
	Emwohner	VWV	W/W Beschäftigte Kunden	Kunden	AMA	W//V Beschäftigte Kunden	Kunden	WIV		 Kfz-Fahrten SV-Anteil	n SV.Ant
Queliverkehr [Ant, DTV]	%8	7%									
Zelverkehr [Ant DTV]	14%	2%									
Queliverkehr [Kfz/h]	21	2								30	3%
Zielverkehr Ktz/h	8	-								4	35

1... Ouelle, Angelen vom Beziksann Embuttel, Facham für Stadt und Lantschaftsplanung (14.02.2018)
2... eigene Abszahzung undeben Arkeinung an "Abszhätzung des Verlehrsaukkommens durch Verhaben der Bauletglanung". Dir Bossehrdf. 2007.2011
3... dueller Hamburg spezitische Werte undeber in Arteinung an "Abschätzung des Verlehrsaukkommens durch Verhäben der Bauletglanung". Ur. Ebsserhoff, 2007.2011
4... Die inf-Annele oferliehen sich an den Eggebissen der hilb 2003 - Sonierauswertung Großkaum Hamburg bzw. Sonierauswertung hitte Afterna.
5... Der Annel der EwWege außerhalb des Prängebietes entspricht nichtwarder soll gebersteitezogenen Besuchenerkehrs²¹.

Verkehrserzeugung Stellingen 64 Spannskamp ANLAGE 1-10

nammempiam of Faun - Lengebiet Nobiston to	epiet Nobistol 16			
NUTZUNGSKONZEPT¹ (stadtebaulic)	NUTZUNGSKONZEPT* (startebauliche Kenngroßen gemaß Tabelle mit stadtebaulichen Rahmendaten vom 16. Februir 2018 (Yörgaben and "blau" unte legt))	raulichen Rahmendaten vom 16. Februir	2018 (Vérgaben sind "blau" unte legtl))	
	Nahversorgung/Einzelhandel/Gætro	Buro.Dienstleistung		Summe
Hächenanteile	20%	%08		100%
Hachenanteile				
nr BGF	1.100	4,300		5.400
Gesæmtsummen (gerundet)	1.100	4.300		5.400

Rezugepersoner/große Esschaftige Kunden Wind Dieserteite betragen genes bezugegröße Kick-fahrten Kick-fahrten Summet in Standarfügen Kick-fahrten Summet in Standarfügen Kick-fahrten Kick-fahrten Summet in Standarfügen Kick-fahrten Kick-fahr	VERKEHRSERZEUGUNG*.								1	
Baschaffigle Kunden WVV Beschaffigle Kunden WVV Color	Kenngroße	Nahversorg	ung/Einzelhan	deVGastro	Bur	o/Dienstleistu	- Bu			Summe (rd.)
80 2 45 ————————————————————————————————————	Bezugspersonen-kgroße	Beschaffigte	Kunden	WIN	Beschaffigte	Kunden	WIV		Kfz.F	Kfz-Fahrten SV-Anteil
200 to 400 m² (Aurole 400 m²)	m² pro flachenbezogene Bezugsgroße	8	2		45					
20 bit 140 m²/ (2.5 m²/ kc.rde) 0.54 bit 140 m²/ (0.54 bit 140 m²/ kc.rde) 0.54 bit 140 m²/ (0.54 bit 140 m²/ kc.rde) 0.54 bit 140 m²/ kc.rde) 0.55 bit 140 m²/ kc.rde) 0.5	⊮z-Fahrten/Bezugsperson			0.2			0.2			
20 bis 140 m²,	Kundenwege/Beschaftigten					0,5				
10 550 100 2 25 30 20 30 40% 3u/w 1u/w 13u 11u 13u 1 1	Spannwerte	20 bis 140 m²/ Beschatigtem (Mfx)	0,3-5 m²/ Kunde	***************************************	20 bis 150 m²/ Beschafigten (Mfx)	0,5-1 Wege/ Beschäfigten				ABBANETANA
10 550 100 2 25 30 20 30 40% 30.% 100% 20 100 130 1100 2 250 20 20 20 20 20 20 20 20 20 20 20 20 20	Wohneinheiten									
10 650 100 100 100 100 2 <t< td=""><td>EVVNÆ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	EVVNÆ									
2,6 2,0 2,5 60 20 30 1,100 2 20 50 20 4,100 1,100	Anzahl Bezugspersonen	10	999		100					
30 1100 2 250 50 20	Wege/Bezugsperson/d	2,5	20		25					••••
40% 30% 100% 40% 30% 100% 100% 100% 100% 100% 100% 100	Wegeanzahl	R	1.100	2	920	99	20			
1,10 1,20 1,20 1,10 1,30 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,2	mM-Anteil - Status Quo4	40%	30%	%DDL	%∩ 4	%ns	100%			****
31% 31% 0 0 0 20 ZU	Hers AHkw	1,10	3		UL,1	£.				
30% 30% 30% 10 10 10 10 20 20 20	Verbund-Minahmeeffekt u. Quarttersverkehr ^{2,3}		%/IS							
0.2 0.2 0.0 0.0 0.CT 0.1	Schwerverlehrs anteif			30%			30%			
	Neuverkehr [Pkw/24h] und [WW/24h]	110	130	U	UUL	nz	7.0	CT. BORNA		280 2%

increasing in reacting and language		3		200	20	20	****			207	£ 74
QUELL-/ZIELVERKEHR*											
Spitzenstunde fruh	Nahversorg	Nahversorgung/Einzelhandel/Gastro	ndeVGastro	Būr	Buro/Dienstleistung	Bun				Summe (rd.)	(rd.)
	Beschaftigte Kunden	Kunden	VWV	Beschaftigte	Kunden	VMV	_	_		Kfz-Fahrten SV-Anteil	SV.Anteil
Queliverkehr (Ant. DTV)	9%5	1%	%9	%/	1%	2%					
Zielverkehr [Ant. DTV]	29%	1%	8%	33%	%	8%					
Queliverkehr [Kfz/h]	n	-	=	4	=	1				=	%.C
Zielverkehr [Ktz/h]	1	1	n	1/	U	1				7.0	2%
Spitzenstunde spät	Nahversorg	Nahversorgung/Linzelhandel/Gastro	ndel/Gastro	Būr	Buro/Dienstleis tung	nmg				Summe (rd.)	(rd.)
	Beschaftigte Kunden	Kunden	VWV	Beschaftigte	Kunden	VWV		_	Ī	Kfz-Fahrten SV-Anteil	SV.Anteil
Queliverkehr [Ant. DTV]	14%	%91	%1	14%	15%	%/		-			
Zielverkehr [Ant. DTV]	1%	18%	2%	1%	13%	5%	•				
Queliverkehr [Kfz/h]	1	nı.	n	1	7.	1				OE.	1%
Zielverkehr [Ktz/h]	n	12	-	-	-	1				R7.	%.Z.

1... Ouelik, Angaben vom Bezitkssmit Hamburg-Mitte, Fazhant für Stadt- und Landschaftsplanung (28.08.2017)
2.... eigene Alschaftzung undkoder in Antentung an "Absztätzung des Verkehrsautkommens durch Vorhaben der Baueltplanung", Dr. Bosserhott, Zulv / Zul i 3... Guber Hamburg an "Absztätzung des Verkehrsautkommens durch Vorhaben der Bauletplanung", Dr. Bossenhoft, Zulv / Zul i 4... Den mik-Andele orkenteren sich an der Ergebnissen der MD 2008. Söndersussvertung Großzum Hamburg, Izw. Söndersussvertung Mitte Abna.
5... Der Antel der Er-Weige außerhalb des Plangsbeites entspricht in ehva der Summe des gebeisbez ogenen Besucherverkeits?

Verkehrserzeugung St. Pauli - Nobistor 16

Hoistenstraise 5-/					
NUTZUNGSKONZEPT' (stadtehaulic)	he Kenngroßen gemaß Tabe	NU TZUNGSKONZEPT' (staktebauliche Kenngroßen gemäß Takelle mit staktebaulichen Rahmendaten vom 16. Februar 2019 (Vorgaben sind "blau" unterlegt!))	16. Februar 2018 (Vorgaben sind "blau" u	unterlegt!))	
	Wohnen	Nahversorgung/EinzelhandeVGastro	Hotel		Summe
Hachenanteile		%9t			16%
Hachenanteile					
m* BGF		2.100	10.350		13.050
Ges antsummen (gerundet)		2.100	10.950		13.050

Rezugsper soneri-grade Becugsper soneri-grade m² for list-her hezogene Bezugspröße KIz-Fahren/dezugsperson Kunderwegebes chaftigten Spanweite Gastezinmer Phou	Nahversorguu Beschafige 80 20 bis 140 m²/ Beschafigem	Nahversorgung/Einzelhande/VGastro	leVGastro						
Usper soner-igrade To flact herbacogene Bezugsgrüße Fahren refeszugsperson Tennoger beschaftigten Triest e	Beschaffige 80 80 80 80 80 80 80 80 80 80 80 80 80	Kunden			Hotel			Sum	Summe (rd.)
to flacthen bezugsten son einhamberzugspenson einwagerbeschaltigten met e	90 20 bis 140 m²/ Beschatigtem		VWV	Beschaffigte	Gaste	WIV		Kfz-Fahrte	Kfz-Fahrten SV-Anteil
einten-bezugsperson ierwege-beschaltgien wete	20 bs 140 m²/ Beschatgtem	2							
ienwage/beschalligten nverte zzinnner	20 bis 140 m²/ Beschaftgrem		Zn			₽ '∩			
rweite szimmer	20 bis 140 m?/ Beschaftgtem								
Gastezirnner P.w.	(Mix)	0,35m²/ Kunde			0,83 Personen/ Zimmer				
Pkw					196				
⊐	3	1060				_			_
VVege/dezugsperson/d	477	7,0		2,0	ď7.				
Wegeanzahl	33	2,100	9	JII.	320	nz.			
mIV-Ariel - Status Quo*	%∏₹	%nF	1U%	40%	%AE				
Pers./Pl/w	1,10	£,		1,10	1,33				
Verbund-Mitnahmeetrekt u. Guartiersverkehr ^{2,3}		20%							
Schwerverkehrsanteif 30%			90%			80%			
Neuverkehr [Pkw/24 h] und [MW/24 h] u u u	ΠE	067	9	40	n/	nz	1)000004	175h	88

OUELL-/ZELVERKEHR?											
Spitzenstunde fruh	Woh	Wohnen	Nahversorg	Nahvers or gung/E inz elhande VG astro	deVGastro		Hotel			Summe (rd.)	(ml.)
	Einwohner	AAA	Deschattigte	Kunden	WIV	Beschäftigte	Gaste	VWV	0-0000	 Ktz-Fahrten SV-Anteil	SV-Antei
Queliverkehr [Ant, DTV]	15%	2%	%5	1%	%9	%OI	25%	%9			
Zielwerkehr [Ant. D I V]	%7.	%.A	%R7.	%_	%A	%97	2%9	%A	•		
Queliverkehr [Kfz/h]	n	n	1	-	n	7	50	-		NZ.	%9
Zielverkehr [Ktz/h]	n	n	4	-	n	ç	7	-		NZ.	9.9
Spitzenstunde spat	Woh	Wohnen	Nahversorg	Nahversorgung/E inz elhandel/Gastro	deVGastro		Hotel			Summe (rd.)	(m)
	Einwohner	WW	VVIV Beschäftigte	Kunden	WIV	Beschäftigte	Kunden	VWIV	B+000-004	Ktz-Fahrten SV-Anteil	SV.Antei
Queliverkehr [Ant, DTV]	%8	2%	14%	16%	2%	15%	2%2	%2			
Zielverkehr [Ant. DTV]	14%	2%	1%	18%	9%	5%	75%	2%			
Quellverkehr [Kfz/h]	0	0	7	20	0	3	2	1	***********	30	%E
Zielverkehr [Kfz/h]	n	0	-	S	n	-	20	-		40	%Z

1... Ouelle, Angelen vom Baziksannt Hamburg-Mitte, Fachernt für Stadt- und Landschaftsglanung (28.06.2017)
2... eigene Abszahzung undeden Avlehburg ein "Abschätzung se Verleitrestellkommens durch Verhaben der Bulletplanung". Dr. Bossehoff, 2007/2011
3... Aublief Hamburg-speatische Weite undeden in Anlehnung an "Abschätzung des Verleitrestuksminnes durch Vorhaben der Bulletplanung". Dr. Bossehoff, 2007/2011
4.... Die inf-Annele oferlietens sich an den Engebrissen der MD 2001- Sondersuksvertung Gerdaum Hamburg, bzw. Sonderausvertung Mitte Attons.
5... Der Annel der Ear-Wage außerhalb des Plangebeites entspricht in erwa der Summe des gebeitsteszogenen Besuchererkein?

Verkehrserzeugung St. Pauli - Holstenstr. 5-7

Bahnflächen (2. BA)					
NUTZUNGSKONZEPT¹ (städtebaulich	e Kenngroßen gemäß Tabe	NUTZUNGSKONZEPT (städtebauliche Kenngrößen gemäß Tahelle mit städtebaulichen Rahmendalen vom 16. Februar 2018 (Vörgaben sind "Dia" unterlegt!))	16. Februar 2018 (Vorgaben sind "blar" u	unterleg#))	
	Wohnen	Nahversorgung/Einzelhandel/Gastro	Buro/Dienstleis tung		Summe
Hachenanteile	%86	1%	1%		100%
Hachenanteile					
m* BGF	000 061	2,000	2.000		194 JUU
Ges antsummen (gerundet)	190.000	2.000	2.000		194.000

VERKEHRSERZEUGUNG ^{3. 5}										
Kenngroße	Woh	Wohnen	Nahversorgu	Nahvers orgung/E inz elhandeVGastro	deVGastro	Bū	Buro/Dienstleis tung	Bu	Sum	Summe (rd.)
Bezugspersonen/graße	Einwohner	\W\	Beschaffigte	Kunden	Wiv	Beschaffigte	Kunden	\W\	Kfz-Fahrt	Kfz-Fahrten SV-Anteil
m² pro flachenbezogene Bezugsgroße			8	2		\$				
Ktz-Fahrten/Bezugsperson		r'n			Zn			7,0		
Kundenwege/Beschaftigten							ďΠ			
Spannwerte			20 bis 140 m²/ Beschaftigtem (Mix)	0,3.5 m²/ Kunde		20 bs 150 m²/ Beschaftigtem (Mix)	0,5-1 Wege/ Beschäftigtem			
Wohnenheiten	1.900									
EWWWE	2,0						-			-
Anzahl Bezugsperson en	3800		35	1000		∏ a				
уVege/berugsperson/d	d'S		7,5	7,0		2,5				
Wegeanzahl	13300		33	mnz.	9	m,	DZ	30		
mN-Anteil - Status Quo*	%R		%∏*	%DF	1U%	40%	%IF.	,m.		
Pers./Plow	Æ		1,10	E,		1,10	1,30			
Verbund-Mtnahmeettekt u, Quartiersverkehr ^{2,3}	10%			20%						
Schwerverkehrsanteif ²		30%			30%			30%		
Neuverkehr [Pkw/24h] und [MW24h]	19972	380	30	740	UL	40	OL.	12	3:380	80 4%

QUELL-/ZELVERKEHR?					ï					ı	
Spitzenstunde fruh	Wohnen	nen	Nahversorgi	Nahversorgung/Einzelhande//Gastro	ndeVGastro	иря	Buro/Dienstlek tung	Bul	ins	Summe (rd.)	(1)
	Einwohner	ANA	Deschattigte	Kunden	VWV	Beschäftigte	Kunden	WIV	 Ktz-Fahrten SV-Anteil	rten Sv	-Antei
Queliverkehr [Ant, DTV]	15%	2%	%9	1%	%5	%2	1%	%5			
Zielwerkehr [Ant. D I V]	%7.	% P	7.5%	%_	%A	39%	-% -%	%A			
Queliverkehr [Kfz/h]	nnz.	11	-	-	n	-	=	-		NZZ.	1%
Zielverkehr [Ktz/h]	7.1	15	4	1	U	1	n	n		09	9.8
Spitzenstunde spat	Woh	Wohnen	Nahversorgi	Nahversorgung/E inz elhandeVGastro	ndeVGastro	ung	Būro/Dienstleis tung	Bul	ms em	Summe (rd.)	•
	Einwohner	NAN	Beschäftigte	Kunden	VWV	Beschättigte	Kunden	WIV	 Ktz-Fahrten SV-Anteil	rten SV	Antel
Queliverkehr [Ant, DTV]	%8	2%	14%	16%	42	14%	15%	%2			
Zielwerkehr [Ant. DTV]	14%	28%	1%	18%	2%	1%	13%	28%		-	
Quellverkehr [Kfz/h]	106	13	2	19	0	3	1	0		150	3%
Zielverkehr [Kfz/h]	186	₽	>	77	0	n	-	-		0.77	2

1... Qualie.
2... eigene Asscritzung undfoder in Anlehnung an "Abschlitzung des Verlehrsaufkommens durch Vorhaben der Bauleitlanung". Dr. Bessehndf. 2007/2011
3... duellei Hamburg-spezifische Werte undfoder in Anlehnung an "Abschlitzung des Verkeinsaufkommens durch Vorhaben der Bauleitplanung". Dr. Bessehndf. 2007/2011
4.... Die infrAnniel erfeltenen sich an den Engebrissen der MD 2009 - Sonderauswertung Geröfaum Hamburg, bzw. Sonderauswertung Mitte Atoma.
5... Der Anneil der Ear-Wege außerhalb des Plangebietes entspricht in erwa der Summe des gebeitsbezogenen Besuchenerkeins?

Verkehrserzeugung

Bahnflächen 2.BA

Städtebauliche Flächen im Ur	nfeld des geplanten F	Städtebauliche Flächen im Umfeld des geplanten Fernbahnhofs Diebsteich (Flächen der Postverwaltung sowie Thyssen-Krupp-Flächen)	en der Postverwaltung sowie Tl	ıyssen-Krupp-Flächen)		
NUTZUNGSKONZEPT¹ (stadtehaulich	ie Kenngroßen gemaß Infor	NUTZUNGSK ONZEPT' (stadtebauliche Kenngroßen gemaß Information der BSW vom 26. Marz 2018 (Vorgaben sind "Udau" unterlegd!))	aben sind "blau" unterlegt!))			
	Wohnen	Nahversorgung/Einzelhandel/Gastro	Buro/Dienstleistung	Gewerbe (Kleingewerbe) ewerbe (Produktion/Logisti	ewerbe (Produktion/Logisti	Summe
Hachenantelle	7%	4%	%89	11%	15%	100%
Hachenanteile						
ın⁴ BGF	10.000	9.000	000,00	15 JUU	ZUJUU	135.000
Gesamtsummen (gerundet)	10.000	nnn:c	nnr sa	TO THE	ZOUND	135.000

Resultational problems Montone Name Name Name Name Name Name Name Name Resultational name Name Resultational name	VERKEHR SERZEUGUNG3.5															
Go. M.V. Beschänfige Kurden WIV Beschänfige Kurden WIV Beschänfige Kurden WIV Beschänfige WIV Beschänfige WIV Beschänfige WIV Beschänfige WIV Beschänfige WIV Beschänfige WIV MIL	Kenngroße	Woh	nen	Nahversorgu	ıng/Einzelhaı	ndel/Gastro	Bur	o/Dienstleistu	Bu.	Gewei	be (Kleingew	erbe)	Gewe (Produktion	arbe (Logistik)	Summe (rd.)	(rd.)
ofe 0 0 45 45 60 60 60 70 </td <td>Bezugspersonen/-große</td> <td>Enwohner</td> <td>WIV</td> <td>Beschaftigte</td> <td>Kunden</td> <td>AWA</td> <td>Beschaftigte</td> <td>Kunden</td> <td>AMA</td> <td>Beschaffigte</td> <td>Kunden</td> <td>AMA</td> <td>Beschaffigte</td> <td>AWA</td> <td>Kfz-Fahrten SV-Anteil</td> <td>SV-Anteil</td>	Bezugspersonen/-große	Enwohner	WIV	Beschaftigte	Kunden	AWA	Beschaftigte	Kunden	AMA	Beschaffigte	Kunden	AMA	Beschaffigte	AWA	Kfz-Fahrten SV-Anteil	SV-Anteil
1 1 1 1 1 1 1 1 1 1	m² proflachenbezogene Bezugsgroße			æ	2		45			09			81			
1 1 1 1 1 1 1 1 1 1	⊬7z-Fahrten/Bezugsperson		1,0			02			0.2			0.2				
4 20 be 140 m² 20 be 140 m² 20 be 140 m² 30 be 150 m² 20 be 150 m² 20 be 150 m² 30 be 150 m²	Kundenwege/Beschaftigten							5'0			1,5					
20 100 100 1180 1180 250 <td>Spannwerte</td> <td></td> <td></td> <td>20 bs 140 m? Beschafigtem (Mix)</td> <td>0,3.5 m.7 4unde</td> <td></td> <td></td> <td>0,5-1 Wege/ Beschafigten</td> <td></td> <td>***********</td> <td>1,0-2,0 Wege/ Beschaftgrem</td> <td></td> <td>20 bs 150 m²/ Beschafigten (Mbx)</td> <td></td> <td></td> <td>***************************************</td>	Spannwerte			20 bs 140 m? Beschafigtem (Mix)	0,3.5 m.7 4unde			0,5-1 Wege/ Beschafigten		***********	1,0-2,0 Wege/ Beschaftgrem		20 bs 150 m²/ Beschafigten (Mbx)			***************************************
20 80 240 1189 250	VVohneinheiten	92														
240 61 2540 1484 1484 254 254 254 250 256 </td <td>BWWE</td> <td>2.0</td> <td></td>	BWWE	2.0														
246 25 20 25	Anzahl Bezugspersonen	nnz.		ρβ	7900		1.890			nsz.			m7			
700 150 600 100 40.730 650 378 630 630 650 670 700<	Wege/Bezugsperson/d	35		2,5	2р		25			25			3,0	1,0		
2408 400 30% 40% 30% 40% 30% 40% 30% 40% 30% 40% 30% 40% 30% 40% <td>Wegeanzahl</td> <td>200</td> <td></td> <td>150</td> <td>9009</td> <td>12</td> <td>4.730</td> <td>98</td> <td>378</td> <td>830</td> <td>380</td> <td>8</td> <td>009</td> <td>300</td> <td></td> <td></td>	Wegeanzahl	200		150	9009	12	4.730	98	378	830	380	8	009	300		
24h 1.3b 1.0b	mN-Anteil - Status Quo4	30%		* 0 *	30%	100%	40%	30%	100%	%08	35%	100%	40%	100%		
24h 44a 20 560% 1720 210% 20 310% 1720 220 380 46a 110 50 220 220 200	Hers AHW	*		1,10	J.		U1,1	U%,1		າ,າມ	1,30		nı'ı		**********	
24M 440 20 60 5	Verbund-/Mtnahmeeffekt u. Guartnersverkehr ^{2,3}	10%			%09%											
24h 440 20 50 50 580 10 1,720 220 380 460 110 50 230 200 00	Schwerverkehrsanteif		30%			30%			30%			30%		%nnt		
	Neuverkehr [Pkw/24h] und [WkV/24h]		20	90	280	10	1.720	220	380	460	110	90	0/27	200	4.170	8%

Household Wolner WW Beschäffige Kurden WW Beschäffige WW WW WW WW WW WW WW																
Monten Monten Mahversorgung Finze Phande U Castro Parc Ofenstleistum Mahversorgung Finze Phande U Castro Parc Ofenstleistum Wav Beschäftigs Kunden Wav Beschäftigs Kunden Wav Beschäftigs Kunden Wav Beschäftigs Wav Beschäftigs Wav	IELL-/ZIELVERKEHR*															
Elimetria W/V Beschäftigte Kunden W/V Beschäftigte Kunden W/V Beschäftigte Kunden W/V Beschäftigte Kunden W/V Beschäftigte W/V W	kzenstunde früh	Wohr	nen	Nahversorg	ung/Einzelha	ndeVGastro	Burn	o/Dienstleistu	Bui	Gewei	Gewerbe (Kleingewerbe)	erbe)	Gewerbe (Produktion/Logistik)	erbe n/Logistik	Summe (rd.)	(rd.)
15% 5% 5% 1% 5% 1% 5% 1% 5% 5		Einwohner	VWV	Besch affigte	Kunden	AWA	Beschäftigte		VWV	Beschäftigte	Kunden	VWV	Beschäftigte	VWV	Kfz-Fahrten SV-Anteil	SV.Anteil
14 1 2 3 3 3 1 3 3 3 3 3 3	eliverkehr [Ant. D.I.V]	15%	9%9	9,6	1%	9,49	%/	1%	%9	%9	1%	9%9	7.%	%/		
11 1 2 3 0 60 1 10 10 10 10 10	werkehr [Ant. D.I.v]	94.7	%.R	28%	1%	%8	33%	1%	%8	20%	1%	%9	%77	1.%		
1	eliverkehr [Kfz/h]	11	1	7		n	119	-	10	72	1	1	7	,	1ZU	3%
Motinen	werkehr [Kfz/h]	-	1	6	3	0	284	1	15	99	1	2	24	,	400	1%
Monthesian Markwatsorgung/Einzerhandes/Castron Best-phärigs Kunden WVV Beschärigs WVV Beschärigs Kunden WVV Beschärigs WVV Beschärigs Kunden WVV Beschärigs WVV WV																
Elimenther	itzenstunde spät	Wohr	nen	Nahversorg	ung/Einzelha	ndeVGastro	Burn	o/Dienstleistu	Bui	Gewel	Gewerbe (Kleingewerbe)	erbe)	Gewerbe (Produktion/Logistik)	erbe n/Logistiki	Summe (rd.)	(rd.)
14% 5% 14% 15% 5% 14% 15% 5% 1% 14% 15% 5% 5% 1% 14% 15% 5% 14% 15% 5% 14% 15% 5% 14% 15% 5% 14% 15% 5% 14% 15% 5% 14% 15% 5% 14% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15		Einwahner	VWV	Besch affigte	Kunden	AWA	Beschäftigte	Kunden	VWV	Beschäftigte	Kunden	WW	Beschäftigte	VWV	Kfz-Fahrten SV-Anteil	SV.Antell
14% 5% 1% 19% 5% 1% 13% 5% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6% 6%	eliverkehr [Ant. D.I.V]	%A	%/	14%	15%	%/	14%	15%	%/	20%	15%	%/	%71	%/		
6 1 4 46 0 120 17 13	werkehr [Ant. D I V]	14%	9%9	1%	18%	9%9	3%	13%	9%9	% P	13%	9%9	7%	1%		
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ellverkehr [Kfz/h]	9	1	7	46	0	120	17	13	98	80	2	13	7	290	2%
10 10 32 0 3 14 10	Zielverkehr [Kfz/h]	10	1	0	52	0	6	14	10	18	7	1	-	7	130	3%

2... eigene Atsichatzung undörder. In Abschatzung des Verheitnssufformnens burch Vorhaben der Bauleitplanung", Dr. Bossenhoff, 2007/2011
3... Guber Hermbrug spezifische Werden in Anhehmung an Verkeidatung des Verheitnsaufkommens durch Verhaben der Bauleitplanung", Dr. Bossenhoff, 2007/2011
4... Die mik-Anteile orkanieren sich an der Ergebnissen der MD 2008- Sondersusswertung Godisum Hamburg, bzw. Sondersuswertung Mitte Atona
5... Der Anteil der Ew-Wege außeichalb des Plangebides entsprickt in etwa der Summe des gebletsbezogenen Be suchenverkerrs?¹

Verkehrserzeugung Umfeld Bhf. Diebsteich

Rückbau der Postflächen (Entlastung)	ntlastung)		
NUT ZUNG SKONZEPT¹ (stadtebaulich	ıe Kenngroßen gemaß Tabe	NUTZUNGSKONZEPT [†] (stadtebauliche Kenngroßen gemaß Tabelle mit stadtebaulichen Rahmendsten vom 16. Februar	ım 16. Februar
	Postverkehr - Postfiliale	Postverkehr - Verwaltung	Summe
Flachenanteile			
Flachenantelle			
m² B rutto baulan dfläche		000'6	
Gesamtsummen (gerundet)		000'6	

VERKEHR SERZEUGUNG ^{2, 5}			
Kenngroße	Postverkehr - Postfiliale	Postverkehr - Verwaltung	Summe (rd.)
Bezugspersonen/größe	Kunden ⁶	Beschäftigte	Kfz-Fahrten SV-Antell
m² pro frachenbez ogene Bez ugsgroße		33	
Kfz-Fahrten/Bezugsperson			
Kunderwege/Beschaftigten			
Spannweite	Arrenmentaria de la composição de la com	20 bis 50 m²/ Bescheftigten (MIX)	AND
Wohneinheiten			
EWWE			
Anz ahl Bezugspersonen	700	270	
Wege/Bezugsperson/d	2,0	2.5	
Wegearzahi	1.400	089	
mIV-Anteil - Status Quo*	80%	9,09	
Pers./Pkw	1,00	1,10	
Verbund-Mitnahmeeffekt u. Quartiersverlehr ^{2,3}			
Schwerverkehrsanteif			
Neuverkehr [Pkw/24h] und [WrV/24h]	002:	340	.4.010 0%

Postvertein - Postvertein	QUELL-ZIELVERKEHR [‡]						
Kunden Beschaftge	Spitzenstunde fruh	Postver Postfil	kehr - ialie		Postverkehr - Verwaltung	Summe (rd.)	(rd.)
1		Kunden		Beschaftigte		Kfz-Fahrten SV-Anteil	SV-Anteil
2% 22% 22% 22% 22% 24% 24% 24% 24% 24% 2	Queliverkehr [Ant_DTV]	%0		5%			
Construction Cons	Zielverkehr [Ant DTV]	2%		22%			
Prostvertein - Postfiliale Postvertein	Quellverkehr [Kfz/h]	0		€-		01-	%0
Postverkehr - Postfiliale Postverkehr -	Zielverkehr [Kfz.h.]	2-		34		-50	950
Postvertehr - Postfilale Postvertehr - P							
Envelopmen Essertialities 17%	Spitzenstunde spat	- ливула хуво с	Postfilialie		Postverkehr - Verwaltung	Summe (rd.)	(rd.)
15% 12% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15		Enwahner		Beschaftigte		Kfz-Fahrten SV-Anteil	SV-Anteil
(5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	Queliverkehr [Ant_DTV]	15%		12%			
.53 .19 .2	Zielverkehr [Ant DTV]	15%		1%			
- 2	Queliverkehr [Kfz/h]	EG:		-19		08-	%0
	Zielverkehr [Kfz.h]	ŝ		-2		9-	%0

ANLAGE 1-15

Rückbau der Postflächen

Verkehrserzeugung

August-Kirch-Straise			
NUI ZUNGSKUNZEPT 1 (stadtebauliche Kemgroßen gemaß I abelle mit stadtebaulichen Kahmendaten vom 46. Enkrige 2018. Aktropkonend "Nach" indedend) 3.	ie Kenngroßen gemaß Labe	elle mit stadtebaulichen Kah	mendaten vom
	Wohnen	Schule	Summe
Hachenanteile	%69	31%	100%
Hachen anteile		1.000 Schuler, 100 Lehrer	
m* BGF	00006	40,000	130.000
(gapunias) vauuunsuus sag	90.000		130.000

VE RKEHRSERZEUGUNG ^{3, 5}						
Kenngraße	Wohnen	nen	Sc	Schule	Summe (rd.)	(m)
Bezugspersonen/-graße	Einwohner	\M\	Schuler	Beschaftigte	Kfz-Fahrten SV-Anteil	SV-Anteil
m² pro flachenbezogene Bezugsgroße	The state of the s		***************************************	NO. OF THE PERSON NAMED OF	***************************************	www.mmana
Kiz-Fahrten/Bezugsperson		ľ,U				
Kundenwege/Beschaftigten						
Spannweite						
Wohneinheiten	006					
EVWWE	20					
Anzahl Bezugsperson en	180		1,000	m.		
Wege/Bezugsperson/d	gg.		77	7.5		
Wegeanzahl	9.300		7.200	TRZ.		
mM-Anteil - Status Quo*	&∪&		%.DL	48%		
Pers./Pkw	×.		3,00	1,10		
Verbund-Mitnahmeettekt u. Guartiersverkehr ^{2,3}	10%					
Schwerverkehrsanteif ²		30%				
Neuverkehr [Pkw/24h] und [MiV/24h]	1.680	URL	RI	110	ngrz.	3%

QUELL-/ZELVERKEHR?						
Spitzenstunde fruh	Woh	Wohnen	Sc	Schule	(m) amms	~
	Einwohner	ANN	Schüler	Deschättigte	Beschäftigte Kfz-Fahrten SV-Anteil	Anteil
Queliverkehr [Ant, DTV]	15%	2%	40%	3%	*****	
Zielwerkehr [Ant. D.I.V.]	%7.	%9	40%	s° B		
Quellverkehr [Kfz/h]	126	ç	16	-	UCL	1%
Zielverkehr [Kfz/h]	11	,	16	4/	33	%Z
Spitzenstunde spat	Wohnen	nen			Summe (rd.)	~
	Enwohner	NWN	Schüler	Beschäftigte	Beschäftigte Kfz-Fahrten SV-Anteil	Anteil
Queliverkehr [Ant, DTV]	%8	2%	9%5	15%	******	
Zielverkehr [Ant DTV]	14%	2%	9%9	1%		
Quellverkehr [Kfz/h]	19	9	2	8	06	7%
Zielverkehr I Ktz/hl	118	6		=		3.6

1... Information zu den aktuellen Nutzungen und stadtebaufchen Kermdaten; F.H., Behorde für Stadtenwickblung und Wohnen, Amt für Landesplanung (D-13, E-Meil vom 08.02, 2016).
2... eigene Arschätzung und der Er Arschätzung des Verleitsstalfkommens such Verhaben der Bauleitplanung; (Dr. Bosserhoff, 2007/2011).
3... Johier Hamburgspestents Wierte undboden in Anfahrdag an "Abschätzung des Verleitsstalfkommens such verhaben gest Bauleitplanung; (Dr. Bosserhoff, 2007/2011).
4... Die mit Arteile einerferen sich an den Ergebnissen der MID 2018-Sonderausvertung Gordzum Hamburg, 12 zw. Sonderausvertung Mite Aftens.
5... Der Arteil der Erw.Wege außerhalb des Prlangebodes entsproft in eiwa der Summe des gebetsteszigenen Essuchenerkehrs?

August-Kirch-Straße Verkehrserzeugung

Hoistenkamp				
NUTZUNGSKONZEPT¹ (stadtebaulich	e Kenngrößen gemäß Tabe	NUTZUNGSKONZEPTT (stadtebauliche Kenngrößen gemäß Tahelle mit stadtehaulichen Rahmendaren vom 16. Februar 2018 (Vörgaben sind "blau" unterlegt!))	n16. Februar 2018 (Vorgaben sind "blau" u	interlegt!))
	Wohnen	Nahvers or gung/Einz elhande VG astro	Buro/Dienstleis tung	Summe
Hachenanteile	4001			100%
Hachenanteile				
nr BGF	25,000			25.000
Ges antsummen (gerundet)	25.000			25.000

VERKEHRSERZEUGUNG ³⁵										
Kenngroße	Wohnen	nen	Nahversorgu	Nahvers or gung/E inz elhande VG astro	deVGastro	Bur	Buro/Dienstleistung	bu	Summe (rd.)	(rd.)
Bezugspersonen/-graße	Efnwohner	\/W	Beschaftigte	Kunden	WIV	Beschaffigte	Kunden	VWV	Kfz -Fahrten SV-Anteil	SV.Anteil
m² pro flachenbezogene Bezugsgroße		A1000000000000000000000000000000000000	-					***************************************		
Ktz-Fahrten/Bezugsperson		r'n								
Kundenwege/beschattigten				***************************************						
Spannwerte										
Wohneinheiten	250									
EVWVME	20									
	nns								_	
VVege/bezugsperson/d	g g									
Wegeanzahl	1,75U									
mN-Artel - Status Quo*	%∏*									
Pers./Pkw	K									
Verbund-Mitnahmeettekt u, Quartiersverkehr ^{2,3}	10%									
Schwerverkehrsanteif ²		30%								
Neuverkehr [Pkw24h] und [MW24h]	U/4	90							nz:c	3%

QUELL-/ZELVERKEHR³										
Spitzenstunde fruh	Woh	Wohnen	Nahversorgi	Nahvers orgung/E inz elhande VG astro	ndeVGastro	Būr	Būro/Dienstlek tung	Bun	Summe (rd.)	(rd.)
	Einwohner	NAN	Heschattigte	Kunden	VWV	Beschäftigte	Kunden	VIVIN	WIV Ktz -Fahrten SV-Anteil	SV-Antei
Queliverkehr [Ant, DTV]	15%	2%								
Zielverkehr [Ant. DTV]	%7.	%B								
Queliverkehr [Kfz/h]	£	1							₩	1%
Zielverkehr [Kfz/h]	ç	7							2	9.6
Spitzenstunde spat	Woh	Wohnen	Nahversorgi	Nahversorgung/EinzelhandeVGastro	ndeVGastro	Bür	Buro/Dienstleis tung	S m	Summe (rd.)	(rd.)
	Einwohner	WW	Heschäftigte	Kunden	VWV	W/V Beschäftigte	Kunden	WIV	WIV Kfz -Fahrten SV-Anteil	SV.Ante
Queliverkehr [Ant, DTV]	%8	7%								
Zelverkehr [Ant. DTV]	14%	2%								
Queliverkehr [Kfz/h]	19	2							OE .	3%
Zielverkehr [Kfz/h]	E	-							₹	1%

1... Information zu den aktuellen Nutzungen und stadtebanlichen Kermdater; F.H., Behorde für Stadtenhundung und Wohnen, Amr für Landesplanung LP 13, E-Meil vom 08.02, 2018
2... eigene Abschätzung und oder in Abschäusig ein Weiterbraufkommens durch Nohraben der Balleichanung; Dr. Bosserhoff, 2007/2011
3... Julier Hamburg-specifische Weite undvoder in Antehnung an "Abschätzung der Verkeinstellung aber Verkeins aburch Verhaben der Balleichanung; Ur. Bosserhoff, 2007/2011
4... Die mit/Arteile einerkeren sich an der Eigebrissen der Mill 2018. Sonderaussentrung Gordzum Hamburg, 12xx. Sonderaussentrung Mitte Aftona.
5... Der Anteil der Erw.Wege außerhalb des Prlangebotes entsproft in etwa der Summe des gebetsteszigenen Ebsuchenerkehrs?

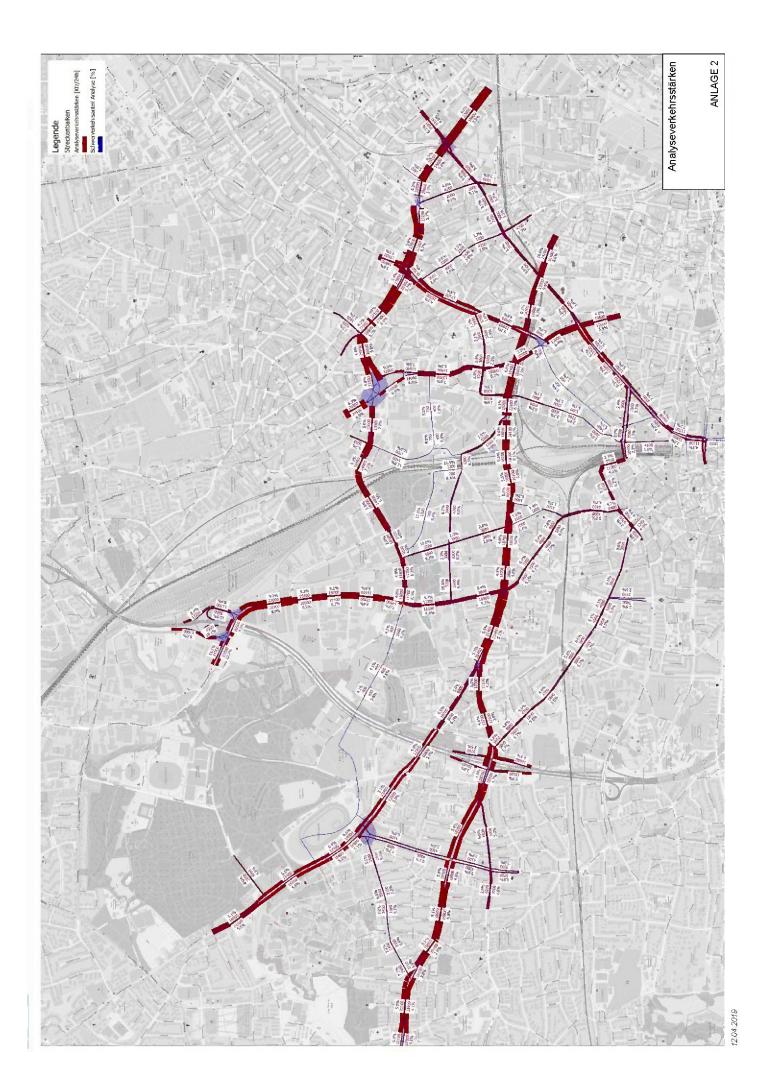
Verkehrserzeugung Holstenkamp

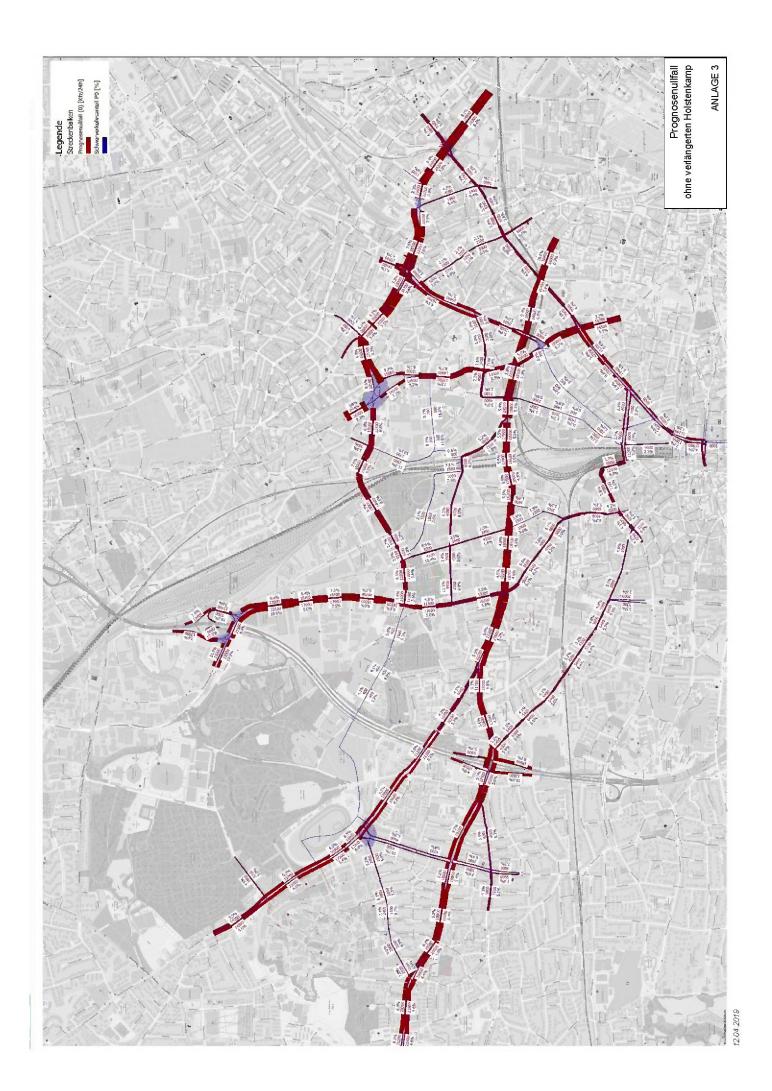
Bahrenfeld 66					
NUTZUNGSKONZEPT¹ (stadtebaulich	ıe Kenngrößen gemaß Tabe	NUTZUNGSKONZEPT1 (stadtebauliche Kenngrößen gemäß Tahelle mit stadtebaulichen Rahmendaten vom 16. Februar 2018 (Nörgaben sind "Dia" unterlegd!))	16. Februar 2018 (Vorgaben sind "blau"	unterlegt!))	
	Wohnen	Nahvers or gung/E inz elhande VGastro	Bitro/Dienstleis tung	Produktion/Lager	Summe
Hachenanteile				100%	100%
Rachenanteile					
nr BGF				10.000	UUTOL
Ges antsummen (gerundet)				10.000	10.000

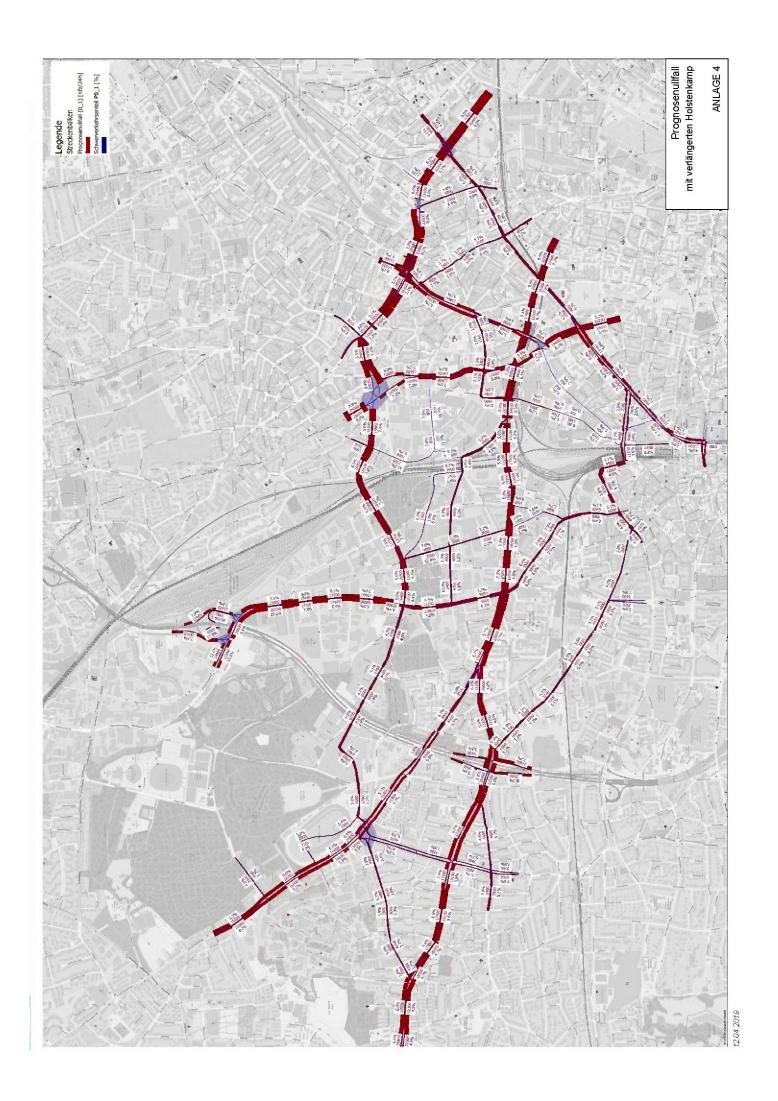
VERKEHRSERZEUGUNG ³⁵													
Kenngroße	Wol	Wohnen	Nahversorg	Nahvers or gung/E inz elhande VG astro	ndeVGastro	Bur	Buro/Dienstleistung	Bu	Pn	Produktion/Lager		Summe (rd.)	(rd.)
Bezugspersonen/-graße	Einwohner	AVA	Beschaffigte	Kunden	WIV	Beschaffigte	Kunden	WIV	Beschaffigte	Kunden	WIV	Kfz-Fahrten SV-Anteil	SV.Anteil
m² profachenbezogene Bezugsgroße					***************************************			***************************************	100				
Kiz-Fahrten/Bezugsperson													
Kunderwege/beschaftigten													
Spannwerte									20 bis 150 m²/ Beschafigten (Mix)				
Wohneinheiten													
EVVWE												_	
Anzahl Bezugspersonen									m.				
Wege/bezugsperson/d									ďЯ		Ų,		
Wegeanzahl									nns.		ULL.		
mN-Arterl - Status Quo*									48%		100%		
Pers./Plow									1,10				
Verbund-Mitnahmeettekt u, Quartiersverkehr ^{2,3}													
Schwerverkehrsanteif ²											100%		
Neuverkehr [Pkw/24h] und [MKV24h]									NPL	e promise va	UUT .	. Take	42%

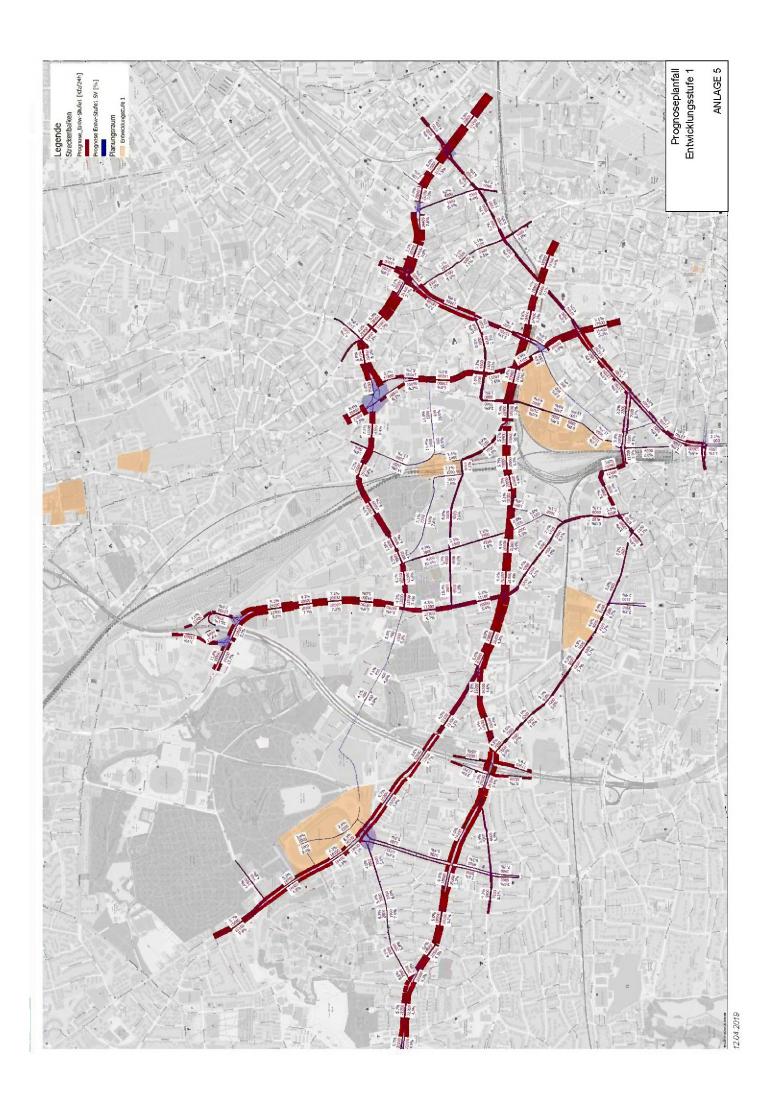
QUELL-/ZELVERKEHR													
Spitzenstunde fruh	Woh	Wohnen	Nahversorg	Nahvers orgung/E inz elhande VG astro	ndeVGastro	Bűr	Būro/Dienstlek tung	DI BI	r.	Produktion/Lager	_	Summe (rd.)	(rd.)
	Einwohner	VVV	VVV Beschattigte Kunden	Kunden	VWV	VVIV Beschättigte Kunden	Kunden	WIV	W/V Deschäftigte Kunden	Kunden	\W\	WWV Ktz-Fahrten SV-Anteil	SV-Ante
Queliverkehr [Ant, DTV]									5%		%/		
Zielverkehr (Ant. D.I.V.)									27%		%/		
Quelherkehr [Kfz/h]									-		4	UL	%0R
Zielverkehr [Ktz/h]									15		4	ZU	21%
												7	
Spitzenstunde spat	Woh	Wohnen	Nahversorg	Nahversorgung/EinzelhandeVGastro	ndeVGastro	Bür	Birro/Dienstleis tung	19	포	Produktion/Lager	_	Summe (rd.)	(F)
	Einwohner	WW	W/W Beschäftigte Kunden	Kunden	WIV	Beschäftigte	Kunden	VMV	W/V Beschäftigte Kunden	Kunden	VWV	VVIV Ktz-Hahrten SV-Anteil	SV.Ante
Queliverkehr [Ant, DTV]									12%		7%		
Zielverkehr [Ant. DTV]									1%	-	7%		
Quelherkehr [Kfz/h]									8		4	20	33%
Zielverkehr [Kfz/h]									-		4	UL	9608

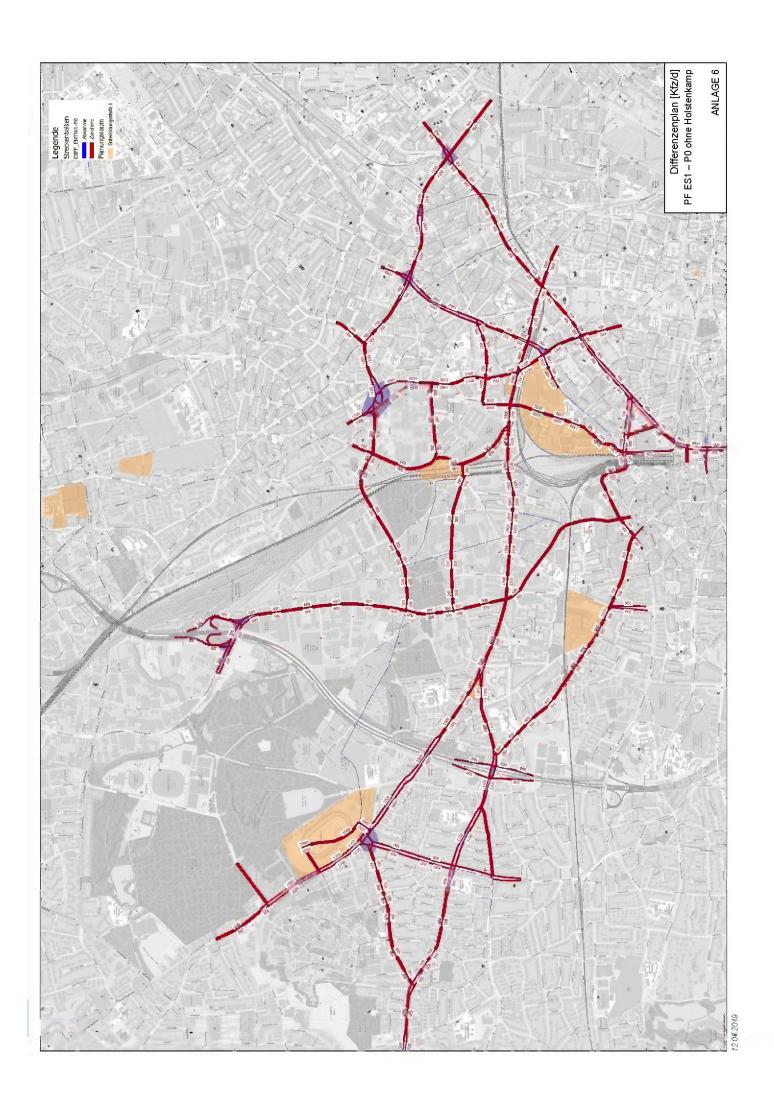
Verkehrserzeugung Bahrenfeld 66

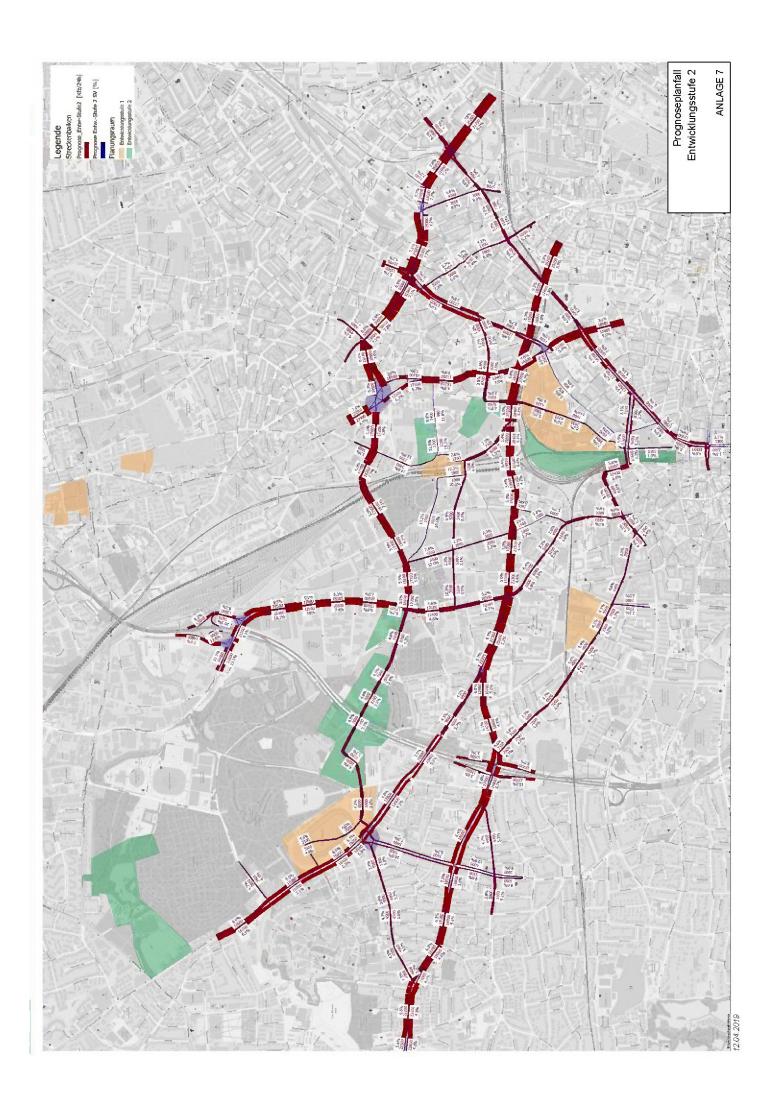

Lurup 62 (Technologiepark)					
NUTZUNGSKONZEPT¹ (städtebaulic	the Kenngroßen gemaß Tab	NUTZJNGSKONZEPT (städtebauliche Kennyrößen gemäß Tabelle mit städtebaulichen Rahmendaten vom 16. Februar 2018 (Vorgaben sind 15) auf unterlegtl))	m16. Februar 2018 (Vorgaben sind "blau"	unterlegt!))	
	Wohnen	Nahvers or gung/E inz elhande VG as tro	Bitra/Forschung/Labor		Summe
Hachenanteile			100%		100%
Hachenanteile					
nr BGF			95,000		95.000
Ges antsummen (gerundet)			55.000		55.000

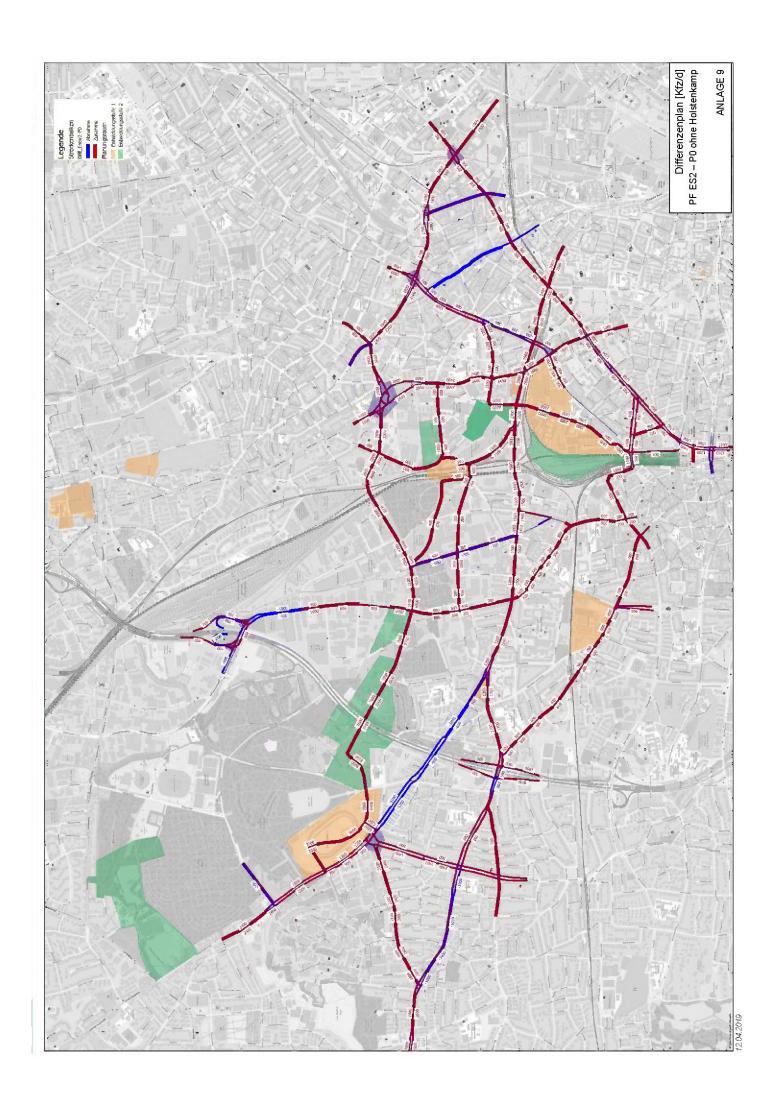

VERKEHRSERZEUGUNG ^{3, 5}											
Kenngroße	Woh	Wohnen	Nahversorg	Nahvers or gung/E inz elhandeVG astro	ndeVGastro	Bûrc	Bura/Forschung/Labor	ibor		Summ	Summe (rd.)
Bezugspersonen/-graße	Einwohner	AWA	Beschaffigte	Kunden	Wiv	Beschaftigte	Kunden	WIV		Kfz-Fahrter	Kfz-Fahrten SV-Anteil
m² pro flachenbezogene Bezugsgroße						105					
Kiz-Fahrten/Bezugsperson								ກະຕ			
Kundenwege/Beschattigten							/n				
Spannwerte						60 bs 150 m²/ Beschaftglen (Mix)	60 ks 150 m. ³ 0,5-1 vVege/ Beschäftlgrem (Mix)				
Wohneinheiten											
Everve										_	-
Anzahl Bezugspersonen			-					_			
Wege/bezugsperson/d						2,5					
Wegeanzahl						U.S.U	nes:	25			
mM-Anteil - Status Quo*						46%	48%	%nnı			
Pers./Pkw						1,10	1,30				
Verbund-Mitnahmeettekt u, Quartiersverkehr ^{2,3}											
Schwerverkehrsanteif ²								30%			
Neuverkehr [Pkw/24h] und [MN/24h]						n/ G	1ZU	ng	Descript E	/40	1 2%


Spitzenstunde fruh	Woh	Wohnen	Nahversorgi	Nahvers orgung/E inz elhande/VG astro	deVGastro	Būro	Būro/Forschung/Labor	abor	<i>y</i> ,	Summe (rd.)	(F)
	Einwohner	VVV	VVV Beschattigte Kunden	Kunden	VWV	W/V Beschättigte Kunden	Kunden	VWV	 Ktz-F2	Ktz-Fahrten SV-Anteil	V-Anteil
Queliverkehr [Ant, DTV]						%2	1%	%9		Ī	
Zelwerkehr [Ant. D.I.V.]						%.FE	3%	%A			
Queliverkehr [Kfz/h]						NZ	-	-		n:	%_
Zielverkehr [Kfz/h]						35	-	7.		JUL	2
Spitzenstunde spat	Woh	Wohnen	Nahversorg	Nahversorgung/Einzelhande/VGastro	ndeVGastro	Büra	Būro/Forschung/Labor	abor	71	Summe (rd.)	Ę.
	Einwohner	ANA	VVVV Beschättigte Kunden	Kunden	VNV	Beschättigte	Kunden	WIV	 Ktz-Fe	Ktz-Fahrten SV-Anteil	V.Antei
Queliverkehr [Ant, DTV]						14%	15%	7%			
Zielverkehr [Ant DTV]						1%	13%	2%		_	
Quellverkehr [Kfz/h]						40	6	2		09	1%
Zielverkehr [Ktz/h]						n	20	-		7.0	#E


Lurup 62


Verkehrserzeugung





Verkehrsuntersuchung Östliches Altona

Anhang mit Leistungsfähigkeitsnachweisen

Im Auftrag

Freie und Hansestadt Hamburg Behörde für Wirtschaft, Verkehr und Innovation Alter Steinweg 4 20459 Hamburg

April 2019

Verkehrsuntersuchung Östliches Altona

Anhang mit Leistungsfähigkeitsnachweisen

Auftraggeber: Freie und Hansestadt Hamburg

Behörde für Wirtschaft, Verkehr und Innovation

Amt für Verkehr und Straßenwesen Verkehrs- und Infrastrukturentwicklung

Alter Steinweg 4 20459 Hamburg

Auftragnehmer: SBI Beratende Ingenieure für

Bau-Verkehr-Vermessung GmbH

Hasselbrookstraße 33 22089 Hamburg 040/25 19 57-0 office@sbi.de www.sbi.de

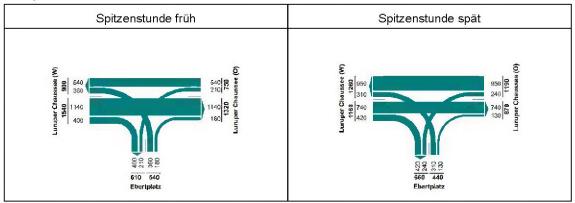
Bearbeiter:

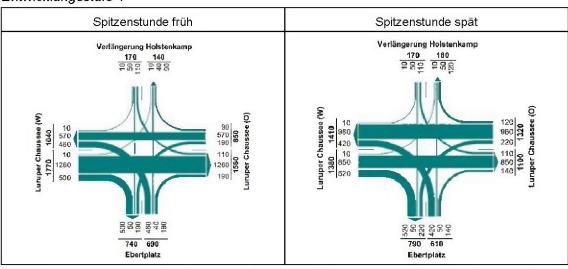
Stand: April 2019

Projekt: 7500K01

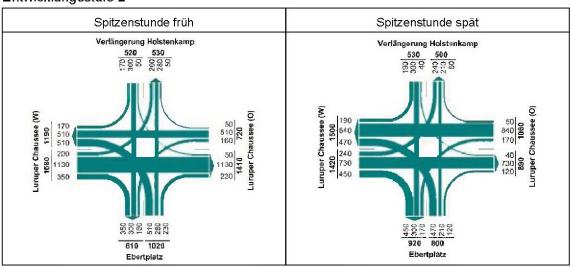
GAPRJ/7500-7599\7500-Altona-Ost_10-VU\Bericht\P7500K01_VU Altona Ost_Anhang_190412.docx

Inhalt


1	Luruper Chaussee / Ebertplatz (LSA 450)	4
2	Bahrenfelder Chaussee / Von-Sauer-Straße (LSA 167)	. 18
3	Bahrenfelder Chaussee / Bornkampsweg (LSA 353)	. 32
4	Stresemannstraße / Plöner Straße (LSA 1598)	. 42
5	Stresemannstraße / Kaltenkircher Platz (LSA 151)	. 54
6	Stresemannstraße / Kieler Straße (LSA 7)	. 71
7	Stresemannstraße / Alsenstraße (LSA 153)	. 82
3	Stresemannstraße / Max-Brauer-Allee (LSA 18)	. 97
9	Harkortstraße / Erschließungsstraße Holsten-Areal	112
10	Julius-Leber-Straße / Harkortstraße (LSA 709)	116
11	Holstenstraße / Holstenplatz (LSA 600)	125
12	Holstenstraße / Max-Brauer-Allee (LSA 131)	134
13	Max-Brauer-Allee / Julius-Leber-Straße (LSA 706)	144
14	Max-Brauer-Allee / Goetheallee (LSA 1771)	158
15	Max-Brauer-Allee / Große Bergstraße (LSA 321)	164
16	Barnerstraße / Bahrenfelder Straße (LSA 417)	178
17	Barnerstraße / Friedensallee (LSA 617)	188
18	Friedensallee / Hohenzollernring (LSA 1004)	196
19	Von-Sauer-Straße / Friedensallee (LSA 1212)	204
20	Bornkampsweg / Holstenkamp (LSA 1148)	214
21	Holstenkamp / Große Bahnstraße (LSA 1043)	228
22	Eimsbütteler Marktplatz (LSA 1601 und LSA 475)	239
23	Kieler Straße / Waidmannstraße (LSA 1332)	258
24	Kieler Straße / Augustenburger Straße (LSA 621)	272
25	Alsenstraße / Augustenburger Straße (LSA 942)	286
26	Fruchtallee / Doormannsweg (LSA 813)	298
27	Schäferkampsallee / Kleiner Schäferkamp (LSA 203)	312
28	Kleiner Schäferkamp / Weidenallee (LSA 219)	334
29	Max-Brauer-Allee / Schulterblatt (LSA 221)	342
Legend	de der Bewertungstabellen	352

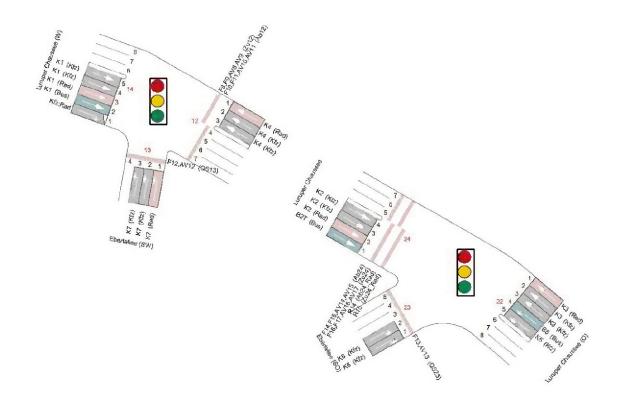

Luruper Chaussee / Ebertplatz (LSA 450)

1.1 Gesamtknoten Luruper Chaussee / Ebertplatz – Knotenstrombelastungen


Analyse (VZ 22.11.2011)

Entwicklungsstufe 1

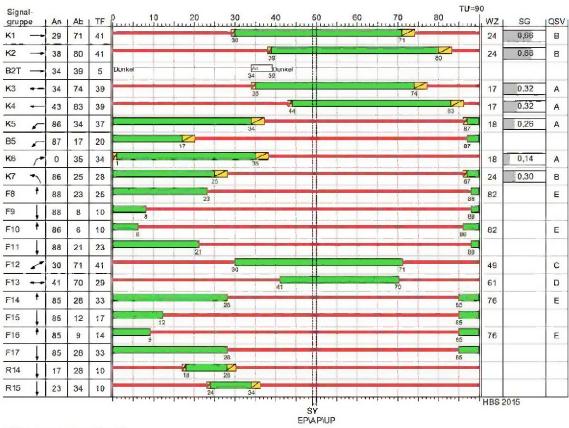
Entwicklungsstufe 2



12.04.2019 4

1.2 Teilknoten Luruper Chaussee / Ebertplatz – Knotenpunktgeometrie Zwischenzustand

Zwischenzustand = Umbau Ebertplatz im Rahmen des Busbeschleunigungsprogramms (ohne Verlängerter Holstenkamp)

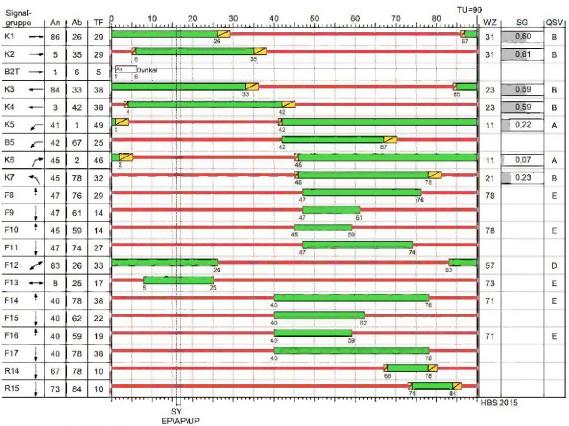


12.04.2019 5

1.3 Luruper Chaussee / Ebertplatz – Verkehrstechnische Bewertung Zwischenzustand

Analyse - Spitzenstunde früh

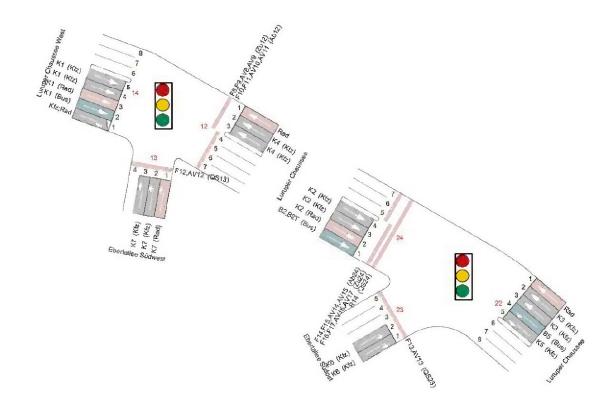
A-Signalgruppen ausgeblendet!


Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	1A [5]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N vis [Kfz]	Nws,95 [Kfz]	Lx [m]	QSV
	2	*	K4	39	40	51	0,444	265	6,625	1,942	1854	-	21	823	0,322	17,431	0,274	4,572	8,188	53,009	A
12	3	-	K4	39	40	51	0,444	265	6,625	1,942	1854	-	21	823	0,322	17,431	0,274	4,572	8,188	53,009	Α
13	3	7	K7	28	29	62	0,322	185	4,625	1,854	1942	-	16	625	0,296	24,253	0,241	3,707	5,953	41,778	В
13	2	7	K7	28	29	62	0,322	185	4,625	1,854	1942	-	16	625	0,296	24,253	0,241	3,707	6,963	41,778	В
	5	1	K1	41	42	49	0,467	570	14,250	1,942	1854	-	22	867	0,657	23,758	1,280	12,237	18,153	117,523	В
14	4	1	K1	41	42	49	0,467	570	14,250	1,942	1854	-	22	867	0,657	23,758	1,280	12,237	18,153	117,523	В
	1	7																			
	2	1	КЗ	39	40	51	0,444	265	6,625	1,942	1854	-	21	823	0,322	17,431	0,274	4,572	8,188	53,009	Α
22	3	1	КЗ	39	40	51	0,444	265	6,625	1,942	1854	-	21	823	0,322	17,431	0,274	4,572	8,188	53,009	А
	5	^	K5	37	38	53	0,422	220	5,500	1,800	2000	-	21	844	0,261	17,752	0,201	3,773	7,058	42,348	A
22	2	1	К6	34	35	56	0,389	100	2,500	1,935	1860	-	18	724	0,138	18,195	0,089	1,703	3,910	25,219	Α
23	1	7	K5	34	35	56	0,389	100	2,500	1,935	1860	-	18	724	0,138	18,195	0,089	1,703	3,910	25,219	A
44	4	`	K2	41	42	49	0,467	570	14,250	1,942	1854	-	22	867	0,657	23,758	1,280	12,237	18,153	117,523	В
24	3	1	К2	41	42	49	0,467	570	14,250	1,942	1854	-	22	867	0,657	23,758	1,280	12,237	18,153	117,523	В
	Knotenp	unktssumi	men:					4130						10302							
	Gewichte	te Mittelw	erte:												0,492	21,589					

12.04.2019 6

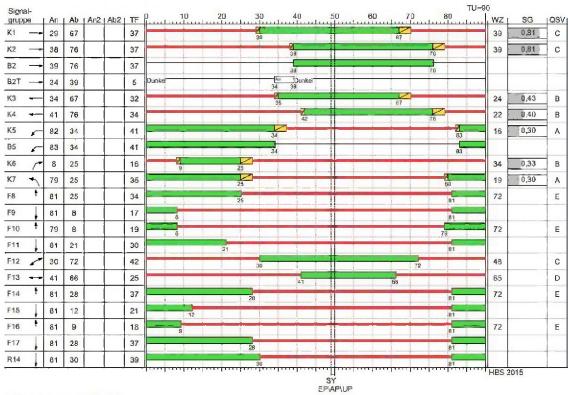
Luruper Chaussee / Ebertplatz – Verkehrstechnische Bewertung Zwischenzustand

Analyse – Spitzenstunde spät


A-Signaigruppen ausgeblendet!

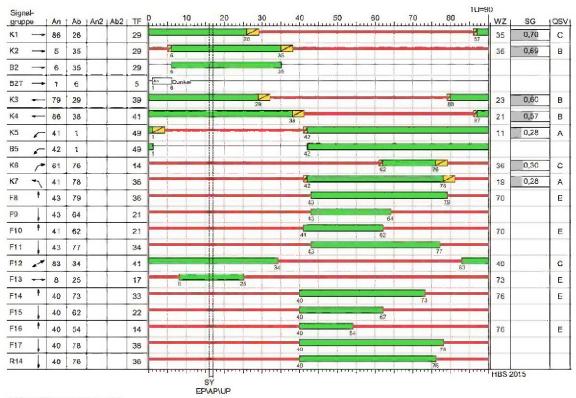
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N M5,95≻n K	ńc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Ktz]	N _{MS} [Kfz]	NM5,95 [Kf2]	Lx [m]	QSV
10	2	~	K4	38	39	52	0,433	475	11,875	1,937	1859		20	806	0,589	23,485	0,910	9,948	15,282	98,661	В
12	3	*	K4	38	39	52	0,433	475	11,875	1,937	1859		20	806	0,589	23,485	0,910	9,948	15,282	98,661	В
13	3	*7	К7	32	33	58	0,367	155	3,875	1,997	1803	-	17	564	0,233	20,650	0,172	2,854	5,71L	36,904	В
13	2	*7	⊀ 7	32	33	58	0,367	155	3,875	1,997	1803	-	17	564	0,233	20,650	0,172	2,854	5,711	36,904	В
	S	~	К1	29	30	61	0,333	370	9,250	1,931	1864	-	15	619	0,598	30,506	0,947	8,651	13,625	87,718	В
14	4	1	K1	29	30	61	0.333	370	9,250	1,931	1864	-	15	519	0,598	30,506	0,947	8,651	13,625	87.718	В
	1	7																			
	2	1	КЗ	38	39	52	0,433	475	11,875	1,937	1859	-	20	806	0,589	23,485	0,910	9,948	15,282	98,661	В
22	3	1	К3	38	39	52	0,433	475	11,875	1,937	1859	-	20	806	0,589	23,485	0,910	9,948	15,282	98,661	В
	S	_^	K5	49	50	41	0,556	240	6,000	1,800	2000	-	28	1112	0,216	10,587	0,156	3,184	6,202	37,212	Α
23	2	1	К6	46	47	44	0,522	70	1,750	3,915	1880	-	25	981	0,071	10,832	0,042	0,911	2,525	16,120	Α
23	1	1	⊀6	46	47	44	0,522	70	1,750	1,915	1880		25	981	0,071	10,832	0,042	0,911	2,525	16,120	Α
24	4	>	K2	29	30	61	0,333	375	9,375	1,930	1865	-	16	620	0,605	30,756	0,979	8,810	13,830	88,955	В
24	3	>	K2	29	30	61	0,333	375	9,375	2,930	1865	-	1.6	520	0,605	30,756	0,979	8,810	13,830	88,955	В
	Knotenpu	inktssumi	men:				_	4080	_		_			10104							
-	Gewit hte	te Mittelw	erte:												0,527	24,687					

1.4 Teilknoten Luruper Chaussee / Ebertplatz – Knotenpunktgeometrie Endzustand


Endzustand = Umbau Ebertplatz im Rahmen des Busbeschleunigungsprogramms (mit Verlängerter Holstenkamp)

1.5 Teilknoten Luruper Chaussee / Ebertplatz – Verkehrstechnische Bewertung Endzustand

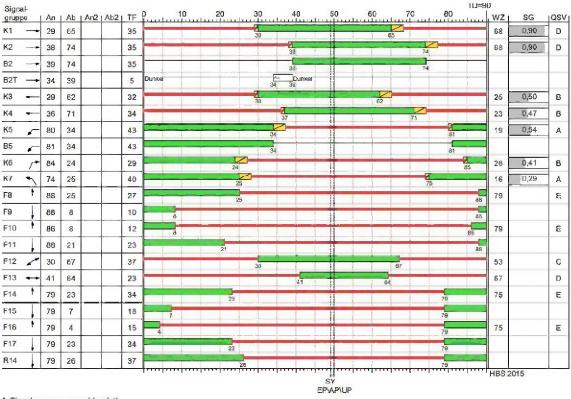
Entwicklungsstufe 1 – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr. Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m (Kfz/U)	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	к	tvv [5]	NGE (Kfz)	N _{MS} [Kfz]	NMS.95 [Kfz]	Lx [m]	QS
12	2	•	K4	34	35	56	0,389	290	7,250	1,940	1856	-	18	722	0,402	21,883	0,395	5,646	9,665	62,513	В
	3	1	K4	34	35	56	0,389	290	7,250	1,940	1856	-	18	722	0,402	21,883	0,395	5,646	9,665	62,513	В
13	3	•7	K7	35	36	55	0,400	230	5,750	1,854	1942	-	19	777	0,296	19,493	0,241	4,154	7,601	45,606	Α
	2	47	K7	35	36	55	0,400	230	5,750	1,854	1942	-	19	777	0,296	19,493	0,241	4,154	7,601	45,606	Α
14	5	1	K1	37	38	53	0,422	635	15,875	1,940	1856	-	20	783	0,811	39,426	3,604	17,554	24,640	159,372	C
	4	1	К1	37	38	53	0,422	635	15,875	1,940	1856	-	20	783	0,811	39,426	3,604	17,554	24,640	159,372	С
	1	7																			
22	2	1	КЗ	32	33	58	0,367	290	7,250	1,940	1856	-	17	681	0,426	23,693	0,439	5,879	9,980	64,551	В
	3	1	КЗ	32	33	58	0,367	290	7,250	1,940	1856	-	17	681	0,426	23,693	0,439	5,879	9,980	64,551	В
	5	^	K5	41	42	49	0,467	240	6,000	2,070	1739	-	20	812	0,296	15,903	0,241	3,952	7,314	43,884	A
23	2	~	K6	16	17	74	0,189	115	2,875	1,940	1856	-	9	352	0,327	34,411	0,280	2,765	5,577	36,072	В
	1	1	K6	16	17	74	0,189	115	2,875	1,940	1856	-	9	352	0,327	34,411	0,280	2,765	5,577	36,072	В
24	4	1	K2	37	38	53	0,422	635	15,875	1,940	1856	-	20	783	0,811	39,426	3,604	17,554	24,640	159,372	С
	3	1	K2	37	38	53	0,422	635	15,875	1,940	1856	-	20	783	0,811	39,426	3,604	17,554	24,640	159,372	C
Knotenpunktssummen:								4630						9008							
Gewichtete Mittelwerte:															0,610	31,809					

Teilknoten Luruper Chaussee / Ebertplatz – Verkehrstechnische Bewertung Endzustand

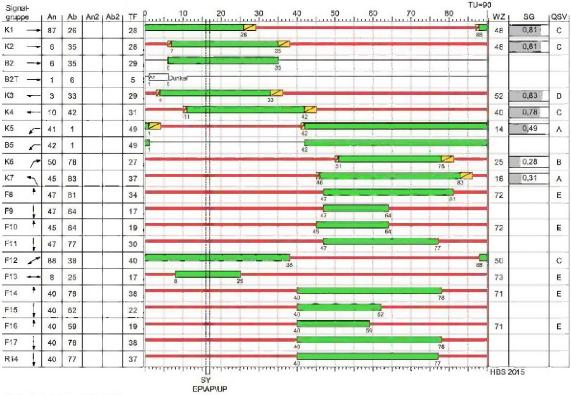
Entwicklungsstufe 1 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	Nins [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
40	2	•	К4	41	42	49	0,467	495	12,375	1,931	1864	-	22	870	0,569	20,840	0,829	9,812	15,110	97,278	В
12	3	-	K4	41	42	49	0,467	495	12,375	1,931	1864	-	22	870	0,569	20,840	0,829	9,812	15,110	97,278	В
40	3	7	K7	36	37	54	0,411	210	5,250	1,986	1813	-	19	742	0,283	18,762	0,226	3,725	6,989	44,917	A
13	2	7	K7	36	37	54	0,411	210	5,250	1,986	1813	-	19	742	0,283	18,762	0,226	3,725	6,989	44,911	A
	5	~	К1	29	30	61	0,333	430	10,750	1,939	1857	-	15	619	0,695	35, 151	1,565	10,894	16,476	106,468	С
14	4	1	K1	29	30	61	0,333	430	10,750	1,939	1857	,	15	619	0,695	35, 151	1,565	10,894	16,476	106,468	С
	1	1																			
	2	1	КЗ	39	40	51	0,444	495	12,375	1,931	1864		21	828	0,598	23,070	0,950	10,318	15,751	101,405	В
22	3	1	КЗ	39	40	51	0,444	495	12,375	1,931	1864	1	21	828	0,598	23,070	0,950	10,318	15,751	101,405	В
	5	>	K5	49	50	41	0,556	270	6,750	2,070	1739	-	24	967	0,279	11,323	0,221	3,768	7,051	42,306	Α
23	2	4	K6	14	15	76	0,167	95	2,375	1,913	1882	-	8	312	0,304	35,780	0,250	2,334	4,918	31,367	С
23	1	4	К6	14	15	76	0,167	95	2,375	1,913	1882	-	8	312	0,304	35,780	0,250	2,334	4,918	31,367	С
24	4	`	K2	29	30	61	0,333	430	10,750	1,931	1864	~	16	621	0,692	34,937	1,539	10,856	16,428	105,763	В
24	3	1	K2	29	30	61	0,333	430	10,750	1,931	1864		16	621	0,692	34,937	1,539	10,856	16,428	105,763	В
	Knotenpu	inktssumi	men:					4580						8951							
	Gewichte	te Mittelw	erte:												0,568	26,524					

Teilknoten Luruper Chaussee / Ebertplatz – Verkehrstechnische Bewertung Endzustand

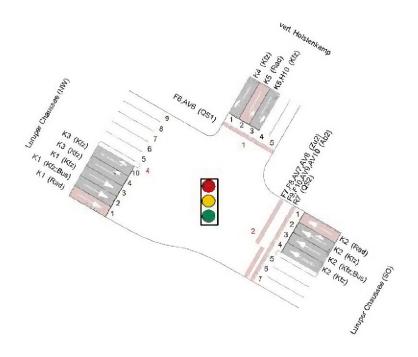
Entwicklungsstufe 2 – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N м5,25≻лк	n∈ [Kfz/U]	C [Kfz/h]	х	tw [s]	Nœ [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	£x [m]	QSV
42	2	~	K4	34	35	56	0,389	340	8,500	1,942	1854		18	721	0,472	23,259	0,537	6,899	11,341	73,422	В
12	3	1	K4	34	35	56	0,389	340	8,500	1,942	1854	-	18	721	0,472	23,259	0,537	6,899	11,341	73,422	В
13	3	*7	K7	40	41	50	0,456	255	6,375	1,854	1942	-	22	886	0,288	16,273	0,232	4,224	7,700	46,200	A
13	2	•7	K7	40	41	50	0,456	255	6,375	1,854	1942	-	22	886	0,288	16,273	0,232	4,224	7,700	46,200	A
	5	1	K1	35	36	55	0,400	665	16,625	1,939	1857	[-]	19	742	0,896	68,255	8,864	24,411	32,767	211,740	D
14	4	7	K1	35	36	55	0,400	665	16,625	1,939	1857	14	19	742	0,896	68,255	8,864	24,411	32,767	211,740	D
	1	7																			
	2	1	КЗ	32	33	58	0,367	340	8,500	1,942	1854	-	17	680	0,500	25,297	0,607	7,197	11,734	75,966	В
22	3	1	ка	32	33	58	0,367	740	8,500	1,942	1854	-	17	680	0,500	25,297	0,607	7,197	11,734	75,966	В
	5	^	K5	43	44	47	0,489	460	11,500	2,070	1739		21	850	0,541	19,069	0,730	8,720	13,714	82,284	A
23	2	1	K6	29	30	61	0,333	255	6,375	1,928	1867	-	16	620	0,411	25,580	0,411	5,337	9,244	59,402	В
23	1	1	K6	29	30	61	0,333	255	6,375	1,928	1867	-	16	620	0,411	25,580	0,411	5,337	9,244	59,402	В
2.4	4	1	K2	35	36	55	0,400	665	16,625	1,939	1857	-	19	742	0,896	68,255	8,864	24,411	32,767	211,740	D
24	3	1	K2	35	36	55	0,400	665	16,625	1,939	1857		19	742	0,896	68,255	8,864	24,411	32,767	211,740	D
	Knotenpu	ınktssumi	men:					5500						9632							
	Gewichte	te Mittelw	erte:												0,664	44,490					

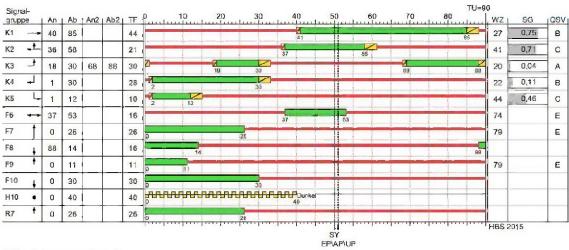
Teilknoten Luruper Chaussee / Ebertplatz – Verkehrstechnische Bewertung Endzustand

Entwicklungsstufe 2 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

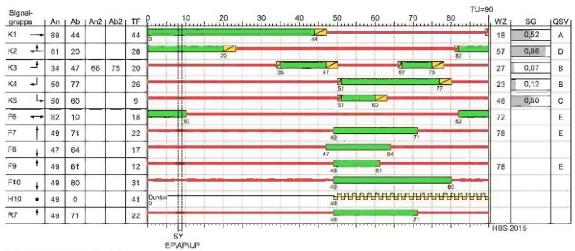
Zuf	Fstr.Nr.	Symbol	SGR	t: [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs (Kfz/h)	NW5,95>71K	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS95 [Kfz]	[m]	QSV
43	2	-	K4	31	32	59	0,356	515	12,875	1,931	1864	-	17	664	0,776	40,230	2,664	14,120	20,475	131,818	С
12	3	1	K4	31	32	59	0,356	515	12,875	1,931	1864	-	17	664	0,776	40,230	2,664	14,120	20,475	131,818	С
13	3	7	K7	37	38	53	0,422	235	5,875	1,997	1803	-	19	764	0,308	18,486	0.256	4,159	7,608	49,163	A
13	2	*7	К7	37	38	53	0,422	235	5,875	1,997	1803	-	19	764	0,308	18,486	0,256	4,159	7,608	49,163	Α
	5	~_	К1	28	29	62	0,322	485	12,125	1,933	1862	-	15	600	0,808	48,354	3,399	14,511	20,950	135,021	С
14	4	~	K1	28	29	62	0,322	485	12,125	1,933	1862	-	15	600	0,808	48,354	3,399	14,511	20,953	135,021	С
	1	7																			
	2	1	КЗ	29	30	61	0,333	515	12,875	1,937	1859	-	16	620	0,831	51,986	4,186	16,059	22,836	147,429	D
22	3	1	КЗ	29	30	61	0,333	515	12,875	1,937	1859	-	15	620	0,831	51,986	4,186	16,059	22,836	147,429	D
	5	^	K,5	49	50	41	0,556	470	11,750	2,070	1739	÷	24	967	0,486	14,285	0,572	7,721	12,420	74,520	A
23	2	4	K6	27	28	63	0,311	165	4,125	1,915	1880	·	15	585	0,282	24,794	0,224	3,339	6,429	41,043	В
23	1	4	Қ 6	27	28	63	0,311	165	4,125	1,915	1880	-	15	585	0,282	24,794	0,224	3,339	6,429	41,043	В
24	4	`	KZ	28	29	62	0,322	485	12,125	1,933	1862		15	600	0,808	48,354	3,399	14,511	20,953	135,021	С
24	3	1	К2	28	29	62	0,322	485	12,125	1,933	1862	-	15	600	0,808	48,354	3,399	14,511	20,953	135,021	C
	Knotenpu	inktssum	men:					5270						8633							
1	Gewichte	te Mittely	erte:												0,700	40,299					

1.6 Teilknoten Luruper Chaussee / Verlängerter Holstenkamp – Knotenpunktgeometrie Endzustand


Endzustand = Umbau Ebertplatz im Rahmen des Busbeschleunigungsprogramms (mit Anbindung Verlängerter Holstenkamp)

1.7 Teilknoten Luruper Chaussee / Verlängerter Holstenkamp – Verkehrstechnische Bewertung Endzustand

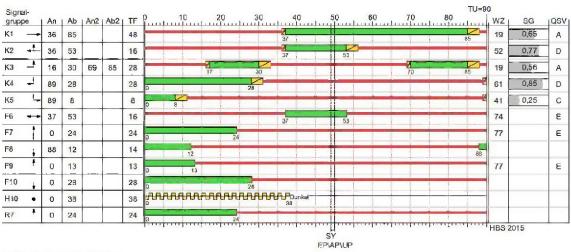
Entwicklungsstufe 1 – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95>лк	nc [Kfz/U]	C [Kfz/h]	х	tvv [s]	Nge [Kfz]	Nims [Kfz]	N MS,95 [Kfz]	[m]	qsv
1	1	₩/	K4	28	29	62	0,322	60	1,500	2,095	1718	-	14	553	0,108	21,867	0,067	1,121	2,912	17,682	В
1	3	4	К5	10	11	80	0,122	110	2,750	1,813	1986	-	6	242	0,455	44,078	0,494	3,050	6,004	36,276	C
	2	~	K2	21	22	69	0,244	325	8,125	1,920	18/5	-	77	457	0,711	44,470	1,695	9,127	14,236	88,662	€
2	3	~	K2	21	22	69	0,244	323	8,075	1,863	1932	-	12	471	0,686	42,149	1,473	8,805	13,823	85,841	С
	4	~	K2	21	22	69	0,244	202	5,050	1,881	1914	-	12	467	0,433	32,241	0,452	4,721	8,396	52,643	В
	5	4	КЗ	30	31	60	0,344	25	0,625	2,043	1762	-	15	597	0,042	19,794	0,024	0,440	1,562	9,372	Α
	4	4	КЗ	30	31	60	0,344	25	0,625	2,043	1762	-	15	597	0,042	19,794	0,024	0,440	1,562	9,372	Α
4	3	1	K1	44	45	46	0,500	725	18,125	1,867	1928	-	24	964	0,752	26,562	2,285	16,808	23,742	147,723	В
	2	1	K1	44	45	45	0,500	725	18,125	1,867	1928	-	24	964	0,752	25,562	2,285	16,808	23,742	147,723	В
	Knotenpu	unktssumi	men:					2520						5312							
	Gewichte	te Mittelw	erte:												0,670	31,843					

Teilknoten Luruper Chaussee / Verlängerter Holstenkamp – Verkehrstechnische Bewertung Endzustand

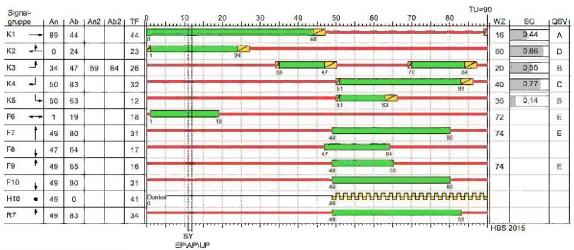
Entwicklungsstufe 1 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N-мs,96> пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L. [m]	QSV
	1	</td <td>K4</td> <td>26</td> <td>27</td> <td>64</td> <td>0,300</td> <td>60</td> <td>1,500</td> <td>2,095</td> <td>1718</td> <td></td> <td>13</td> <td>515</td> <td>0,117</td> <td>23,369</td> <td>0,074</td> <td>1,162</td> <td>2,985</td> <td>18,125</td> <td>В</td>	K4	26	27	64	0,300	60	1,500	2,095	1718		13	515	0,117	23,369	0,074	1,162	2,985	18,125	В
1	3	4	K5	9	10	81	0,111	110	2,750	1,825	1973	-	5	219	0,502	47,592	0,604	3,193	6,215	37,812	С
	2	~	K2	28	29	62	0,322	539	13,475	1,892	1903		15	613	0,879	68,693	6,784	19,527	27,000	167,508	D
2	3	1	K2	28	29	62	0,322	537	13,425	1,856	1940	-	16	625	0,859	60,402	5,522	18,104	25,300	156,506	D
	4	•	К2	28	29	62	0,322	244	6,100	1,910	1885	4	15	607	0,402	26,105	0,395	5,146	8,983	57,186	В
	5	J	КЗ	20	21	70	0,233	30	0,750	2,043	1762	1-	10	406	0,074	27,327	0.044	0,629	1,970	11,820	В
	4	^	КЗ	20	23	70	0,233	30	0,750	2,043	1762	-	10	406	0,074	27,327	0,044	0,629	1,970	11,820	В
4	3	1	К1	44	45	46	0,500	495	12,375	1,870	1925	•	24	962	0,515	17,584	0,650	8,983	14,052	87,600	Α
	2	1	K1	44	45	46	0,500	495	12,375	1,870	1925	-	24	962	0,515	17,584	0,650	8,983	14,052	87,600	Α
	Knotenpu	unktssumi	nen:					2540						5315							
	Gewichte	te Mittelw	erte:												0,634	39,967					

Teilknoten Luruper Chaussee / Verlängerter Holstenkamp – Verkehrstechnische Bewertung Endzustand

Entwicklungsstufe 2 - Spitzenstunde früh

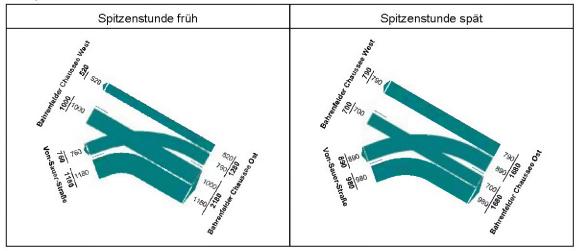

A-Signalgruppen ausgeblendet!

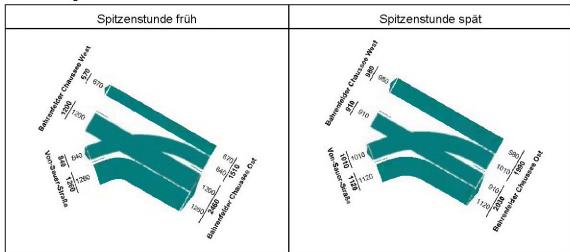
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,ss>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nms [Kfz]	NMS,95 [Kfz]	Lx (m)	QSV
	1	₹/	K4	28	. 29	62	0,322	470	11,750	2,099	1715	-	14	552	0,851	60,711	4,940	15,913	22,660	137,863	D
1	3	4	K5	8	9	82	0,100	50	1,250	1,827	1970	-	5	197	0,254	40,927	0,193	1,347	3,310	20,158	C
	2	~!	K2	16	17	/4	0,189	2/5	6,875	1,894	1901	*	y	359	0,765	58,093	2,342	8,851	13,895	86,121	D
2	3	~	к2	16	17	74	0,189	274	6,850	1,859	1937	-	9	366	0,749	55,163	2,103	8,574	13,526	83,834	D
	4	•	K2	16	17	74	0,189	171	4,275	1,886	1909	-	9	361	0,474	37,885	0,539	4,347	7,873	49,505	С
_	5	7	КЗ	28	29	62	0,322	240	6,000	2,076	1734	х								54.943	
	4	>	КЗ	28	29	62	0,492	240	6,000	2,076	1734	(x)	21	853	0,563	19,464	0,806	9,237	14,377	87,642	A
4	3	1	К1	48	49	42	0,544	680	17,000	1,868	1927	-	26	1048	0,649	18,689	1,230	13,212	19,359	120,568	A
	2	`	K1	48	49	42	0,544	680	17,000	1,868	1927	-	26	1048	0,649	18,689	1,230	13,212	19,359	120,568	А
	Knotenpu	ınktssumr	nen:		1			3080						4784							
	Gewichte	te Mittelw	erte:												0,670	33,412					

Teilknoten Luruper Chaussee / Verlängerter Holstenkamp – Verkehrstechnische Bewertung Endzustand

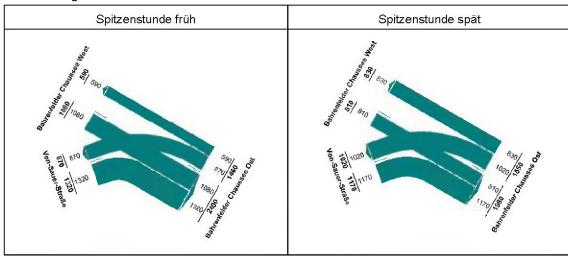
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

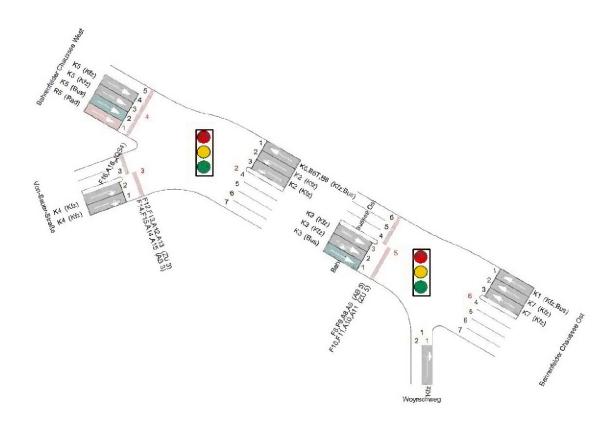

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	t _A [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nus,95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	~	K4	32	33	58	0,367	490	12,250	2,087	1725		16	633	0,774	40,051	2,614	13,445	19,646	118,819	С
1	3	4	KS	12	13	78	0,144	40	1,000	1,834	1963	-	7	283	0,141	34,826	0,092	0,966	2,628	16,068	В
	2	*	K2	23	24	67	0,267	445	11,125	1,855	1941	-	13	518	0,859	67,847	5,248	15,830	22,559	137,926	D
2	3	1	К2	23	24	67	0,267	445	11,125	1,831	1966	-	13	525	0,848	63,772	4,742	15,283	21,895	133,603	D
	4	*	K2	23	24	67	0,267	170	4,250	2,038	1766	-	12	472	0,360	29,243	0,327	3,774	7,060	47,952	В
	5	*	КЗ	26	27	64	0,300	225	5,625	2,057	1750	×								52,753	
	4	7	К3	26	27	64	0,470	225	5,625	2,057	1750	(x)	21	823	0,547	20,291	0,749	8,775	13,785	83,289	В
4	3	1	K1	44	45	46	0,500	425	10,625	1,870	1925	-	24	962	0,442	16,208	0,472	7,292	11,859	73,929	A
	2	1	K1	44	45	46	0,500	425	10,625	1,870	1925	-	24	962	0,442	16,208	0,472	7,292	11,859	73,929	A
	Knatenpu	ınktssum	men:					2890						5178							
-	Gewichte	te Mittelw	/erte:												0,632	37,186					


2 Bahrenfelder Chaussee / Von-Sauer-Straße (LSA 167)

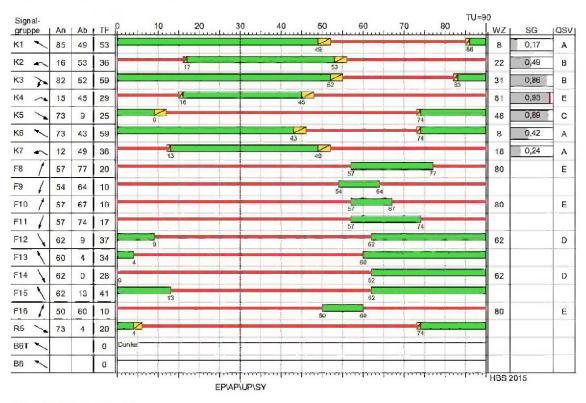
2.1 Bahrenfelder Chaussee / Von-Sauer-Straße – Knotenstrombelastungen


Analyse (VZ 23.08.2011)

Entwicklungsstufe 1

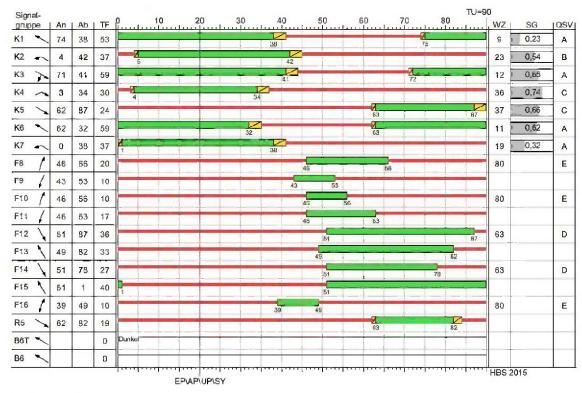


Entwicklungsstufe 2



2.2 Bahrenfelder Chaussee / Von-Sauer-Straße – Knotenpunktgeometrie Bestand

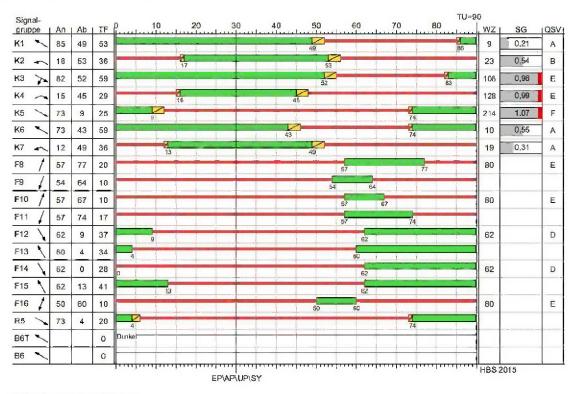
Analyse – Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	5GR	ts [s]	ta [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	NMS,9S [Kfz]	[m]	Qsv
	1	-	K6	59	60	31	0,667	520	13,000	1,960	1837	-	31	1225	0,424	8,239	0,436	6,472	10,775	70,404	А
2	2	7	K2	36	37	54	0,411	380	9,500	1,906	1889	-	19	776	0,490	22,243	0,581	7,588	12,247	77,817	В
	3	7	K2	36	37	54	0,411	380	9,500	1,906	1889	~	19	776	0,490	22,243	0,581	7,588	12,247	77,817	В
	2	~	K4	29	30	61	0,333	590	14,750	1,800	2000	-	17	666	0,886	69,231	7,554	21,510	29,354	176,124	D
3	1	~	K4	29	30	61	0,333	590	14,750	1,879	1916	-	16	638	0,925	93,568	11,455	25,673	34,242	214,492	Е
	4	1	K5	25	26	65	0,289	500	12,500	1,854	1942	×								166,118	
4	3	-	K5	25	26	65	0,578	500	12,500	1,854	1942	-	28	1122	0,891	47,960	9,798	31,550	41,050	253,689	С
	1	1	K1	53	54	37	0,600	174	4,350	2,065	1743	-	26	1049	0,166	8,380	0,112	2,044	4,462	30,707	Α
6	2	1	K7	36	37	54	0,411	174	4,350	2,018	1784	-	18	734	0,237	18,159	0,176	3.015	5,952	40,033	Α
	3	1	К7	36	37	54	0,411	174	4,350	2,018	1784	-	18	734	0,237	18,159	0,176	3,015	5,952	40,033	Α
1	1	-																			
	3	-	КЗ	59	60	31	0,667	1083	27,075	1,908	1887	-	31	1259	0,860	30,489	6,570	27,715	36,619	232,897	В
5	2	7	КЗ	59	50	31	0,667	1087	27,175	1,905	1890	-	32	1262	0,861	30,720	6,660	27,917	36,853	234,606	В
	Knatenpı	ınktssumi	men:					6152						10241							
	Gewichte	te Mittelw	erte:												0,737	38,913					

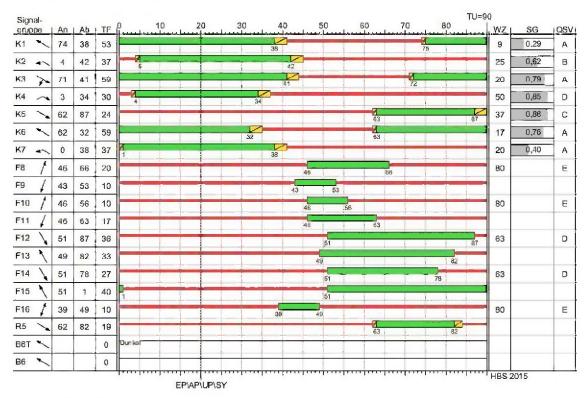
Analyse - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [s]	f∧	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NM5,95>nk	n⊂ [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	N MS 95 [Kfz]	L _x [m]	QSV
	1	•	K6	59	60	31	0,667	790	19,750	1,868	1927	-	32	1285	0,615	11,366	1,037	12,188	18,092	112,677	Α
2	2.	^	K2	37	38	53	0,422	445	11,125	1,854	1942	-	21	820	0,543	22,734	0,736	9,078	14,174	87,595	В
	3	~	K2	37	38	53	0,422	445	11,125	1,854	1942	~	21	820	0,543	22,734	0,736	9,078	14,174	87,595	В
	2	7	K4	30	31	60	0,344	491	12,275	1,800	2000	-	17	688	0,714	34,869	1,758	12,432	18,395	110,370	В
3	-1	~	K4	30	31	60	0,344	489	12,225	7,879	1916	-	16	659	0,742	37,447	2,095	12,863	18,929	718,571	C
	4	1	K5	24	25	66	0,278	350	8,750	1,881	1914	-	13	532	0,658	37,317	1,272	9,004	14,079	88,275	C
4	3	-	K5	24	25	66	0,278	350	0,750	1,861	1914	-	13	532	0,658	37,317	1,272	9,004	14,079	00,275	c
	1	1	K1	53	54	37	0,600	264	6,600	1,881	1914	-	29	1147	0,230	8,883	0,169	3,232	6,272	39,325	А
6	2	•	K7	37	38	53	0,422	264	6,600	1,850	1946	-	21	820	0,322	18,601	0,274	4,689	8,351	51,509	А
	3	1	K7	37	38	53	0,422	264	6,600	1,850	1946	-	21	820	0,322	16,601	0,274	4,689	8,351	51,509	A
1	1																				
	3	_	K3	59	60	31	0,667	829	20,725	1,881	1914	-	32	1277	0,649	12,275	1,233	13,402	19,593	122,848	А
5	2	7	КЗ	59	60	31	0,667	831	20,775	1,874	1921	-	32	1280	0,649	12,267	1,233	13,432	19,630	122,962	А
	Knotenpi	unktssumi	men:					5812						10680							
4	Gewichte	te Mittelw	erte:												0,594	21,215					

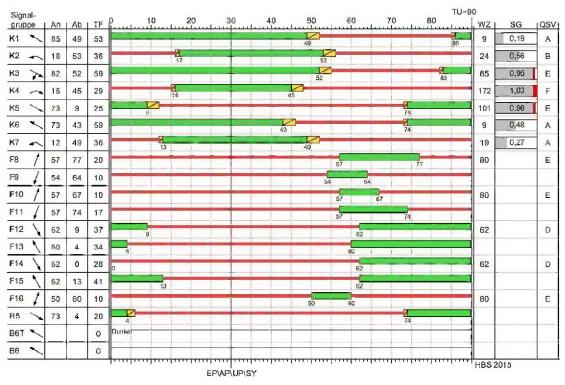
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t= [s]	t _A [s]	ts [s]	fA	q [Kf2/h]	m [Kf ₂ /U]	ta [s/Kfz]	qs [Kfz/h]	Nws.95>nk	nc [Kfz/U]	C [Kf2/h]	х	tw [s]	Nœ [Kfz]	N _{MS} [K l z]	NM5,93 [Kfz]	[m]	QSV
	1	-	Кб	59	60	31	0,667	670	16,750	1,962	1835	*	31	1224	0,547	10,065	0,751	9,533	14,755	96,498	Α
2	2	~	K2	36	37	54	0,411	420	10,500	1,910	1885	_	19	776	0,541	23,457	0,729	8,682	13,665	86,991	В
	3	*	К2	3G	37	54	0,411	420	10,500	1,910	1885	-	19	776	0,541	23,457	0,729	8,682	13,665	86,991	В
2	2	7	K4	29	30	61	0,333	630	15,750	1,800	2000	-	17	666	0,946	108,605	14,685	30,022	39,289	235,734	Е
3	1	7	K4	29	30	51	0,333	630	15,750	1,879	1916	-	16	638	0,987	146,663	20,707	36,355	46,552	291,602	E
	4	`	K5	25	26	55	0,289	600	15,000	1,854	1942	х								360,770	
4	3	1	K5	25	26	65	0,578	600	15,000	1,854	1942	-	28	1122	1,070	213,894	60,745	90,745	106,856	660,370	F
	1	•	K1	53	54	37	0,600	224	5,600	2,065	1743	*	26	1047	0,214	8,791	0,154	2,724	5,515	37,954	Α
6	2	-	к7	36	37	54	0,411	224	5,600	2,018	1784	-	18	734	0,305	19,085	0,252	4,023	7,415	49,873	Α
	3	-	K7	36	37	54	0,411	224	5,600	2,018	1784	-	18	734	0,305	19,085	0,252	4,023	7,415	49,873	Α
1	1	r*																			
	3	`	K3	59	60	31	0,667	1228	30,700	1,908	1887		31	1259	0,975	107,189	32,496	61,732	75,020	477,127	E
5	2	>-	КЗ	59	60	31	0,667	1232	30,800	1,906	1889	-	32	1262	0,976	108,166	32,906	62,293	75,641	481,531	E
	Knotenpi	ınkıssum	nen.					7102						10238							
	Gewichte	te Mittely	erte:												0,832	101,288					

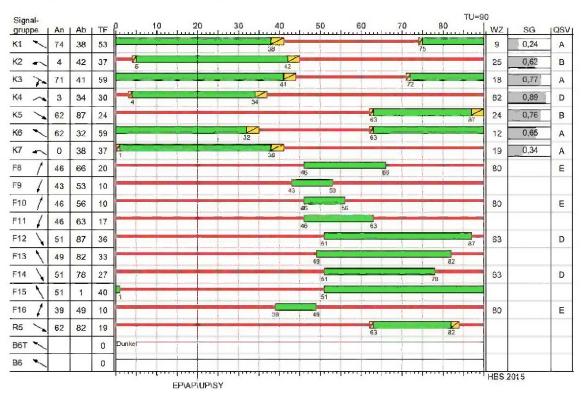
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr. Nr.	Symbol	SGR	t= [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [5]	NGE [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	1	K6	59	60	31	0,667	980	24,500	1,868	1927		32	1285	0,763	17,182	2,506	19,119	26,514	165,129	Α
2	2	7	K2	37	38	53	0,422	505	12,625	1,854	1942	I-	21	820	0,616	24,868	1,037	10,898	16,481	101,853	В
	3	7	K2	37	38	53	0,422	S05	12,625	1,854	1942	-	21	820	0,616	24,868	1,037	10,898	16,481	101,853	В
,	2	7	K4	30	31	60	0,344	S61	14,025	1,800	2000	-	17	688	0,815	45,144	3,676	16,461	23,323	139,938	c
3	1	1	K4	30	31	60	0,344	559	13,975	1,879	1916	-	16	659	0,848	54,639	4,997	17,940	25, 103	157,245	D
	4	1	K5	24	25	66	0,278	455	11,375	1,883	1912	x								141,806	
4	3	/	K5	24	25	66	0,556	455	11,375	1,883	1912	-	27	1064	0,855	37,092	5,965	25,219	33,712	211,577	C
	1	1	K1	53	54	37	0,600	327	8,175	1,883	1912	•	29	1147	0,285	9,401	0,228	4,173	7,628	47,873	Α
6	2	1	K7	37	38	53	0,422	327	8,175	1,850	1946	-	21	820	0,399	19,790	0,390	5,072	10,239	63,154	Α
	3	1	К7	37	38	53	0,422	327	8,175	1,850	1946	-	21	820	0,399	19,790	0,390	6,072	10,239	63,154	Α
1	1	_																			
,	3	1	КЗ	59	60	31	0,667	1014	25,350	1,879	1916	-	32	1277	0.794	19,705	3,227	21,172	28,954	181,368	Α
5	2	¥	К3	59	60	31	0,667	1016	25,400	1,877	1918	•	32	1280	0,794	19,687	3,228	21,209	28,998	181,817	Α
	Knotenpu	inktssumi	men:				i	7031						10680							
	Gewichte	te Mittelw	erte:												0,718	26,758					

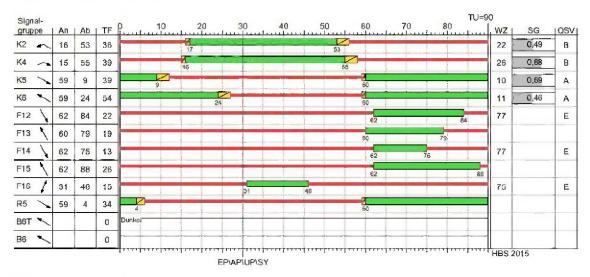
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	t^ [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NN5,95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	\	K6	59	60	31	0,667	590	14,750	1,960	1837	- 1	31	1225	0,482	9,006	0,562	7,801	12,525	81,838	А
2	2	^	K2	36	37	54	0,411	435	10,875	1.908	1887	-	19	776	0,561	23,992	0,798	9,123	14,231	90,509	8
	3	~	K2	36	37	54	0,411	435	10,875	1,908	1887		19	776	0,561	23,992	0,798	9,123	14,231	90,509	В
	2	4	К4	29	30	61	0,333	660	16,500	1,800	2000	-	17	666	0,991	149,632	22,154	38,580	49,085	294,510	Е
3	1	4	K4	29	30	61	0,333	660	16,500	1,879	1916	-	16	638	1,034	193,900	29,044	45,544	56,958	356,785	F
,	4	-	K5	25	26	65	0,289	540	13,500	1,856	1940	×								232,761	
4	3	-	K5	25	26	65	0,578	540	13,500	1,856	1940	-	28	1122	0,963	101,301	25,939	51,637	63,790	394,605	Ę
	1	~	К1	53	54	37	0,600	197	4,925	2,061	1747	-	26	1048	0,188	8,562	0,130	2,350	4,943	33,958	А
6	2	-	К7	36	37	54	0,411	197	4,925	2,020	1782	-	18	733	0,269	18,583	0,210	3,471	6,622	44,579	А
	3		К7	36	37	54	0,411	197	4,925	2,020	1782	-	18	733	0,269	18,583	0,210	3,471	6,622	44,579	Α
1	1	F*																			
	3	1	КЗ	59	60	31	0,567	1199	29,975	1,908	1887	-	31.	1259	0,952	84,893	24,908	52,254	64,479	410,085	Ę
5	2	7	К3	59	60	31	0,667	1201	30,025	1,904	1891	w	32	1262	0,952	84,855	24,954	52,345	64,581	410,735	E
	Knotenpu	ınktssumi	men:					6851						10238							
(Gewichte	te Mittelw	erte:												0,814	83,934					

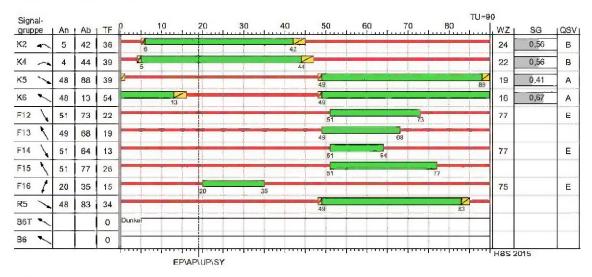
Entwicklungsstufe 2 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Ŋм <u>я</u> ,95>пк	nc [Kf2/U]	C [Kfz/h]	х	tw [s]	NGE [Kf2]	NMS [Kfz]	NM5,95 [Kfz]	[m]	QSV
	1	1	Кб	59	60	31.	0,667	830	20,750	1,868	1927	-	32	1285	0,646	12,169	1,214	13,355	19,536	121,670	А
2	2	7	K2	37	38	53	0,422	S10	12,750	1,852	1944	-	21	820	0,622	25,073	1,068	11,060	16,584	103,007	В
	3	~	К2	37	38	53	0,422	510	12,750	1,852	1944	-	21	820	0,622	25,073	1,068	11,060	16,584	103,007	В
_	2	74	K4	30	31	60	0,344	586	14,650	1,800	2000	1-	17	688	0,852	54,902	5,257	18,852	26,195	157,170	D
3	1	7	K4	30	31	60	0,344	584	14,500	1,881	1914	-	16	658	0,888	69,960	7,693	21,481	29,319	183,830	D
	4	1	K5	24	25	66	0,278	405	10,125	1,879	1916	×								108,918	
4	3	1	K5	24	25	66	0,556	405	10,125	1,879	1916	-	27	1064	0,761	23,667	2,450	18,035	25,217	157,959	В
	1	*	K1	53	54	37	0,600	277	6,925	1,877	1918	-	29	1148	0.241	8,981	0,180	3,418	6,545	40,959	А
6	2	1	K7	37	38	53	0,422	277	6,925	1,858	1938	-	20	819	0,338	18,832	0,295	4,964	8,732	54,069	Α
	3	-	K7	37	38	53	0,422	277	6,925	1,858	1938	-	20	819	0,338	18,832	0,295	4,964	8,732	54,069	А
1	1																				
	3	1	К3	59	60	31	0,667	989	24,725	1,879	1916	-	32	1278	0,774	18,002	2,729	19,749	27,265	170,788	А
5	2	>	К3	59	60	31	0,667	991	24,775	1,877	1918	-	32	1281	0,774	17,987	2,730	19,785	27,308	171,221	A
	Knatenpi	ınktssum	men:					6641						10680							
(Gewichte	te Mittelw	erte:												0,691	26,566					

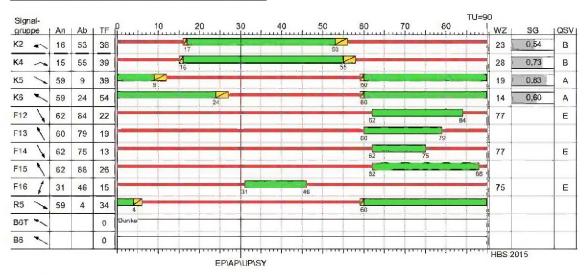
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	\$A [5]	ts [s]	f _A	q [Kfz/h]	rn [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>лк	n∈ [Kfz/U]	C [Kfz/h]	х	tw [s]	N∉ [Kfz]	NMS [Kfz]	Nws,95 [Kfz]	Lx [m]	QSV
	1	-	K6	54	55	36	0,611	520	13,000	1,960	1837	-	28	1122	0,463	11,155	0,517	7,569	12,222	79,859	А
2	2	7	K2	36	37	54	0,411	380	9,500	1,906	1889	-	19	776	0,490	22,243	0,581	7,588	12,247	77,817	В
	3	*	K2	36	37	54	0,411	380	9,500	1,906	1889	-	19	776	0,490	22,243	0,581	7,588	12,247	77,817	В
2	2	1	K4	39	40	51	0,444	590	14,750	1,841	1955	-	22	869	0,679	25,893	1,443	13,183	19,324	118,611	В
3	1	7	K4	39	40	51	0,444	590	14,750	1,841	1955	-	22	869	0,679	25,893	1,443	13,183	19,324	118,611	В
	4	1	K5	39	40	51	0,444	500	12,500	1,854	1942	×								96,680	
4	3	1	K5	39	40	51	0,744	500	12,500	1,854	1942		36	1445	0,692	9,988	1,569	14,761	21,259	131,381	٨
	Knotenpu	unktssumi	men:					3460						5857							
	Gewichte	te Mittelw	erte:												0,609	18,279					

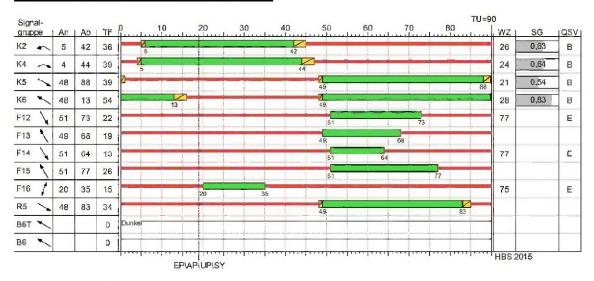
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t: [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nwsas>nk	n∈ [Kfz/U]	C [Kfz/h]	ж	tw [s]	N _{GE} [Kfz]	N _{M5} [Kfz]	NMS,95 [Ktz]	Lx [m]	QSV
	1	-	K6	54	55	36	0,611	980	24,500	1,868	1927	-	29	1177	0,833	28,243	4,700	24,109	32,413	201,868	В
2	2	4	K2	36	37	54	0,411	505	12,625	1,854	1942	-	20	798	0,633	26,190	1,128	11,179	16,834	104,034	В
	3	*	K2	36	37	54	0,411	505	12,625	1,854	1942	-	20	798	0,633	26, 190	1,128	11,179	16,834	104,034	В
,	2	-	K4	39	40	51	0,444	560	14,000	1,838	1959	,	22	869	0,644	24,433	1,195	12,096	17,978	110,133	В
3	1	7	K4	39	40	51	0,444	560	14,000	1,838	1959	-	22	869	0,644	24,433	1,195	12,096	17,978	110,133	В
	4	1	K5	39	40	51	0,444	455	11,375	1,883	1912	-	21	850	0,535	21,252	0,710	9,005	14,080	88,366	В
4	3	1	K5	39	40	51	0,444	455	11,375	1,883	1912	-	21	850	0,535	21,252	0,710	9,005	14,080	88,366	В
	Knotenpu	ınktssumi	men:					4020						6211							
(Gewichte	te Mittelw	erte:												0,663	25,083					

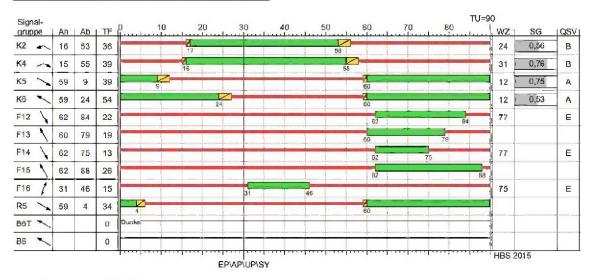
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR) [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,яз≻ п к	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	NMs [Kfz]	Nivis,95 [Kfz]	L: [m]	QSV
	1	•	K6	54	55	36	0,611	670	16,750	1,962	1835	-	28	1121	0,598	13,790	0,953	11,220	16,885	110,428	A
2	2	~	K2	36	37	54	0,411	420	10,500	1,910	1885	~	19	776	0,541	23,457	0,729	8,682	13,665	86,991	8
	3	1	KZ	36	37	54	0,411	4 20	30,500	1,910	1885	-	19	776	0,541	23,457	0,729	8,682	13,665	86,991	8
7	2	~	K4	39	40	51	0,444	630	15,750	1,838	1959	-	22	869	0,725	28,382	1,899	14,813	21,322	130,619	В
3	1	1	K4	39	40	51	0,444	630	15,750	1,638	1959	-	22	869	0,725	28,382	1,899	14,813	21,322	130,619	В
	4	1	К5	39	40	51	0,444	600	15,000	1,854	1942	×								123,050	
4	3	1	K5	39	40	51	0,744	600	15,000	1,854	1942	-	36	1445	0,830	19,303	4,653	24,732	33,143	204,824	A
	Knotenpu	nktssumi	men:					3970						5856							
(Gewichte	te Mittelw	erte:												0.696	22,133					

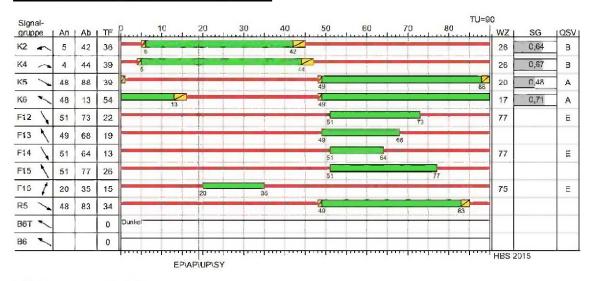
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	ts [s]	ta [s]	ts [5]	fa	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N/45,95> nk	nc [Kfz/U]	C [Kfz/h]	×	wt [s]	NGE [Kfz]	Nws [K[z]	NMS.95 [Kfz]	[m]	QSV
	1	1	K6	54	55	36	0,611	980	24,500	1,858	1927		29	1177	0,833	28,243	4,700	24,109	32,413	201,868	₿
2	2	7	K2	36	37	54	0,411	505	12,625	1,854	1942	-	20	798	0,633	26, 190	1,128	11,179	16,834	104,034	В
	3	1	K2	36	37	54	0,411	505	12,625	1,854	1942	-	20	798	0,633	26, 190	1,128	11,179	16,834	104,034	В
J	2	1	K4	39	40	51	0,444	560	14,000	1,838	1959	**	22	869	0,644	24,433	1,195	12,096	17,978	110,133	В
3	1	4	K4	39	40	51	0,444	560	14,000	1,838	1959	-	22	869	0,644	24,433	1,195	12,096	17,978	110,133	В
,	4	1	K5	39	40	51	0,444	455	11,375	1,883	1912	-	21	850	0,535	21,252	D,710	9,005	14,080	88,366	В
4	3	-	K5	39	40	51	0,444	455	11,375	1,883	1912	-	21	850	0,535	21,252	0,710	9,005	14,080	88,366	₿
	Клотепри	inktssumi	men:					4020						6211							
(Sewichte	te Mittelw	erte:												0,663	25,083					

Entwicklungsstufe 2 - Spitzenstunde früh

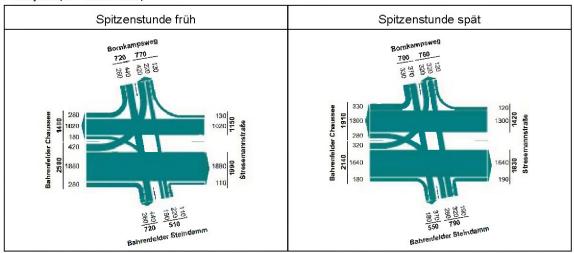


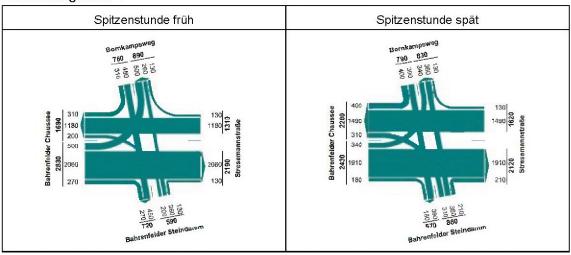
A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,es>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [5]	NGE [Kfz]	NMS [Kfz]	NMS.95 [Kfz]	Lx [m]	QSV
	1	~	K6	54	55	36	0,611	590	14,750	1,960	1837	-	28	1122	0,526	12,225	0,683	9,138	14,250	93,110	A
2	2	^	K2	36	37	54	0,411	435	10,875	1,908	1887	-	19	776	0,561	23,992	0,798	9,123	14,231	90,509	В
	3	1	K2	36	37	54	0,411	435	10,875	1,908	1887	-	19	776	0,561	23,992	0,798	9,123	14,231	90,509	В
^	2	~	K4	39	40	51	0,444	660	16,500	1,841	1955	-	22	869	0,759	30,887	2,391	16,228	23,041	141,426	В
3	1	7	K4	39	40	51	0,444	660	16,500	1,841	1955		22	869	0,759	30,887	2,391	16,228	23,041	141,426	В
	4	1	K5	39	40	51	0,444	540	13,500	1,856	1940	х								106,504	
4	3	1	K5	39	40	51	0,744	540	13,500	1,856	1940	-	36	1444	0,748	12,267	2,253	17,839	24,982	154,539	Α
	Knotenpu	ınktssumi	nen:					3860						5856							
	Gewichte	te Mittelw	erte:												0,676	21,271					

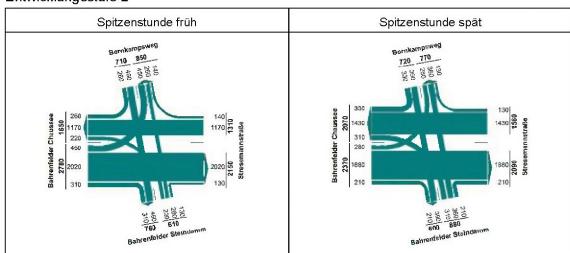
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

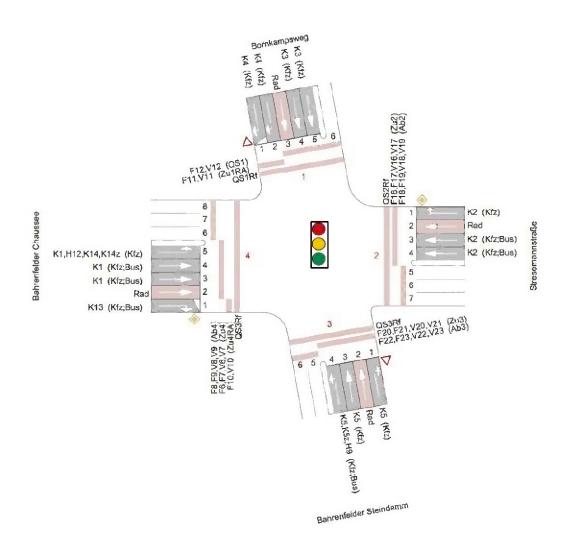

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NM5,95 > nK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nms [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	~	К6	54	55	36	0,611	830	20,750	1,868	1927	-	29	1177	0,705	17,131	1,690	15,870	22,607	140,796	Α
2	2	1	K2	36	37	54	0,411	510	12,750	1,852	1944	-	20	798	0,639	26,419	1,163	11,347	17,044	105,230	В
	3	1	K2	36	37	54	0,411	510	12,750	1,852	1944	-	20	798	0,639	26,419	1,163	11,347	17,044	105,230	В
-	2	-	K4	39	40	51	0,444	585	14,625	1,841	1955	_	22	869	0,673	25,622	1,396	12,993	19,089	117,168	В
3	1	1	K4	39	40	51	0,444	585	14,625	1,841	1955	•	22	869	0,673	25,622	1,396	12,993	19,089	117,168	В
	4	1	K5	39	40	51	0,444	405	10,125	1,879	1916	-	21	850	0,476	19,956	0,547	7,685	12,373	77,504	Α
4	3	1	K5	39	40	51	0,444	405	10, 125	1,879	1916	-	21	850	0,476	19,956	0,547	7,685	12,373	77,504	A
	Knotenpu	unktssumi	nen;					3830						6211							
	Gewichte	te Mittelw	erte:												0,629	22,796					


3 Bahrenfelder Chaussee / Bornkampsweg (LSA 353)

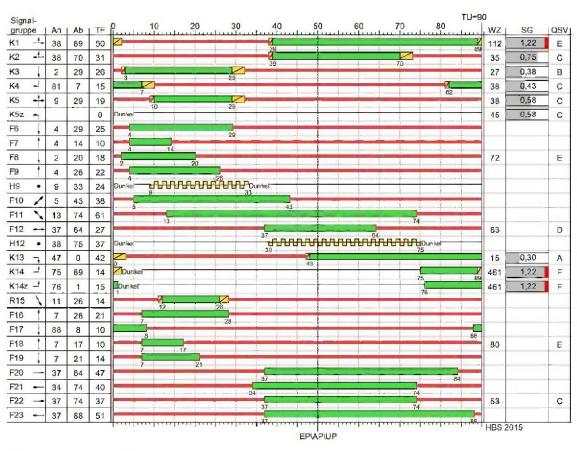
3.1 Bahrenfelder Chaussee / Bornkampsweg – Knotenstrombelastungen


Analyse (VZ 18.04.2013)

Entwicklungsstufe 1

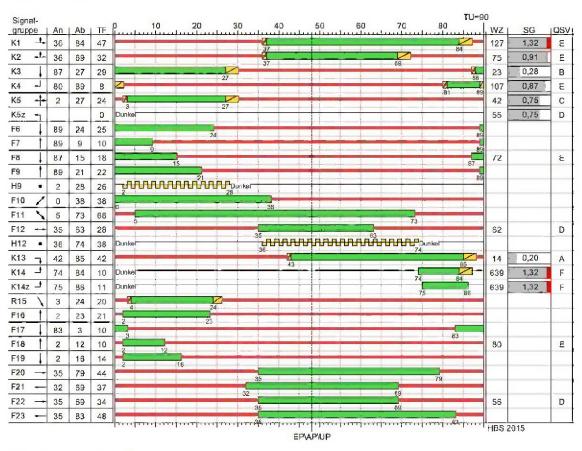


Entwicklungsstufe 2



3.2 Bahrenfelder Chaussee / Bornkampsweg – Knotenpunktgeometrie Bestand

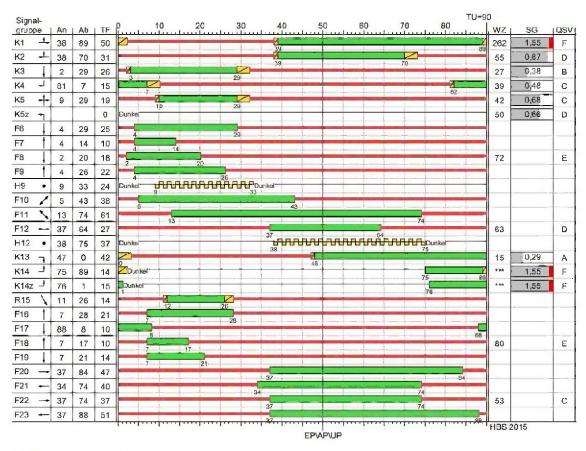
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	[s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>nk	nc [Kfz/L/]	C [Kfz/h]	х	tw [s]	Nige [Kfz]	N _{MS} [Kfz]	N _{M5,95} [Kfz]	[m]	QSV
	1	t	K2	31	32	59	0,356	130	3,250	2,121	1697	-	15	604	0,215	21,134	0,155	2,421	5,052	31,888	В
2	3	-	К2	31	32	59	0,356	510	12,750	1,879	1916	-	17	681	0,749	37,079	2,200	13,396	19,586	122,687	C
	4	_	К2	31	32	59	0,356	510	12,750	1,879	1916		17	681	0,749	37,079	2,200	13,396	19,586	122,687	C
	4	47	K5, K5z	19	20	71	0,222	180	4,500	1,883	1912	-	8	308	0,584	45,180	0,874	5,041	8,838	55,457	С
3	3	1	K5	19	20	71	0,222	220	5,500	1,879	1916	-	11	425	0,518	36,317	0,654	5,489	9,451	59,201	C
	1	1-	K5	19	20	71	0,222	110	2,750	2,113	1704	1	9	378	0,291	31,357	0,235	2,522	5,208	32,748	В
	5	4	K1, K14, K142	52	53	38	0,589	420	10,500	2,093	1720	(x)	9	344	1,221	460,863	40,598	51,098	63,187	393,529	F
	4	-	К1	50	51	40	0,567	940	23,500	1,840	1957	-	28	1110	0,847	33,951	5,463	25,041	33,504	205,447	В
4	3		K1	50	51	40	0,567	940	23,500	1,840	1957	-	28	1110	0,847	33,951	5,463	25,041	33,504	205,447	В
	1		K13	42	43	48	0,478	280	7,000	1,868	1927	(x)	23	921	0,304	15,327	0,251	4.526	8,124	50,596	Α
	1	47	K4	15	16	75	0,178	140	3,500	1,992	1807	-	8	322	0,435	38,045	0,455	3,573	6,770	43,017	C
	2	لم	K4	15	16	75	0,178	140	3,500	1,906	1889	(x)	8	336	0,417	37,344	0,420	3,528	6,705	42,604	C
1	4	1	К3	26	27	64	0,300	220	5,500	1,836	1961	-	15	587	0,375	26,992	0,350	4,688	8,350	51,102	В
	5	1	К3	26	27	64	0,300	220	5,500	1,836	1961	-	15	587	0,375	26,992	0,350	4,688	8,350	51,102	В
		Knotenpu	nktssummen:					4960						8394							
		Gewichtet	e Mittelwerte:												0,709	69,406					

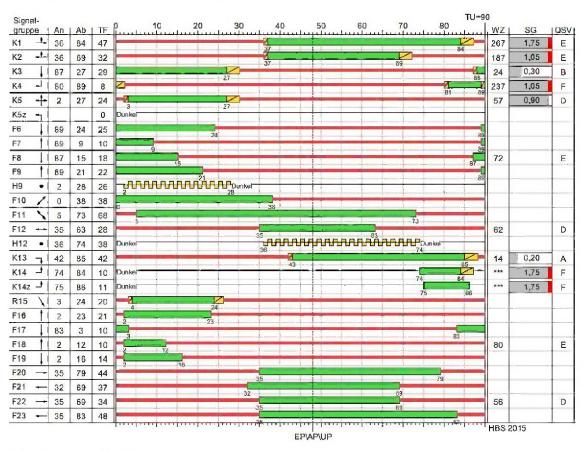
Analyse - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t _F [s]	ta [5]	ts [s]	f _A	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nыs,95> лк	nc (Kfz/U]	C [Kfz/h]	х	tw [s]	N _{GE} [Kfz]	Nws [Kfz]	Nм5,96 [Кfz]	Lx [m]	QSV
	1	<u>+</u>	K2	32	33	58	0,367	120	3,000	2,040	1765	-	16	648	0, 185	20,055	0,128	2,165	4,653	28,253	В
2	3	-	К2	32	33	58	0,367	650	16,250	1,854	1942	-	18	713	0,912	80,218	10,520	25,981	34,601	213,834	E
	4	4-	K2	32	33	58	0,367	650	16,250	1,854	1942	-	18	713	0,912	80,218	10,520	25,981	34,601	213,834	E
	4	47	K5, K5z	24	25	66	0,278	280	7,000	1,829	1968	-	9	374	0,749	54,704	2,107	8,718	13,712	83,588	D
3	3	1	K5	24	25	66	0,385	320	8,000	1,841	1985	-	18	722	0,706	31,740	1,678	12,446	18,412	113,013	В
	1	1-	K5	24	25	66	0,278	190	4,750	2,048	1758	×								45,878	
	5	_	K1, K14, K14z	49	50	41	0,556	320	8,000	2,062	1746	(x)	6	243	1,317	638,612	40,491	48,491	60,268	369,925	F
	4	-	K1	47	48	43	0,533	820	20,500	1,827	1970	-	26	1050	0.781	26,612	2,858	19,259	26,681	162,487	В
4	3	-	K1	47	48	43	0,533	820	20,500	1,827	1970	-	26	1050	0,781	26,612	2,858	19,259	26,681	162,487	В
	1	7	K13	42	43	48	0.478	180	4,500	1,868	1927	-	23	921	0.195	14,054	0,136	2,726	5,518	34,366	A
	1	ل	K4	8	9	82	0,100	165	4,125	1,898	1897	(x)	5	190	0,868	116,330	4,033	8,098	12,911	78,163	Е
	2	لم	K4	8	9	82	0,100	165	4,125	1,816	1982	(x)	5	199	0,829	97,327	3,183	7,231	11,779	71,310	E
1	4	1	КЗ	29	30	61	0,333	185	4,625	1,814	1985	-	17	661	0,280	23,288	0,222	3,624	6,844	41,393	В
	5	1	К3	29	30	61	0,333	185	4,625	1,814	1985	-	17	661	0,280	23,288	0,222	3,624	6,844	41,393	В
		Knotenpu	nktssummen:					5050						8145							
		Gewichtet	e Mittelwerte:												0,772	85,662					

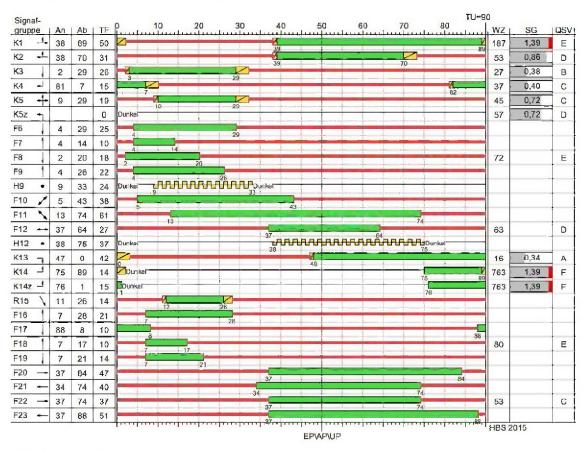
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

2uf	Fstr. Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nws,95≻nk	nç [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	Nives.95 [Kfz]	Lx (m)	QSV
	1	Ł	K2	31	32	59	0,356	130	3,250	2,121	1697		15	604	0,215	21,134	0,155	2,421	5,052	31,888	В
2	3	•	K2	31	32	59	0,356	590	14,750	1,883	1912	-	17	681	0,866	59,170	6,089	19,822	27,352	171,661	D
	4	-	K2	31	32	59	0,356	590	14,750	1,883	1912	-	17	681	0,866	59,170	6,089	19,822	27,352	171,661	D
	4	47	K5, K5z	19	20	71	0,222	200	5,000	1,881	1914	*	8	305	0,656	50,099	1,234	5,929	10,047	62,995	D
3	3	1	K5	19	20	71	0,313	260	6,500	1,877	1918	-	14	577	0,676	35,698	1,404	9,900	15,221	95,253	С
	1	٢٠	K5	19	20	71	0,222	130	3,250	2,109	1707	×								37,574	
	5	_	K1, K14, K14z	52	53	38	0,589	500	12,500	2,093	1720	(x)	8	322	1,553	1047,447	90,416	102,916	120,073	747,815	F
	4		K1	50	51	40	0,567	1030	25,750	1,840	1957		28	1110	0,928	71,631	16,596	40,127	50,840	311,751	Е
4	3	-	K1	50	51	40	0,567	1030	25,750	1,840	1957		28	1110	0,928	71,631	16,596	40,127	50,840	311,751	E
	1	+	K13	42	43	48	0,478	270	6,750	1,865	1930	(x)	23	923	0,293	15,183	0,237	4,334	7,855	48,827	Α
	1	4	K4	15	16	75	0,178	L 55	3,875	1,990	1809	-	8	322	0,481	39,458	0,555	4,039	7,438	47,216	С
1	5	لي	K 4	15	16	75	0,178	155	3,875	1,904	1891	(x)	8	337	0,460	38,533	0,507	3,976	7,348	46,645	С
1	4	1	КЗ	26	27	64	0,300	225	5,625	1,836	1961	-	15	587	0,383	27,138	0,363	4,812	8,522	52,155	8
	5	Ì	К3	26	27	64	0,300	225	5,625	1,836	1961	-	15	587	0,383	27,138	0,363	4,812	8,522	52,155	В
		Knotenpu	nktssummen:					5490						8146							
		Gewichtet	e Mittelwerte:												0,825	145,026					

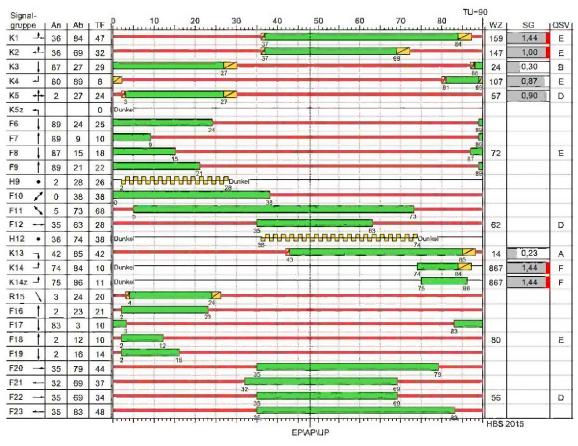
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>ftx	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	NMS [Kfz]	Nivisjes [Kfz]	[m]	QSV
	1	t_	K2	32	33	58	0,367	130	3,250	2,040	1765	-	16	648	0,201	20,256	0,142	2,363	4,963	30,135	В
2	3	4-	K2	32	33	58	0,367	745	18,625	1,854	1942	-	18	713	1,045	202,022	34,370	52,995	65,307	403,597	F
	4	1	К2	32	33	58	0,367	745	18,625	1,854	1942	-	18	713	1,045	202,022	34,370	52,995	65,307	403, 597	F
	4	4	K5, K5z	24	25	66	0,278	310	7,750	1,831	1966	ж								107,255	
3	3	1	KS	24	25	66	0,379	360	9,000	1,841	1955	-	19	743	0,902	72,558	9,533	25,338	33,851	207,777	ε
	1	٦	KS	24	25	65	0,278	210	5,250	2,044	1761	-	12	490	0,429	29,896	0,444	4,748	8,433	51,306	В
	5	٠	K1, K14, K14z	49	50	41	0,556	340	8,500	2,064	1744	(x)	5	194	1,753	1416,671	74,187	82,687	98,066	602,518	F
,	4	→	K1	47	48	43	0,533	955	23,875	1.827	1970	-	26	1050	0,910	61,907	12,498	34,149	44,032	268,155	D
4	3	-	K1	47	48	43	0,533	955	23,875	1.827	1970	-	26	3050	0,910	61,907	12,498	34, 149	44,032	268,155	D
	1	7	K13	42	43	48	0,478	180	4,500	1,868	1927	uk.	23	921	0,195	14,054	0,136	2,726	5,518	34, 366	A
	1	لم	K4	8	9	82	0,100	200	5,000	1,896	1899	(x)	5	190	1,053	258,357	11,498	16,498	23,367	141,324	F
_	2	الم	K4	8	9	82	0,100	200	5,000	1,814	1985	(x)	5	198	1,010	216,355	9,672	14,672	21,150	127,915	٤
1	4	1	К3	29	30	61	0,333	195	4,875	1,814	1985	-	17	661	0,295	23,508	0,240	3,846	7,163	43,322	В
	5	1	К3	29	30	61	0,333	195	4,875	1,814	1985	-	17	661	0,295	23,508	0,240	3,846	7,163	43,322	В
		Knotenpu	nktssummen:					5720						8232							
	1	Sewichtet	e Mittelwerte:												0,905	186,204					

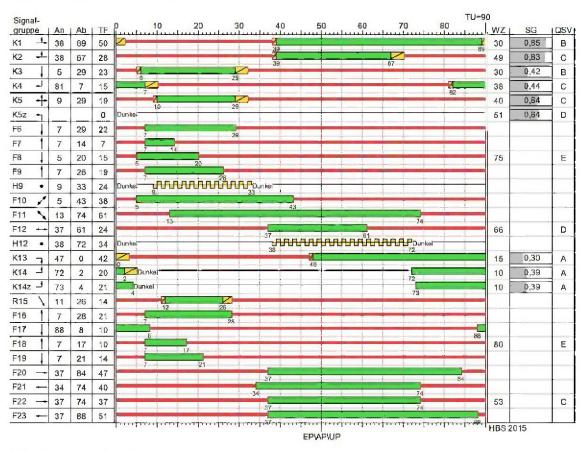
Entwicklungsstufe 2 – Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t= [s]	ta [s]	[s]	fΑ	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	ąs [Kfz/ħ]	Nws,95≯nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Nœ [Kfz]	Nas [Kfz]	NM5,95 [Kfz]	[m]	QSV
	1	t_	K2	31	32	59	0,356	140	3,500	2,125	1694	-	15	603	0,232	21,364	0,171	2,528	5,370	33,960	В
2	3	4-	K2	31	32	59	0,356	585	14,625	1,881	1914		1.7	681	0,859	56,726	5,645	19,212	26,625	166,939	D
	4	•	K2	31	32	59	0,356	585	14,625	1,881	1914	-	17	681	0,859	56,726	5,645	19,212	26,625	166,939	D
	4	•1	K5, K5z	19	20	71	0,222	220	5,500	1,879	1916	-	8	305	0,721	56,593	1,749	6,973	11,439	71,654	D
3	3	1	K5	19	20	71	0,313	260	6,500	1,877	1918	-	14	577	0,676	35,698	1,404	9,900	15,221	95,253	C
	1	1	K5	19	20	71	0,222	130	3,250	2,109	1707	х								37,574	
	5		K1, K14, K14z	52	53	38	0,589	450	11,250	2,091	1722	(x)	8	323	1,393	763,172	65,195	76,445	91,232	567,646	F
	4	-	K1	50	51	40	0,567	1010	25,250	1,840	1957	-	28	1110	0,910	59,123	12,855	35,443	45,512	279,080	D
4	3	-	K1	50	S1.	40	0,567	1010	25,250	1,840	1957		28	1110	0,910	59,123	12,855	35,443	45,512	279,080	D
	1	٦,	K13	42	43	48	0,478	310	7,750	1,865	1930	(x)	23	923	0,336	15,751	0,293	5,113	8,937	55,552	Α
	1	الما	K4	15	16	75	0,178	130	3,250	1,990	1809	-	8	322	0,404	37,20L	0,397	3,275	6,336	40,221	С
7	2	la.	K4	15	16	75	0,178	130	3,250	1,904	1891	-	8	337	0,386	36,560	0,367	3,236	6,278	39,853	С
1	4	1	КЗ	26	27	64	0,300	225	5,625	1,836	1961	-	15	587	0,383	27,138	0,363	4,812	8,522	52,155	В
	5	1	К3	25	27	64	0,300	225	5,625	1,836	1961		15	587	0,383	27,138	0,363	4,812	8,522	52,155	В
		Knotenpu	nktssummen.					5410						8146							
		Gewichtet	e Mittelwerte:												0,796	108,184					

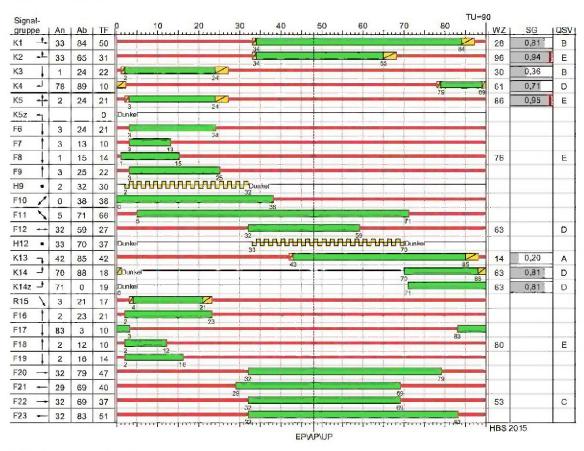
Entwicklungsstufe 2 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	[s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	Çş [Kfz/h]	N _{MS} ,95≥rik	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NM6,95 [Kfz]	Lx [m]	QSV
	1	t_	K2	32	33	58	0,367	130	3,250	2,040	1765	-	16	648	0,201	20,256	0,142	2,363	4,963	30,135	В
2	3	•-	K2	32	33	58	0,367	715	17,875	1,852	1944	-	18	713	1,003	158,666	25,783	43,658	54,833	338,539	F
	4		К2	32	33	58	0,367	715	17,875	1,852	1944		18	713	1,003	158,666	25,783	43,658	54,833	338,539	f
	4	* \	KS, KSz	24	25	66	0,278	310	7,750	1,831	1966	×								107,255	
3	3	1	К5	24	25	66	0,379	360	9,000	1,841	1955	-	19	743	0,902	72,558	9,533	25,338	33,851	207,777	E
	1	1+	K5	24	25	66	0,278	210	5,250	2,044	1761	-	12	490	0,429	29,896	0,444	4,748	8,433	51,306	В
	5		K1, K14, K14z	49	50	41	0,556	280	7,000	2,064	1744	(x)	5	194	1,443	866,558	44,542	51,542	53,684	391,274	F
	4	-	K1.	47	48	43	0,533	940	23,500	1,827	3970	-	26	1050	0,895	53,422	10,108	31,093	40,524	246,791	D
4	3	-	k1	47	48	43	0,533	940	23,500	1,827	1970		26	1050	0,895	53,422	10,108	31,093	40,524	246,791	D
	1	7	KL3	42	43	48	0,478	210	5,250	1,865	1930	-	23	923	0,228	14,413	0,167	3,243	6,289	39,092	Α
	1	لم	K4	8	9	82	0,100	165	4,325	1,898	1897	(x)	5	190	0,868	116,330	4,033	8,098	12,911	78,163	E
,	2	لم	K4	8	9	82	0,100	165	4,125	1,816	1982	(9)	5	199	0,829	97,327	3,183	7,231	11,779	71,310	€
1	4	1	К3	29	30	61	0,333	195	4,875	1,814	1985	-	17	661	0,295	23,508	0,240	3,846	7,163	43,322	В
	5	1	К3	29	30	61	0,333	195	4,875	1,814	1985	-	17	661	0,295	23,508	0,240	3,846	7,163	43,322	В
		nktssummen:					5530						8235								
	Gewichtete Mittelwerte:														0,847	122,050					

3.4 Bahrenfelder Chaussee / Bornkampsweg – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse - Spitzenstunde früh

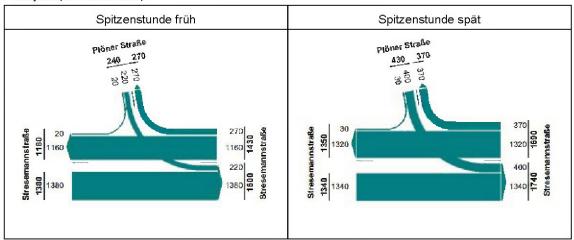

A-Signalgruppen ausgeblendet!

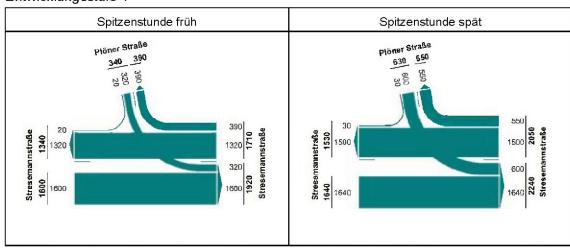
Zuf	Fstr.Nr.	Symbol	SGR	t⊧ [5]	ta [5]	ts [s]	f _A	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Мм595>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nims [Kfz]	Nids,9s [Kfz]	L _x [m]	QSV
	1	t	K2	28	29	62	0,322	130	3,250	2,121	1697	=	14	546	0,238	23,570	0,177	2,563	5,271	33,271	В
2	3	-	K2	28	29	62	0,322	510	12,750	1,879	1916	-	15	616	0,828	51,974	4,067	15,854	22,588	141,491	D
	4	-	K2	28	29	62	0,322	510	12,750	1,879	1916	-	15	616	0,828	51,974	4,067	15,854	22,588	141,491	D
	4	•	K5, K5z	19	20	71	0,222	180	4,500	1,883	1912	-	7	280	0,643	51,030	1,152	5,393	9,321	58,499	D
3	3	1	K5	19	20	71	0,222	220	5,500	1,879	1916	•	11	425	0,518	36,317	0,654	5,489	9,451	59,201	С
	1	-	KS	19	20	71	0,222	110	2,750	2,113	1704		9	378	0,291	31,357	0,235	2,522	5,208	32,748	В
	5	_	K1, K14, K14z	55	56	35	0,622	420	10,500	2,093	1720	-	27	1070	0,393	9,789	6,380	5,633	9,647	60,082	A
	4		K1	50	51.	40	0,567	940	23,500	1,840	1957	-	58	1310	0,847	33,951	5,463	25,041	33,504	205,447	8
4	3	-	K1	50	51	40	0,567	940	23,500	1,840	1957	-	28	1110	0,847	33,951	5,463	25,041	33,504	205,447	В
	1	7	K2.3	42	43	48	0,478	280	7,000	1,868	1927	(x)	23	921	0,304	15,327	0,251	4,526	8,124	50,596	Α
	1	٢	K4	15	16	75	0,178	140	3,500	1,992	1807	-	8	322	0,435	38,045	0,455	3,573	6,770	43,017	C
	2	نـ	K4	15	16	75	0.178	140	3,500	1,906	1889	(x)	8	336	0,417	37,344	0,420	3,528	6,705	42,504	c
1	4	1	К3	23	24	67	0,267	220	5,500	1,836	1961	-	13	523	0,421	30,193	0,429	4,971	8,742	53,501	8
	5	1	К3	23	24	67	0,267	220	5,500	1,836	1961	-	13	523	0,421	30,193	0,429	4,971	8,742	53,501	В
	1	nktssummen:					4960						8776								
	(Gewichtet	e Mittelwerte:												0,662	34,833					

Bahrenfelder Chaussee / Bornkampsweg – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

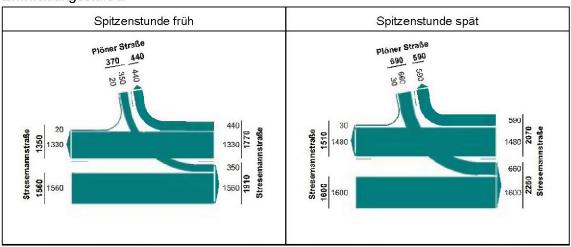
Analyse – Spitzenstunde spät

A-Signalgruppen ausgeblendet!

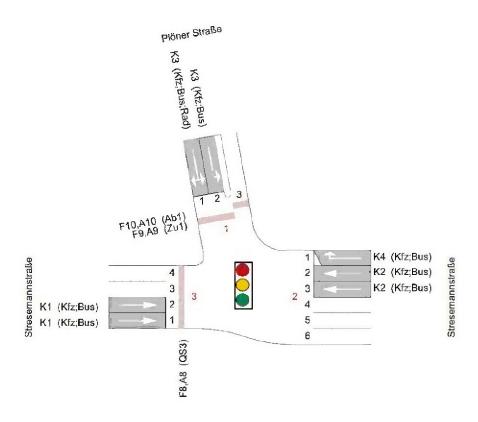

Zuf	Estr.Nr.	Symbol	SGR	t= [5]	[s]	ts [s]	fA	q [Kfz/h]	m [Kf2/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,эs>лк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	N _{M5,95} [Kfz]	Lx [m]	QSV
	1	t_	K2	31	32	59	0,356	120	3,000	2,040	1765	-	16	628	0,191	20,787	0,133	2,206	4,718	28,648	В
2	3	-	К2	31	32	59	0,356	650	16,250	1,854	1942	-	17	691	0,941	102,519	14,291	30,028	39,296	242,849	Е
	4	-	К2	31	32	59	0,356	650	16,250	1,854	1942	-	17	691	0,941	102,519	14,291	30,028	39,296	242,849	E
	4	47	K5, K5z	21	22	69	0,244	280	7,000	1,829	1968	ж								126,504	
3	3	1	K5	21	22	69	0,321	320	8,000	1,841	1955	-	16	629	0,954	117,335	15,276	29,957	39,214	240,696	E
	1	5	K5	21	22	69	0,244	190	4,750	2,048	1758	-	11	429	0,443	32,797	0,472	4,498	8,085	49,286	В
	5		K1, K14, K14z	56	57	34	0,633	320	8,000	2,062	1746	(x)	10	394	0,812	63,106	3,293	10,877	16,455	101,001	D
,	4	-	KI	50	51	40	0,567	820	20,500	1,827	1970	-	28	1117	0,734	20,994	2,030	17,234	24,255	147,713	В
4	3	-	Kı	50	51	40	0,567	820	20,500	1,827	1970	-	28	1117	0,734	20,994	2,030	17,234	24,255	147,713	В
	1	7	K13	42	43	48.	0,478	180	4,500	1,868	1927	-	23	921	0,195	14,054	0,136	2,726	5,518	34,366	A
	1	لد	K4	10	11	80	0,122	165	4,125	1,898	1897	-	6	232	0,711	63,061	1,616	5,582	9,578	57,985	D
	2	لم	K4	10	11	80	0,122	165	4,125	1,816	1982	(x)	6	242	0,682	58,531	1,391	5,341	9,250	56,000	D
1	4	\	К3	22	23	68	0,256	185	4,625	1,814	1985	-	13	508	0,364	29,829	0,333	4,128	7,564	45,747	В
	5		КЗ	22	23	68	0,256	185	4,625	1,814	1985	1	13	508	0,364	29,829	0,333	4,128	7,564	45,747	В
		Knotenpu	nktssummen:					5050						8107							
		Gewichtet	e Mittelwerte.												0,746	59,536					


4 Stresemannstraße / Plöner Straße (LSA 1598)

4.1 Stresemannstraße / Plöner Straße – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

Entwicklungsstufe 1

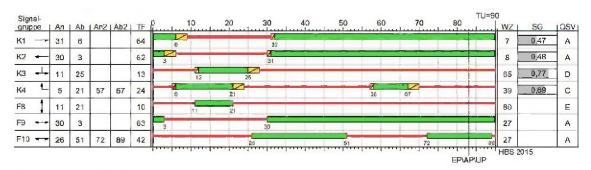


Entwicklungsstufe 2


4.2 Stresemannstraße / Plöner Straße – Knotenpunktgeometrie Bestand

4.3 Stresemannstraße / Plöner Straße – Verkehrstechnische Bewertung Bestand

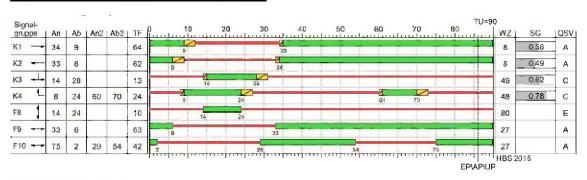
Analyse - Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr,	Symbo!	SGR	tr [s]	ta [s]	ts [s]	fA	q (Kfz/h)	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N _{M5,95} >nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [K1z]	L _x [m]	QSV
	1	-1-	КЗ	13	14	77	0,156	119	2,975	1,963	1834		7	278	0,428	40,309	0,440	3,138	6,134	39.049	С
1	2	1.	КЗ	13	14	77	0,156	121	3,025	2,055	1752	-	7	274	0,442	40,578	0,468	3,210	6,240	39,761	С
	1	t_	K4	24	25	66	0,278	270	6,750	1,991	1808	-	13	503	0,537	32,677	0,713	5,442	10,735	71,237	В
2	2	+-	K2	62	63	28	0,700	580	14,500	1,881	1914	-	34	1340	0,433	7,031	0,454	6,696	11,072	69,421	А
	3	4-	K2	62	63	28	0,700	580	14,500	1,881	1914	-	34	1340	0,433	7,031	0,454	6,696	11,072	69,421	A
	2	-	K1	64	65	26	0,722	690	17,250	1,894	1901	-	34	1372	0,503	7,080	0,617	8,147	12,974	81,892	Α
3	1	-	K1	64	65	26	0,722	690	17,250	1,894	1901	-	34	1372	0,503	7,080	0,617	8,147	12,9/4	81,892	А
	Knotenpu	unktssum	men:					3050						6479							
	Gewichte	te Mittelv	erte:												0,474	11,953					

Stresemannstraße / Plöner Straße – Verkehrstechnische Bewertung Bestand

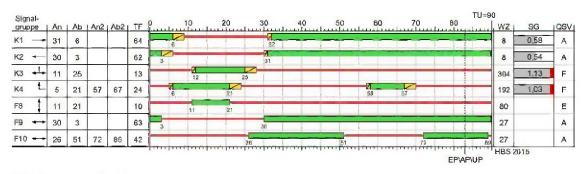
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	îA [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N-M3,95 > n x	nc (Kfz/U)	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nius [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	44	КЗ	13	14	77	0,156	215	5,375	1,895	1900	-	7	287	0,749	62,311	2,052	7,197	11,734	73,572	D
1	2	l.	К3	13	14	77	0,156	215	5,375	2,022	1780	-	7	278	0,773	67,180	2,373	7,532	12,174	76,331	D
	1	Ł	K4	24	25	66	0,278	370	9,250	1,865	1930	(x)	13	537	0,689	39,104	1,505	9,766	15,051	93,557	c
2	2	-	K2	62	63	28	0,700	660	16,500	1,827	1970		34	1379	0,479	7,542	0,555	8,002	12,786	77,867	A
	3	-	K2	62	63	28	0,700	660	16,500	1,827	1970	-	34	1379	0,479	7,542	0,555	8,002	12,786	77,867	A
_	2	-	K1	64	65	26	0,722	670	16,750	1,840	1957	-	35	1413	0,474	6,570	0,543	7,622	12,291	75,368	Α
3	1	→	K1	64	65	26	0,722	670	16,750	1,840	1957	-	35	1413	0,474	6,670	0,543	7,622	12,291	75,368	A
	Knotenpu	men:					3460						5686								
	Gewichtete Mittelwerte:														0,535	17,689					

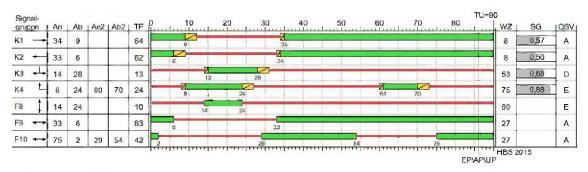
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NM5.95>nx	nc (Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nws [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	-1-	КЗ	13	14	77	0,156	169	4,225	1,946	1850	-	7	280	0,604	47,982	0,956	4,903	8,648	55,001	С
1	2	4	КЗ	13	14	77	0,156	171	4,275	2,053	1754	-	7	274	0,624	49,308	1,050	5,047	8,846	56,314	C
	1	<u>+</u>	K4	24	25	56	0,278	390	9,750	1,991	1808	(x)	1.3	503	0,775	48,365	2,580	11,553	17,301	114,809	C
2	2		K2	62	63	28	0,700	660	16,500	1,881	1914	-	34	1340	0,493	7,769	0,590	8,148	12,976	81,360	Α
	3	4—	K2	62	63	28	0,700	660	16,500	1,881	1914	-	34	1340	0,493	7,769	0,590	8, 148	12,976	81,360	Α
	2	-+	K1	64	65	26	0,722	800	20,000	1,895	1900	-	34	1372	0,583	8,336	0,888	10,490	15,968	100,886	Α
3	1		K1	64	65	26	0,722	800	20,000	1,895	1900	-	34	1372	0,583	8,336	0,888	10,490	15,968	100,886	Α
	Kaotenpu	ınktssumi	men:					3650						6481							
(Gewichter	te Mittelw	erte:												0,574	16,163					

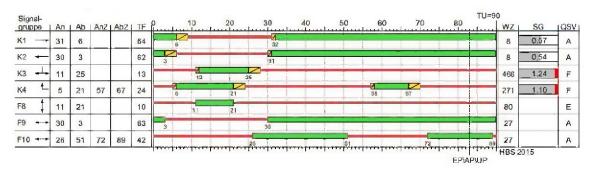
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tF [5]	tA [5]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	® [s/Kfz]	qs [Kfz/h]	Nм5,95> л⊀	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	Lx [m]	Q5V
	1	4	K3	13	14	77	0,156	315	7,875	1,891	1904	-	7	288	1,094	282,680	19,558	27,433	36,291	227,545	Ê
1	2	4	КЗ	13	14	77	0,156	315	7,875	2,022	1780	(x)	7	278	1,133	324,517	22,127	30,002	39,266	246,198	F
	1	Ł	K4	24	25	66	0,278	550	13,750	1,867	1928	(x)	13	536	1,026	191,615	23,692	37,442	47,791	297,356	F
2	2	•	К2	62	63	28	0,700	750	18,750	1,827	1970	**	34	1379	0,544	8,478	0,742	9,826	15,127	92,123	Α
	3	-	K2	62	63	28	0,700	750	18,750	1,827	1970	~	34	1379	0,544	8,478	0,742	9,826	15,127	92,123	Α
_	2		К1	64	65	26	0,722	820	20,500	1,840	1957	-	35	1413	0,580	8,215	0,876	10,681	16,208	99,387	A
Э	1		K1	64	65	26	0,722	820	20,500	1,840	1957		35	1413	0,580	8,215	0,876	10,681	16,208	99,387	Α
	Knøtenpi	inktssumi	men:					4320						6686							
	Gewichte	te Mittelw	rerte:												0,702	74,733					

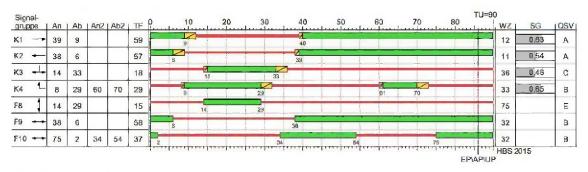
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N _{MS,95} >n _K	nc (Kfz/U)	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L: [m]	QSV
	1		КЗ	13	14	77	0,156	184	4,600	1,949	1847	-	7	280	0,657	51,887	1,235	5,571	9,563	61,050	D
1	2	Le	КЗ	13	14	77	0,156	186	4,650	2,051	1755	-	7	273	0,681	54,261	1,395	5,786	9,854	62,671	D
	1	t_	K4	24	25	56	0,278	440	11,000	1,991	1808	(x)	13	503	0,875	74,506	6,079	16,574	23,459	155,674	Е
2	2	-	K2	62	63	28	0,700	665	16,625	1,881	1914	-	34	1340	0,496	7,811	0,598	8,238	13,092	82,087	Α
	3	-	K2	62	63	28	0,700	665	16,625	1,881	1914		34	1340	0,496	7,811	0,598	8,238	13,092	82,087	۸
_	2	-	K1	64	65	26	0,722	780	19,500	1,895	1900	-	34	1372	0,569	8,086	0,832	10,033	15,390	97,234	Α
3	1	-	K1	64	65	26	0,722	780	19.500	1,895	1.900	-	34	1372	0,569	8,086	0,832	10,033	15,390	97,234	Α
	Knotenpi	unktssumr	men:					3700						6480							
	Gewichte	te Mittelw	rerte:												0,589	20,385					

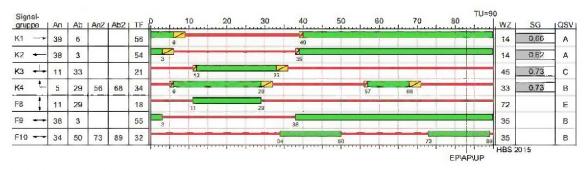
Entwicklungsstufe 2 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	tu [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N мs,95>пх	nc [Kŕz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	NMS [Kfz]	Nws,95 [Kfz]	Lx [m]	QSV
	1	-	КЗ	13	14	77	0,156	345	8,625	1,890	1905		7	288	1,198	429,080	31,270	39,895	50,577	317,118	F
1	2	L	КЗ	13	14	77	0,156	345	8,625	2,024	1779	(x)	7	278	1,241	502,885	35,901	44,526	55,811	350,270	F
	1	1_	K4	24	25	66	0,278	590	14,750	1,867	1928	(x)	13	536	1,101	270,701	35,467	50,217	62,202	387,021	F
2	2	-	К2	62	63	28	0,700	740	18,500	1,825	1973	-	34	1379	0,537	8,363	0,718	9,611	14,854	90,372	Α
	3	-	К2	62	63	28	0,700	740	18,500	1,825	1973	-	34	1379	0,537	8,363	0,718	9,611	14,854	90,372	Α
	2	-	K1	64	65	26	0,722	800	20,000	1,841	1955	-	35	1413	0,566	7,973	0,821	10,223	15,630	95,937	A
3	1		K1	64	65	26	0,722	800	20,000	1,841	1955	-	35	1413	0,566	7,973	0,821	10,223	15,630	95,937	A
	Knotenpu	ınktssum	men:					4360						6686							
	Sewichte	te Mittelw	rerte:												0,732	116,141					

4.4 Stresemannstraße / Plöner Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

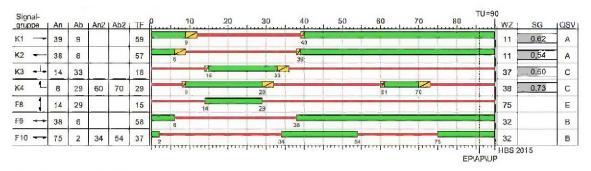
Entwicklungsstufe 1 – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Estr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge (Kfz)	N _M s [Kfz]	Nivis,as [Kfz]	L _x [m]	QSV
	1	حلي	К3	18	19	72	0,211	169	4,225	1,946	1850	-	9	378	0,447	35,945	0,480	4,181	7,639	48,584	С
1	2	L-	КЗ	18	19	72	0,211	171	4,275	2,053	1754	-	9	370	0,462	36,021	0,512	4,249	7,735	49,241	С
	1	Ł	K4	29	30	51	0,333	390	9,750	1,991	1808	(x)	15	602	0,648	32,777	1,212	9,505	14,719	97,675	В
2	2	•	K2	57	58	33	0,644	660	16,500	1,881	1914	-	31	1233	0,535	10,780	0,712	9,674	14,934	93,636	Α
	3	-	К2	57	58	33	0,644	660	16,500	1,861	1914	-	31	1233	0,535	10,780	0,712	9,674	14,934	93,636	Α
	2	-	К1	59	60	31	0,667	800	20,000	1,895	1900	-	32	1267	0,631	11,807	1,123	12,623	18,632	117,717	A
3	1	-	K1	59	60	31	0,667	800	20,000	1,895	1900	-	32	1267	0,631	11,807	1,123	12,623	18,632	117,717	A
	Knotenpu	ınktssumi	men:					3650						6350							
	Gewichte	te Mittelw	verte:												0,582	15,928					

Stresemannstraße / Plöner Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

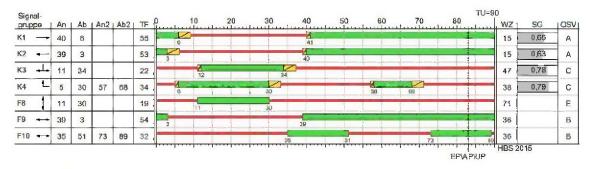
Entwicklungsstufe 1 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs (Kfz/h)	Nw5.95>nk	nc [Kfz/U]	C (Kfz/h)	х	tw [s]	Nge (Kfz)	N _{Ms} (Kfz)	Nws,95 [Kfz]	Lx [m]	QSV
	1	حلم	КЗ	21	22	59	0,244	315	7,875	1,891	1904	-	11	449	0,702	44,375	1,608	8,819	13,841	86,783	C
1	2	Lo	КЗ	21	22	69	0,244	315	7,875	2,022	1780	-	11	434	0,726	46,585	1,848	9,083	14,180	88,909	C
	1	₱	K4	34	35	56	0,389	550	13,750	1,867	1928	(x)	19	750	0,733	33,042	1,988	13,740	20,009	124,496	В
2	2	+	K2	54	55	36	0,611	750	18,750	1,827	1970	-	30	1204	0,623	14,218	1,078	12,855	18,919	115,217	А
	3	-	K2	54	55	36	0,611	750	18,750	1,627	1970	-	30	1204	0,623	14,218	1,078	12,855	18,919	115,217	Α
-	2	+	K1	56	57	34	0,633	820	20,500	1,840	1957	-	31	1239	0,662	14,274	1,322	14, 272	20,661	126,593	A
3	1	-	K1	56	57	34	0,633	820	20,500	1,840	1957	-	31	1239	0,662	14,274	1,322	14,272	20,661	126,693	Α
	Knotenpu	ınktssumi	men:					4320						6519							
	Gewichte	te Mittelw	erte:												0,665	21,195					

Stresemannstraße / Plöner Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Entwicklungsstufe 2 – Spitzenstunde früh

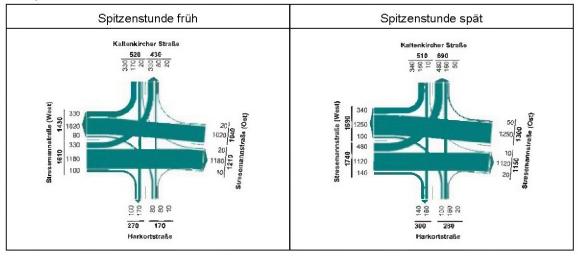

A-Signalgruppen ausgeblendet!

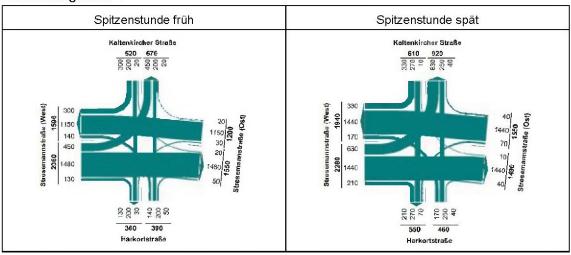
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>17K	nc [kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nws [Kfz]	Nivis,95 [Kfz]	Li [m]	QSV
	1	-4-	К 3	18	19	72	0,211	184	4,600	1,949	1847	-	9	379	0,485	36,957	0,566	4,627	8,265	52,764	С
1	2	4	К3	18	19	72	0,211	186	4,650	2,051	1755	-	9	370	0,503	37,295	0,612	4,716	8,389	53,354	C
	1	t _	K4	29	30	61	0,333	440	11,000	1,991	1808	(x)	15	602	0,731	38,074	1,942	11,640	17,410	115,533	C
2	2	-	К2	57	58	33	0,644	665	16,625	1,881	1914	-	31	1233	0,539	10,852	0,725	9,790	15,082	94,564	Α
	3	-	K2	57	58	33	0,644	665	16,625	1,881	1914	-	31	1233	0,539	10,852	0,725	9,790	15,082	94,564	Α
	2	-	K1	59	60	31	0,667	780	19,500	1,895	1900	-	32	1267	0,616	11,431	1,042	12,064	17,938	113,332	Α
3	1	-	K1	59	60	31	0,667	780	19,500	1,895	1900	-	32	1267	0,616	11,431	1,042	12,064	17,938	113,332	Α
	Knotenpu	ınktssumi	men:					3700						6351							
	Gewichte	te Mittelw	erte:												0,590	16,961					

Stresemannstraße / Plöner Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

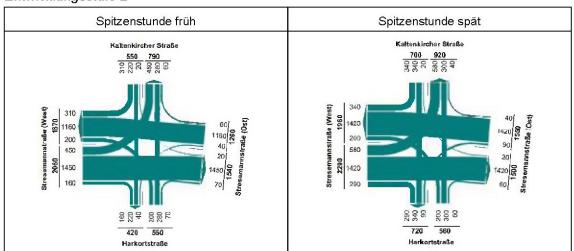
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

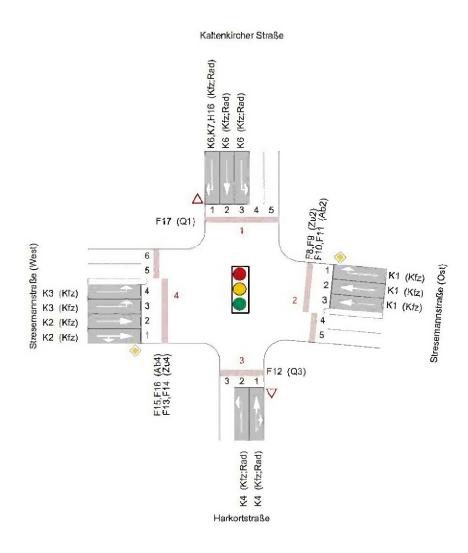

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	EA [S]	ts [s]	fΑ	q [Kfz/h]	m [kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>11K	nc [Kfz/U]	C (Kfz/h)	х	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	<u>t.</u> [m]	QSV
	1	-4	К3	22	23	68	0,256	345	8,625	1,890	1905	-	12	472	0,731	45,689	1,915	9,837	15,141	94,934	С
1	2	-	К3	22	23	68	0,256	345	8,625	2,024	1779	(x)	31	456	0.757	48,723	2,258	10,217	15,623	98,050	C
	1	Ł	K4	34	35	56	0,389	590	14,750	1,867	1928	(x)	19	750	0,787	38,271	2,929	15,918	22,666	141,028	С
2	2	-	K2	53	54	37	0,600	740	18,500	1,825	1973	-	30	1182	0,626	14,863	1,094	12,945	19,030	115,779	A
	3	•	K2	53	54	37	0,600	740	18,500	1,825	1973	-	30	1182	0,626	14,863	1,094	12,945	19,030	115,779	A
	2		К1	55	56	35	0,622	800	20,000	1,841	1955	-	30	1217	0,657	14,677	1,286	14,070	20,414	125,301	A
3	1	-	Кl	55	56	35	0,622	800	20,000	1,841	1955	-	30	1217	0,657	14,677	1,286	14,070	20,414	125,301	A
	Клотепри	ınktssumi	men:					4360						6476							
	Gewichte	te Mittelw	erte:												0,678	23,081					


5 Stresemannstraße / Kaltenkircher Platz (LSA 151)

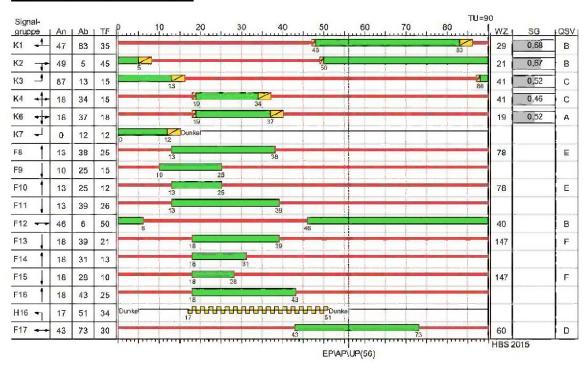
5.1 Stresemannstraße / Kaltenkircher Platz – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

Entwicklungsstufe 1

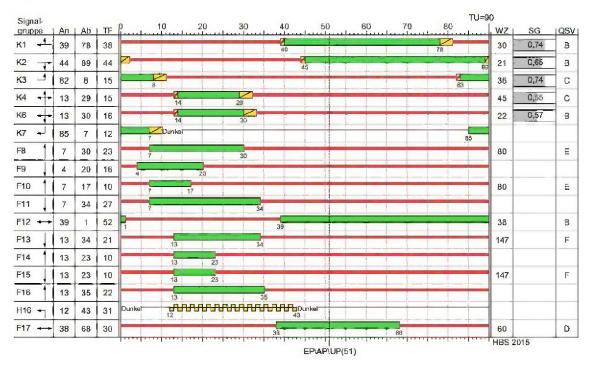


Entwicklungsstufe 2


5.2 Stresemannstraße / Kaltenkircher Platz – Knotenpunktgeometrie Bestand

5.3 Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Bestand

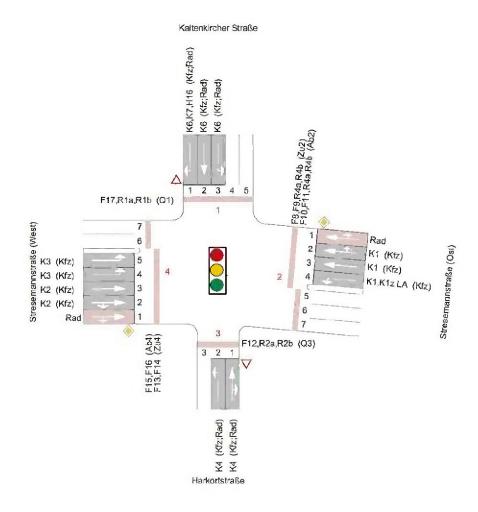
Analyse – Spitzenstunde früh



Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [5]	ts [s]	fA	q [Xfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS.95>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Nise [Kfz]	Nius [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	له ا	K6, K7	30	31	60	0,344	330	8,250	1,949	1847	×								78,038	
1	2	1	K6	18	19	72	0,507	170	4,250	1,816	1982	-	24	959	0,521	17,367	0,667	9,042	14,128	85, 531	Α
	3	4	Кб	18	19	72	0,211	20	0,500	2,009	1792	-	9	351	0,057	29,755	9,033	0,443	1,562	9,728	В
	1	Ł_	K1	35	36	55	0,400	20	0,500	2,080	1731		17	680	0,029	16,856	0,016	0,323	1,284	9,282	A
2	2		K1	35	36	55	0,400	510	12,750	1,922	1873	-	19	749	0,681	29,254	1,454	11,968	17,819	114,184	В
	3	•	K1	35	36	55	0,400	510	12,750	1,922	1873	-	19	749	0,681	29,254	1,454	11,968	17,819	114,184	В
	2	*1	K4	15	16	75	0,178	80	2,000	2,134	1687	-	4	175	0,457	48,132	0,496	2,377	4,984	32,984	С
3	1	-	K4	15	16	75	0,178	90	2,250	1,877	1918	41'	9	341	0,264	34,059	0,204	2,145	4,622	28,259	В
	4	į.	K3	15	16	75	0,178	165	4,125	2,022	1780	-	8	317	0,521	41,009	0,660	4,397	7,943	49,803	C
	3		K3	15	16	75	0,178	155	4,125	2,022	1780	-	8	317	0,521	41,009	0,660	4,397	7,943	49,803	C
4	2		K2	45	46	45	0,511	647	16,175	1,895	1900	-	24	971	0,666	21,302	1,346	13,336	19,512	123,277	В
	1	7*	K2	45	46	45	0,511	633	15,825	1,926	1869	-	24	949	0,667	21,608	1,353	13,129	19,257	121,550	В
	Knoten	punktssu	mmen:					3340						6558							
	Gewich	tete Mitte	werte:												0,611	26,157					

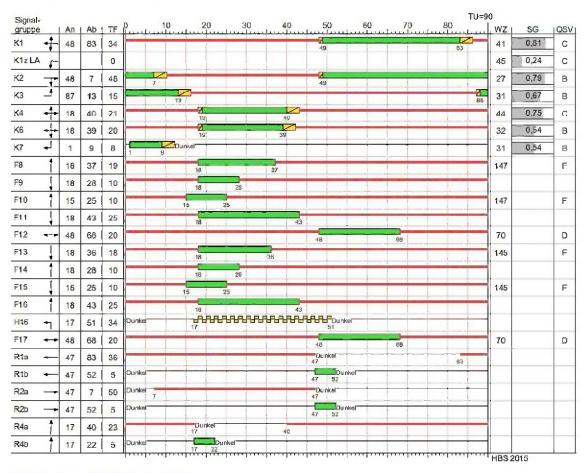
Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Bestand

Analyse – Spitzenstunde spät



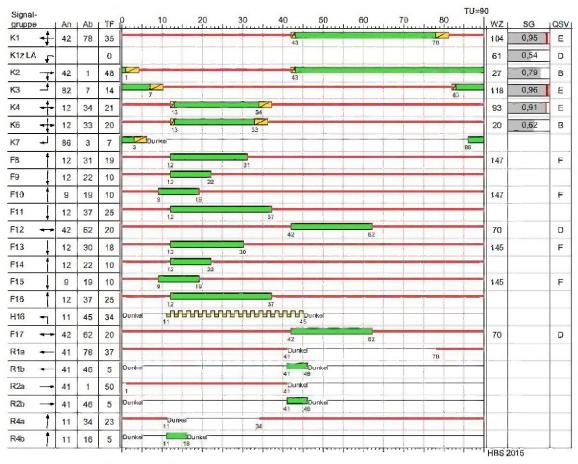
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [si	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Not [Kfz]	Nws [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
	1	له	K6, K7	28	29	62	0,322	340	8,500	1,949	1847	×								85,216	
1	2		K6	16	17	74	0,464	160	4,000	1,800	2000	-	22	878	0,569	20,965	0,829	9,932	15,262	91,572	В
	3	L,	Кb	ТЬ	17	14	0,189	10	0,250	1,935	1860	-	1	2//	0,036	33,038	0,021	0,235	1,055	6,330	В
	1	Ł	K1	38	39	52	0,433	50	1,250	1,993	1806	-	18	710	0,070	17,262	0,042	0,822	2,355	14,554	A
2	2	-	K1	38	39	52	0,433	625	15,625	1,841	1955	-	21	847	0,738	30,038	2,065	15,085	21,654	132,912	В
	3	+	K1	38	39	52	0,433	625	15,625	1,841	1955	-	21	847	0,738	30,038	2,065	15,085	21,654	132,912	В
	2	*1	K4	15	16	75	0,178	100	2,500	2,038	1766	-	5	182	0,549	52,936	0,736	3,113	6,097	38.521	D
3	1	-	K4	15	15	75	Q, 178	180	4,500	1,837	1959	-	9	349	0,516	40, 155	0,647	4,720	8,394	51,069	С
	4		К3	15	16	75	0,178	240	6,000	1,966	1831	×								74,725	
	3		K3	15	16	75	0,356	240	6,000	1,966	1831	-	16	652	0,736	36,404	2,013	12,485	18,461	112,538	С
4	2	-	K2	44	45	46	0,500	634	15,850	1,854	1942	-	24	971	0,653	21,357	1,255	13,022	19,125	118,193	В
	1	+	K2	44	45	46	0,500	626	15,650	1,883	1912	-	24	957	0,654	21,460	1,261	12,888	18,960	117,287	В
	Knoten	punktssu	mmen;					3830						6670							
	Gewich	tete Mitte	lwerte:												0,662	27,727					

5.4 Stresemannstraße / Kaltenkircher Platz – Knotenpunktgeometrie Planung


Quelle: eigener Vorentwurf auf Grundlage von Schmeck Junker GmbH, Busbeschleunigungsprogramm M3 Knotenpunkt Kaltenkircher Platz; Verkehrstechnischer Lageplan, Erstverschickung, 20.06.2017

5.5 Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Planung

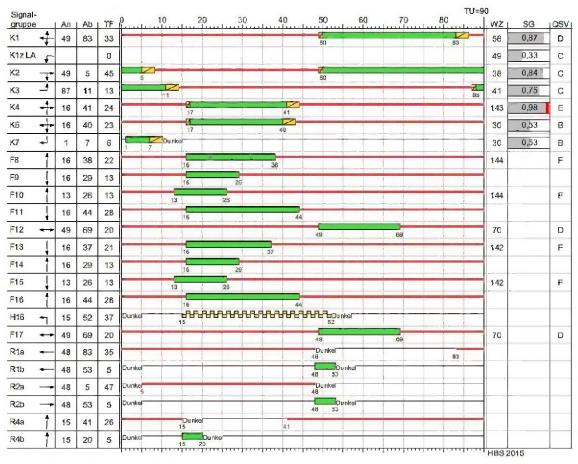
Entwicklungsstufe 1 – Spitzenstunde früh


Vorentwurf/Konzept (Büro SBI, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NMS,85>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L _x [m]	QSV
	1	ل	K6, K7	28	29	62	0,322	300	7,500	1,950	1846	-	14	561	0,535	30,576	0,708	6,942	11,398	68,935	В
1	2		К6	20	21	70	0,233	200	5,000	1,814	1985	-	12	463	0,432	32,935	0,450	4,714	8,386	50,719	В
	3	4	К6	20	21	70	0,233	20	0,500	2,009	1792	-	7	270	0,074	33,390	0,044	0,473	1,636	10,189	В
	2	1	K1	34	35	56	0,389	584	14,600	1,922	1873	-	18	725	0,806	41,552	3,419	16,426	23,280	149,178	С
2	3	+	K1	34	35	56	0,389	586	14,650	1,922	1873		18	729	0,804	41,052	3,363	16,388	23,234	148,883	С
	4	_	K1, K1zLA	34	35	56	0,389	30	0,750	1,800	2000	-	3	127	0,236	44,961	0,174	0,887	2,480	14,880	С
,	2	•	K4	21	22	69	0,244	140	3,500	2,142	1681	х								53,143	
3	1	+	K4	21	22	69	0,290	250	6,250	1,912	1883		13	523	0,746	43,554	2,122	10,956	16,554	101,211	С
	5	_+	К3	15	16	75	0.178	225	5,625	1,885	1910	x								67.959	
	4	_+	К3	15	16	75	0,364	225	5,625	2,026	1777	-	17	672	0,670	31,386	1,365	10,828	16,393	102,981	В
4	3	-	K2	48	49	42	0,544	814	20,350	1,895	1900	-	26	1034	0,787	26,807	3,000	19,227	25,643	168,330	В
	2	7	K2	48	49	42	0,544	796	19,900	1,903	1891	-	25	1012	0,787	27,460	2,995	18,978	26,346	166,454	В
	Kni	otenpunk	tssummen:		ı			4170						6116							
	Ges	wichtete N	Aittelwerte:												0,733	33,786					

Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Planung

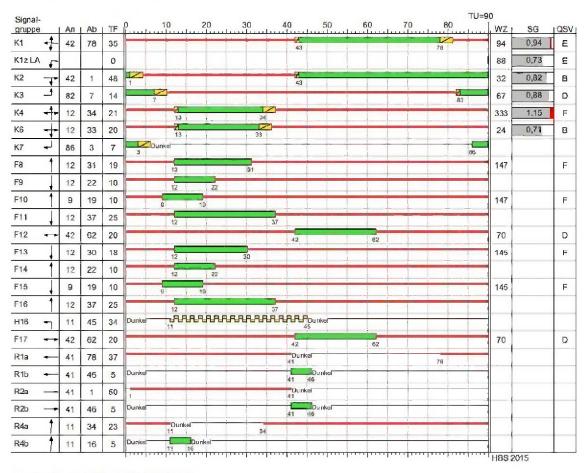
Entwicklungsstufe 1 - Spitzenstunde spät


Vorentwurf/Konzept (Büro SBI, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	[s]	ts [s]	f _A	q [Kfz/h]	m [Kfz/U]	fB [5/Kfz]	qs [Kfz/h]	№5,95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	Nws.95 [Kfz]	Lx [m]	QSV
	1	له ا	K6, K7	27	28	63	0,311	330	8,250	1,949	1847	ж								78,038	
1	2		К6	20	21	70	0,508	270	6,750	1,800	2000	-	24	972	0,617	19,733	1,044	11,793	17,601.	105,606	A
	3	L,	К6	20	21	70	0,233	10	0,250	1,935	1860	-	7	261	0,038	33,763	0,022	0,238	1,063	6,378	В
	2	+1_	K1	35	36	55	0,400	736	18,400	1,842	1954	-	19	775	0,950	105,307	17,015	34,829	44,810	275,044	Е
2	3		K1	35	36	55	0,400	744	18,600	1,841	1955	-	20	782	0,951	105,825	17,308	35,320	45,371	278,487	E
	4	-	K1, K1z LA	35	36	55	0,400	70	1,750	1,800	2000	(x)	3	129	0,543	60,537	0,708	2,404	5,026	30,156	D
	2	*	K4	21	22	69	0,244	170	4,250	2,038	1766	×								74,868	
3	1	1+	K4	21	22	69	0,269	290	7,250	1,842	1955	-	13	506	0,909	92,716	8,558	19,685	27,189	165,581	E
	5		КЗ	14	15	76	0,157	315	7,875	1,825	1973	×								152,009	
	4		КЗ	14	15	76	0,346	315	7,875	1,962	1835	(x)	16	658	0,957	117,632	16,241	31,641	41,154	250,361	E
4	3		K2	48	49	42	0,544	834	20,850	1,856	1940	-	26	1056	0,790	26,909	3,080	19,753	27,270	168,692	В
	2	7	K2	48	49	42	U,544	819	20,400	1,850	1946	-	Zb	1031	0,791	21,944	3,101	19,610	27,099	167,472	R
	Kne	otenpunk	tssummen:					4900						5170							
	Gev	wichtete N	Aittelwerte:												0,845	68,297					

Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Planung

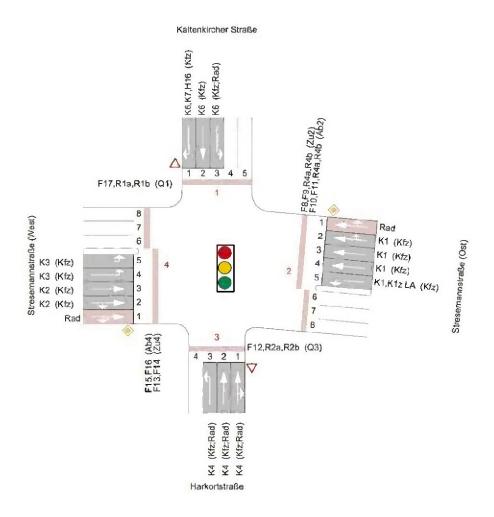
Entwicklungsstufe 2 - Spitzenstunde früh


Vorentwurt/Konzept (Büro SBI, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	(s)	ŧа	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Xfz/h]	Nмsээ>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS95 [Kfz]	[m]	QSV
	1	٦	K6, K7	29	30	61	0,333	310	7,750	1,949	1847	-	15	582	0,533	29,718	0,702	7,082	11,583	69,984	В
1	2	1	K6	23	24	67	0,267	220	5,500	1,818	1980	-	13	529	0,416	30,057	0,420	4,955	8,720	52,843	8
	3	L.	K6	23	24	67	0,267	20	0,500	2,009	1792	-	G	245	0,082	34,630	0,050	0,486	1,565	10,370	В
	2	+1_	K1	33	34	57	0,378	605	15,125	1,922	1873	-	17	697	0,868	58,570	6,265	20,293	27,912	178,693	D
2	3	-	K1	33	34	57	0,378	615	15,375	1,922	1873	-	18	708	0,869	58, 285	6,364	20,605	28,282	181,231	D
	4	7	K1, K1z LA	33	34	57	0,378	40	1,000	1,800	2000	(x)	3	120	0,333	49,123	0,285	1,244	3,130	18,780	C
	2	+	K4	24	25	66	0,278	200	5,000	2,138	1684	х								90,347	
3	1	1-	K4	24	25	66	0,312	350	8,750	1,915	1880	-	14	562	0,979	143,005	17,537	31,157	40,597	248,697	E
	5	Ť	K3	13	14	77	0,156	225	5,625	1,885	1910	×								76,138	
	4		КЗ	13	14	77	0,324	225	5,625	2,026	1777	-	15	598	0,753	40,703	2,243	12,302	18,234	114,546	C
4	3	-	K2	45	46	45	0,511	817	20,425	1,894	1901	-	24	971	0,841	37,382	4,993	22,508	30,532	192,718	C
	2	7	K2	45	46	45	0,511	793	19,825	1,906	1888	-	24	943	0,841	38,436	4,970	22,085	30,033	189,748	c
	Kno	otenpunk	tssummen:					4420						5955							
	Gev	vichtete N	Aittelwerte:												0,806	56,053					

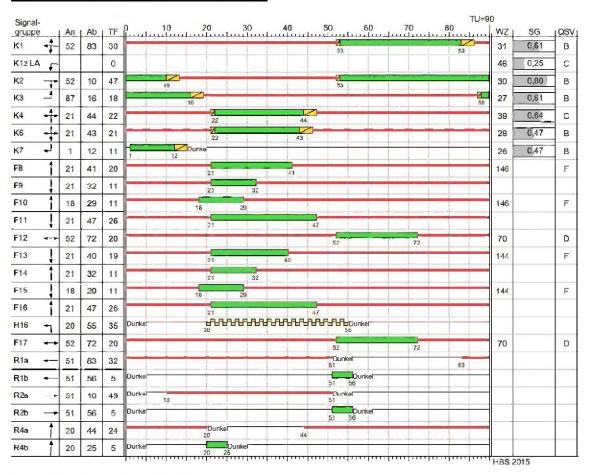
Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Planung

Entwicklungsstufe 2 - Spitzenstunde spät



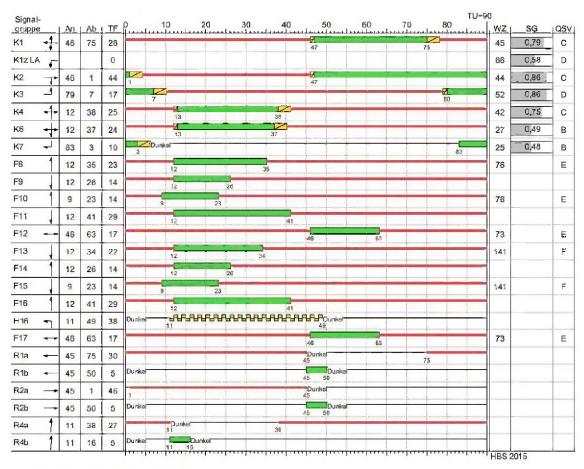
Vorentwurf/Konzept (Büro SBi, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	[s]	ts.	ts [s]	fa	q [Kfz/h]	m (Kfz/U)	tn [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	×	(s)	NGE [Kfz]	N _{MS} (Kfz)	NMS,95 [Kfz]	[m]	QSV
	1	٦	K6, K7	27	28	63	0,311	340	8,500	1,949	1847	х								80,812	
1	2	1	K6	20	21	70	0,501	340	8,500	1,800	2000		24	961	0,708	23,781	1,713	14,859	21,378	128, 268	В
	3	4	K6	20	21	70	0,233	20	0,500	1,935	1860	-	6	221	0,090	36,201	0,055	0,500	1,696	10,176	С
	2	<u>-t</u> .	K1	35	36	55	0,400	727	18,175	1,842	1954	-	1.9	775	0,938	95,372	14,919	32,381	42,005	257,827	E
2	3	+	K1	35	36	55	0,400	733	18,325	1,841	1955	-	20	782	0,937	94,220	14,838	32,424	42,054	258,127	E
	4	ţ	Ki, Kiz LA	35	36	55	0,400	90	2,250	1,800	2000	(x)	3	124	0,726	88,491	1,620	3,830	7,140	42,840	E
,	2	4	K4	21	22	69	0,244	200	5,000	2,038	1766	×								151,146	
3	1	1	K4	21	22	69	0,258	360	9,000	1,845	1951		12	486	1,152	332,657	40,401	54,401	66,875	407,269	F
	5		К3	14	15	76	0,167	290	7,250	1,829	1968	x								113,136	
	4	_+	K3	14	15	76	0,347	290	7,250	1,966	1831	(x)	16	658	0,881	66,531	7,109	20,747	28,450	173,431	D
4	3		K2	48	49	42	0,544	869	21,725	1,854	1942		26	1056	0,823	31,185	4,178	22,115	30,068	185,820	В
	2	+	K2	48	49	42	0,544	841	21,025	1,848	1948		26	1023	0,822	32,367	4,122	21,691	29,568	182,730	В
	Kne	otenpunk	tssummen:					5100						5086							
	Gev	wichtete N	dittelwerte:												0,878	86,756					


5.6 Stresemannstraße / Kaltenkircher Platz – Knotenpunktgeometrie Zusätzlicher Ausbau

5.7 Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Zusätzlicher Ausbau

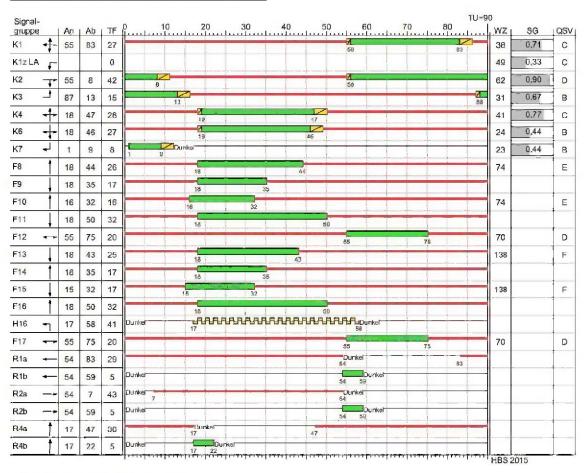
Entwicklungsstufe 1 – Spitzenstunde früh


Vorentwurt/Konzept (Büro SBI, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa.	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,яз≻пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L _x (m)	QSV
	1	٦	K6, K7	32	33	58	0,367	300	7,500	1,950	1846	-	16	643	0,467	25,781	0,525	6,364	10,630	64,290	В
1	2	1	K6	21	22	69	0,244	200	5,000	1,814	1985	-	12	484	0,413	31,580	0,414	4,618	8,252	49,908	В
	3	L,	K6	21	22	69	0,244	20	0,500	2,009	1792	-	9	340	0,059	30,230	0,035	0,445	1,573	9,797	В
	2	-±.	K1	30	31	60	0,344	387	9,675	1,922	1873	-	16	638	0,607	30,225	0,989	9,029	14,111	90,339	В
	3		K1	30	31	60	0,344	391	9,775	1,921	1874	**	16	644	0,507	30,005	0,989	9,094	14,194	90,870	В
2	4	ļ	K1	30	31	60	0,344	392	9,800	1,921	1874	-	16	644	0,509	30,081	0,999	9,132	14,243	91,184	В
	5	-	K1, K1z LA	30	31	60	0,344	30	0,750	1,800	2000	*	3	120	0,250	46,008	0,188	0,904	2,512	15,072	С
	3	*	K4	22	23	68	0,256	140	3,500	1,993	1806	1	5	218	0,642	56,407	1,133	4,469	8,044	53,428	D
3	2	1	K4	22	23	68	0,256	133	3,325	1,831	1966	1	13	503	0,264	28, 175	0,204	2,857	5,716	34,879	В
	1	1	K4	22	23	68	0,256	117	2,925	2,005	1796	-	11	444	0,264	28,949	D,204	2,560	5,266	32,291	В
	5		K3	18	19	72	0,211	225	5,625	1,885	1910	×								62,079	
	4		K3	18	19	72	0,398	225	5,625	2,025	1777	-	18	735	0,612	26,531	1,015	9,968	15,308	96,165	В
4	3		K2	47	48	43	0,533	814	20,350	1,895	1900	-	25	1013	0,804	29,508	3,471	20, 101	27,684	174,90B	В
	2	7	K2	47	48	43	0,533	796	19,900	1,903	1591	-	25	991	0,503	30,074	3,433	19,786	27,309	172,538	В
	Kne	otenpunk	tssummen:					4170						7417							
	Get	wichtete N	/ ittelwerte:												0,640	30,265					

Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Zusätzlicher Ausbau

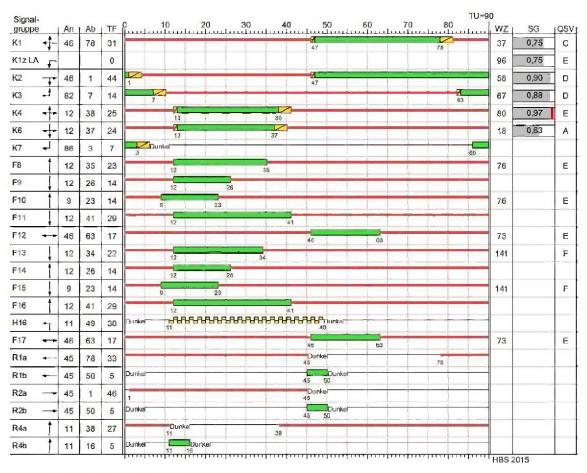
Entwicklungsstufe 1 - Spitzenstunde spät


Vorentwurf/Konzept (Büro SBI, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	ts [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	№мѕ,э≤>пж	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	N M5,95 [Kfz]	L _x [m]	QSV
	1	4	K6, K7	34	35	56	0,389	330	8,250	1,949	1847	-	17	685	0,482	24,629	0,561	6,880	11,316	68,371	8
1	2	.	K6	24	25	66	0,278	270	6,750	1,800	2000	-	14	556	0,486	30,813	0,570	6,205	10,418	62,508	В
	3	L.	K6	24	25	66	0,278	10	0,250	1,935	1860	-	9	370	0,027	29,174	0,015	0,216	1,002	6,012	В
	2		K1	28	29	62	0,322	488	12,200	1,843	1953	-	15	619	0,788	44,860	2,902	14,009	20,339	124,841	С
2	3	+	K1	28	29	62	0,322	496	12,400	1,841	1955	-	16	630	0,787	44, 187	2,884	14, 145	20,506	125,866	С
4	4	1	Κĭ	28	29	62	0,322	496	12,400	1,841	1955	-	16	630	0,787	44, 187	2,884	14, 145	20,506	125,866	C
	5	-	K1, K1z ŁA	28	29	62	0,322	70	1,750	1,800	2000	(x)	3	120	0,583	66,343	0,838	2,543	5,240	31,440	D
	3	•	K4	25	26	65	0,289	170	4,250	1,895	1900	-	6	227	0,749	70,000	1,996	6,107	10,286	64,987	D
3	2	1	K4	25	26	65	0,289	148	3,700	1,827	1970	-	14	569	0,260	25,862	0,200	3,044	5,995	36,510	8
	1	+	K4	25	26	65	0,289	142	3,550	1,857	1938	-	14	549	0,259	26,269	0,199	2,946	5,849	35,620	В
	5	ļ_	К3	17	18	73	0,200	315	7,875	1,825	1973	×								97,095	
	4	_	K3	17	18	73	0,388	315	7,875	1,962	1835	(x)	18	736	0,856	52,485	5,571	20,003	27,567	167,718	D
4	3	-	K2	44	45	46	0,500	836	20,900	1,856	1940	-	24	971	0,861	43,085	5,293	24,642	33,037	204,367	С
	2	4	K2	44	45	46	0,500	814	20,350	1,850	1946	-	24	945	0,861	44,268	5,254	24,240	32,567	201,264	С
	Kn	otenpunk:	tssummen:					4900						7607							
	Get	wichtete N	littelwerte:												0,747	43,201					

Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Zusätzlicher Ausbau

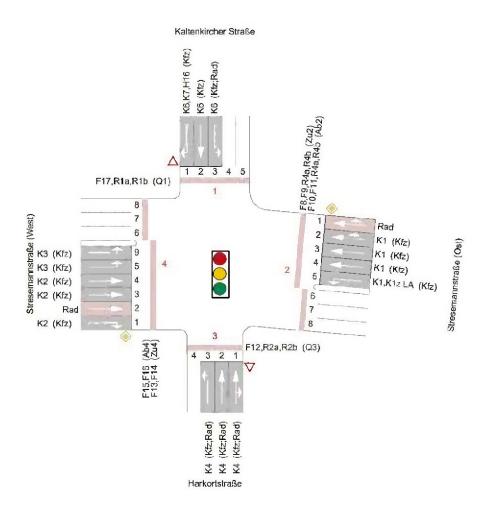
Entwicklungsstufe 2 - Spitzenstunde früh


Vorentwurf/Konzept (Büro SBI, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	tr (s)	ta [s]	ts. [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм598>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Noe [Kfz]	Nes [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	•	K6, K7	35	36	55	0,400	310	7,750	1,949	1847	-	18	705	0,440	23,044	0,467	6,224	10,443	63,097	3
1	2	,	K6	27	28	63	0,311	220	5,500	1,818	1980	-	15	616	0,357	25,912	0,322	4,585	8,206	49,728	8
	3	-	KG	27	28	63	0,311	20	0,500	2,000	1792		9	362	0,055	20,206	0,032	0,435	1,550	9,653	В
	2	-1-	K1	27	28	63	0,311	399	9,975	1,926	1869	-	14	565	0,706	38,461	1,663	10,512	15,995	102,592	C
2	3		К1	27	28	63	0,311	410	10,250	1,922	1873	a.	15	583	0,703	37,442	1,636	10,674	36,199	103,803	C
2	4		K1	27	28	63	0,311	411	10,275	1,922	1873	-	15	583	0,705	37,582	1,655	10,723	16,261	104,200	C
	S	f −	K1, K1z LA	27	28	63	0,311	40	1,000	1,800	2000	(x)	3	120	0,333	49,123	0,285	1,244	3,130	18,780	С
	3	4-	K4	28	29	62	0,322	200	5,000	1,989	1810	-	7	260	0,769	68,814	2,292	7,105	11,613	76,994	đ
3	2	1	K4	28	29	62	0,322	186	4,650	1,836	1961	-	16	631	0,295	24,226	0,240	3,724	6,988	42,767	В
	1	1	K4	28	29	62	0,322	164	4,100	2,006	1795	-	54	553	0,297	25,294	0,242	3,365	6,467	39,733	8
	5	_*	К3	15	16	75	0,178	225	5,625	1,885	1910	х								67,959	
	4	_*	KЗ	15	16	75	0,364	225	5,625	2,025	1///	-	11	6/2	0,670	31,386	7,365	10,828	16,393	102,981	용
4	3	-	К2	42	43	48	0,478	817	20,425	1,894	1901	-	23	908	0,900	61,864	10,176	28,888	37,978	239,717	D
	2	→	К2	42	43	48	0,478	793	19,825	1,906	1888	-	22	881	0,900	63,131	10,041	28,275	37,268	235,459	D
	Kne	otenpunk	tssummen:					4420						7439							
	Ges	wichtete N	/littelwerte:												0,701	44,951					

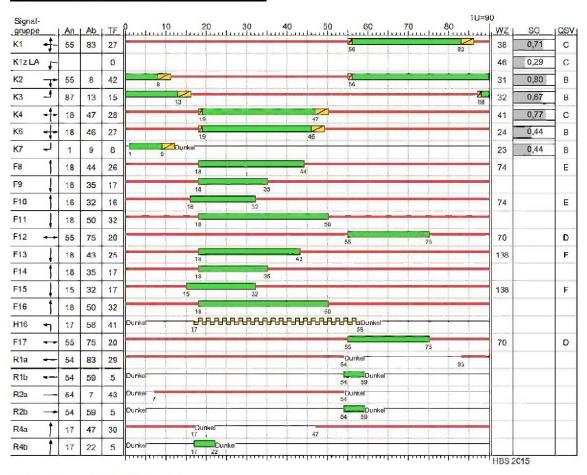
Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Zusätzlicher Ausbau

Entwicklungsstufe 2 - Spitzenstunde spät



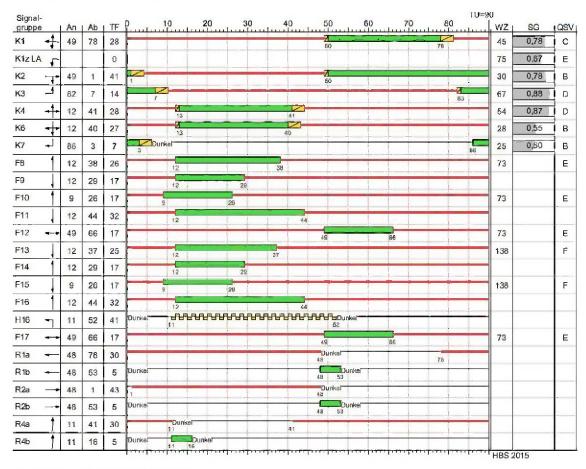
Vorentwurf/Konzept (Büro SBI, Stand 09/2018)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	FA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nмs,95≻лк	n∈ [Kfz/U]	C [Kfz/h]	x	tw [s]	N _{GE} [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	4	K6, K7	31	32	59	0,356	340	8,500	1,949	1847	x								74,486	
1	2		K6	24	25	66	0,560	340	8,500	1,800	2000	-	27	1075	0,633	17,290	1,133	12,721	18,753	112,518	А
	3	4	K6	24	25	66	0,278	20	0,500	1,935	1860	v	9	342	0,058	30,645	0,034	0,446	1,575	9,450	В
	2	+1.	K1	31	32	59	0,356	482	12,050	1,842	1954		17	685	0,704	33,873	1,655	12,042	17,911	109,830	В
•	3	+	K1	31	32	59	0,356	489	12,225	1,841	1955	-	17	696	0,703	33,407	1,646	12,147	18,041	110,736	В
2	4		K1	31	32	59	0,356	489	12,225	1,841	1955	-	17	696	0,703	33,407	1,646	12,147	18,041	110.736	В
	5	£-	K1, K1z LA	31	32	59	0,356	90	2,250	1,800	2000	(x)	3	120	0,750	96,116	1,816	4,031	7,427	44,562	Е
	3	*	K4	25	26	65	0,289	200	5,000	1,895	1900		5	207	0,966	176,120	7,831	12,810	18,863	119,176	E
3	2	1	K4	25	26	65	0,289	184	4,600	1,829	1968	-	14	569	0,323	26,831	0,275	3,882	7,214	43,977	В
	1	+	K4	25	26	65	0,289	176	4,400	1,861	1934	-	14	545	0,323	27,340	0,275	3,751	7,026	42,704	В
	5		К3	14	15	76	0,167	290	7,250	1,829	1968	х								113,136	
	4		K3	14	15	76	0,347	290	7,250	1,966	1831	(x)	16	658	0,881	66,531	7,109	20,747	28,450	173,431	D
4	3		K2	44	45	46	0,500	870	21,750	1,854	1942	-	2,4	971	0,896	57,181	9,926	29,627	38,833	239,988	D
	2	7	K2	44	45	46	0,500	840	21,000	1,848	1948	-	23	937	0,896	58,877	9,780	28,934	38,031	235,032	D
	Kn	atenpunk	tssummen:					5100						7501			ı				
	Ger	wichtete N	Mittelwerte:												0,761	49,566					


5.8 Stresemannstraße / Kaltenkircher Platz – Knotenpunktgeometrie Maximalausbau

5.9 Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Maximalausbau

Entwicklungsstufe 2 – Spitzenstunde früh

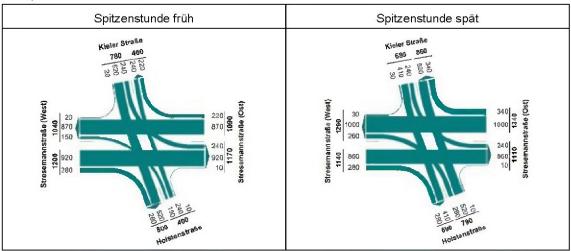

Vorentwurf/Konzept (Büro SBI, Stand 09/2018)

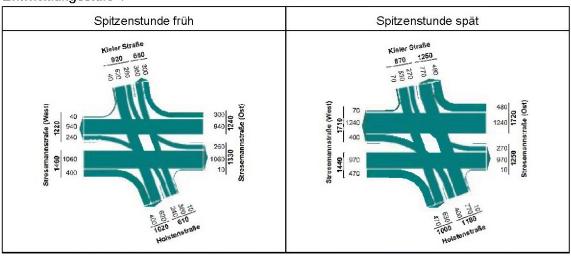
Zuf	Fstr.Nr.	Symbol	SGR	t⊬ [s]	ta [s]	ts [s]	fд	q (Kfz/h)	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N=45,95>nx	nc [Kf2/U]	C [Kfz/ħ]	х	tw [s]	NGE [Kfz]	Nыs [Kfz]	Nмs,яs [Kfz]	L _x	QSV
	1	له	K6, K7	35	36	55	0,400	310	7,750	1,949	1847	-	18	705	0,440	23,044	0,467	6,224	10,443	63,097	В
1	2	J	K6	27	28	63	0,311	220	5,500	1,818	1980		15	616	0,357	25,912	0,322	4,585	8,206	49,728	В
	3	l.	K6	27	28	63	0,311	20	0,500	2,009	1792		9	362	0,055	29,296	0,032	0,435	1,550	9,653	В
	2	1	K1	27	28	63	0,311	399	9,975	1,926	1869	-	14	565	0,706	38,461	1,663	10,512	15,995	102,592	С
~	3		K1	27	28	63	0,311	410	10,250	1,922	1873	-	15	583	0,703	37,442	1,636	10,674	16,199	103,803	С
2	4		K1	27	28	63	0,311	411	10,275	1,922	1873	-	15	583	0,705	37,582	1,655	10,723	16,261	104,200	С
	5	-	K1, K1z LA	27	28	63	0,311	40	1,000	1,800	2000	(x)	3	136	0,294	46,159	0,237	1,188	3,031	18,186	С
	3	•	K4	28	29	62	0,322	200	5,000	1,989	1810	-	7	260	0,769	68,814	2,292	7, 105	11,613	76,994	D
3	2	†	K4	28	29	62	0,322	186	4,650	1,836	1961		16	631	0,295	24,226	0,240	3,724	6,988	42,767	В
	179	-	K4	28	29	62	0,322	164	4,100	2,006	1795	-	14	553	0,297	25,294	0,242	3,365	6,467	39,733	В
	9	٦,	К3	15	16	75	0,178	225	5,625	1,885	1910	к								67,959	
	5	_+	K3	15	16	75	0,351	225	5,625	1,885	1910	-	17	672	0,670	32,095	1,365	10,911	16,497	103,634	В
4	4		К2	42	43	48	0,478	725	18,125	1,896	1900	-	23	908	0,798	32,752	3,261	18,557	25,842	163,270	В
	3		K2	42	43	48	0,478	725	18, 125	1,895	1900	-	23	908	0,798	32,752	3,261	18,557	25,642	163,270	В
	9	Γ*	K2	42	43	48	0,478	160	4,000	2,098	1716	-	18	732	0,219	17,081	0,159	2,687	5,459	35,505	Α
	Kn	otenpunk	tssummen:					4420						8214							
	Ger	wichtete N	/ittelwerte:												0,642	33,598					

Stresemannstraße / Kaltenkircher Platz – Verkehrstechnische Bewertung Maximalausbau

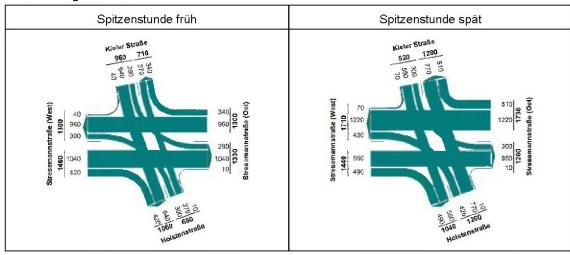
Entwicklungsstufe 2 - Spitzenstunde spät

Vorentwurf/Konzept (Büro SBI, Stand 09/2018)

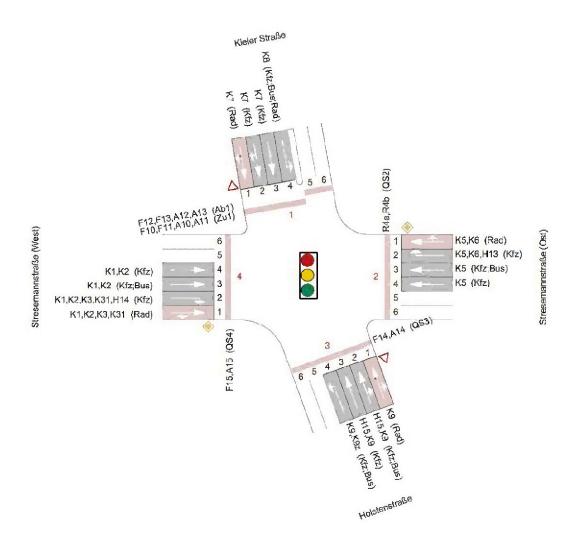

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	t. [s]	ts [s]	ťA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	Ç [Kfz/h]	×	tw [s]	Ngg [Kfz]	Nus [Kfz]	NMS,95 [Kfz]	l.s [m]	QSV
	1	4	K6, K7	3.4	35	56	0,389	340	8,500	1,949	1847	-	17	585	0,496	24,951	0,596	7,148	11,670	70,510	В
1	2	. ↓	K6	27	28	63	0,311	340	8,500	1,800	2000	+	16	622	0,547	30,071	0,748	7,805	12,530	75,180	В
	3	L.	K6	27	28	63	0,311	20	0,500	1,935	1860	-	9	373	0,054	29,352	0,032	0,436	1,553	9,318	В
	2	1	K1	28	29	62	0,322	481	12,025	1,842	1954	-	15	619	0,777	43,369	2,668	13,565	19,794	121,377	С
2	3	•	K 1	28	29	62	0,322	489	12,225	1,841	1955	-	16	630	0,776	42,730	2,652	13,702	19,962	122,527	C.
2	4		K1	28	29	62	0,322	490	12,250	1,841	1955	-	16	630	0,778	42,983	2,692	13,774	20,051	123,073	С
	5	F	K1, K1z LA	28	29	62	0,322	90	2,250	1,800	2000	(x)	3	134	0,672	74,870	1,260	3,458	6,603	39,618	Е
	3	•	K4	28	29	62	0,322	200	5,000	1,895	1900	-	6	230	0,870	107,651	4,395	9,307	14,467	91,403	E
3	2	1	K4	28	29	62	0,322	183	4,575	1,829	1968	-	16	634	0,289	24, 131	0,233	3,653	6,885	41,971	В
	1	1	K4	28	29	62	0,322	177	4,425	1,851	1934	-	15	609	0,291	24,635	0,235	3,572	6,768	41,136	В
	9	_	К3	14	15	76	0,167	290	7,250	1,829	1968	х								113, 136	
	5	_5	K3	14	15	76	0,334	290	7,250	1,829	1968	(x)	16	658	0,881	67,176	7,109	20,792	28,504	173,760	D
4	4	-+	K2	41	42	49	0,467	710	17,750	1,854	1942	4	23	907	0,783	31,576	2,878	17,792	24,926	154,043	В
	3		K2	41	42	49	0,467	710	17,750	1,854	1942	1,00	23	907	0,783	31,576	2,878	17,792	24,926	154,043	В
	1	7	K2	41	42	49	0,467	290	7,250	1,976	1822	-	19	757	0,383	20,036	0,363	5,406	9,338	57,205	В
	Kn	otenpunk	tssummen:					5100						8395							
	Ger	wichtete N	/littelwerte:												0,699	40,935					


6 Stresemannstraße / Kieler Straße (LSA 7)

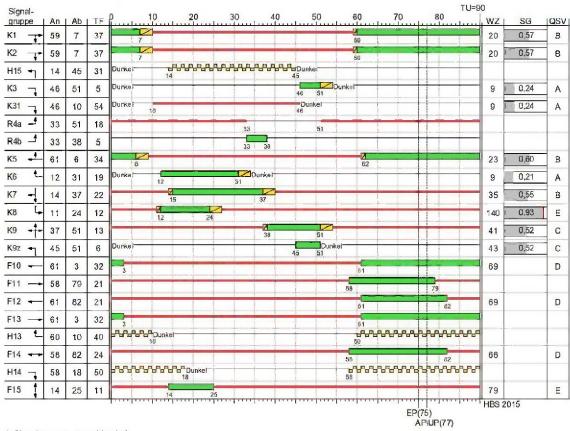
6.1 Stresemannstraße / Kieler Straße – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

Entwicklungsstufe 1

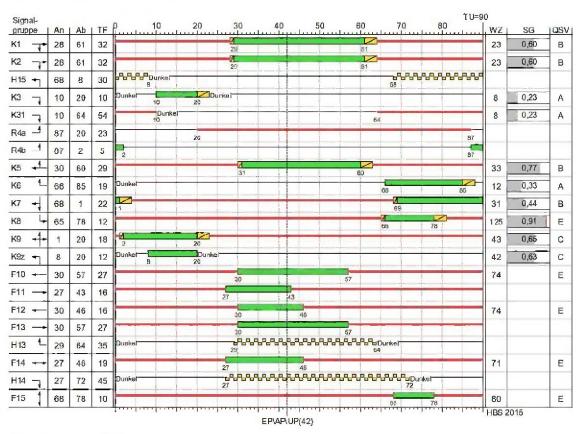


Entwicklungsstufe 2



6.2 Stresemannstraße / Kieler Straße – Knotenpunktgeometrie Bestand

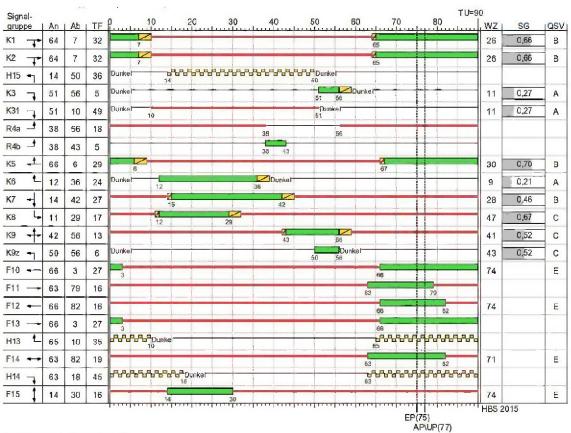
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	te [s]	ta [s]	ts [5]	fл	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nivis,#5>nik	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nes [Kfz]	NMS,95 [Kfz]	lx [m]	QSV
	2	t _	KS, K6	53	54	37	0,600	220	5,500	2,095	1718		26	1031	0,213	8,789	0,153	2,675	5,441	38,000	A
2	3	4-	KS	34	35	56	0,389	435	10,875	1,921	1874	-	18	729	0,597	26,543	0,944	9,598	14,838	94,993	В
	4	-	KS	34	35	56	0,389	435	10,875	1,921	1874	-	18	729	0,597	26,543	0,944	9,598	14,838	94,993	В
	4	4	K9, K9z	13	14	77	0,156	150	3,750	1,953	1843	(x)	7	288	0,521	43,129	0,659	4,104	7,530	49,020	С
3	3	1	K9	13	14	77	0,156	125	3,125	1,951	1845	_	7	288	0,434	40,033	0,452	3,281	6,344	41,261	С
	2	7	К9	13	14	77	0,156	125	3,125	1,963	1834	-	7	286	0,437	40,165	0,458	3,288	6,395	41,371	С
	4	-+	K1, K2	37	38	53	0,422	460	11,500	1,892	1903	-	20	803	0,573	23,612	0,844	9,611	14.854	93,669	в
4	3	-	K1, K2	37	38	53	0,422	460	11,500	1,892	1903	~	20	803	0,573	23,612	0,844	9,611	14,854	93,569	В
	2	7	K1, K2, K3, K31	54	55	36	0,611	280	7,000	1,921	1874	-	29	1145	0,245	8,587	0,184	3,386	6,498	41,600	А
	2	4	К7	22	23	68	0,256	270	6,750	1,885	1910	-	12	489	0,552	34,618	0,762	6,610	10,958	68,707	В
1	3	1	K7	22	23	68	0,256	270	6,750	1,879	1916	~	12	490	0,551	34,576	0.759	6,606	10.953	68,610	В
	4	L	K8	12	13	78	0,144	240	5,000	2,020	1782	(x)	- 6	257	0,934	140,242	7,292	13,226	19 377	130,446	F
		Knotenp	unktssummen:					3470						7338							
		Gewichte	ete Mittelwerte:												0,539	34,002					

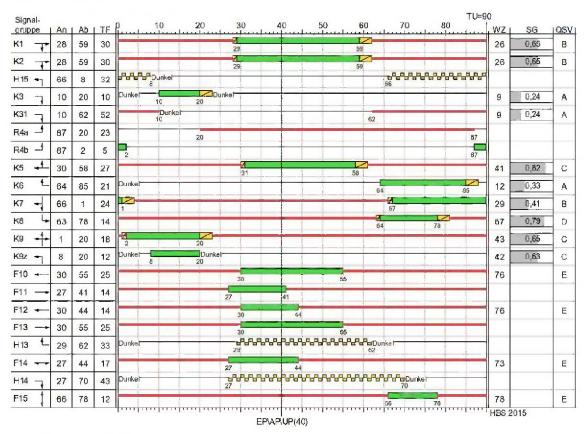
Analyse - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [KFz]	Nws [Kfz]	NMS.95 [Kfz]	[m]	QSV
	2	Ł	K5, K6	48	49	42	0,544	340	8,500	1,899	1896	(x)	26	1031	0,330	12,399	0,285	5,009	8,794	55,866	Α
2	3	-	KS	29	30	61	0,333	500	12,500	1,838	1959	-	16	652	0,767	40,630	2,489	13,586	19,943	122,171	C
	4	_	K5	20	30	61	0,333	500	12,500	1,838	1959	-	16	652	0,767	40,630	2,480	13,686	19,943	122,171	c
	4		K9, K9z	18	19	72	0,211	260	6,500	7,825	1973	(x)	10	416	0,625	41,529	1,070	6,976	11,446	69,637	C
3	3	1	К9	18	19	72	0,211	265	6,625	1,867	1928	-	10	407	0,651	43,239	1,217	7,276	11,638	73,656	C
	2	7	K9	18	19	72	0,211	265	6,625	1,866	1930	_	10	406	0,653	43,388	1,229	7,291	11,858	73,638	С
	4	-	K1, K2	32	33	58	0,357	430	10,750	1,859	1937	-	18	711	0,605	28,144	0,961	9,726	15,003	92,989	В
4	3	-	K1, K2	32	33	58	0,367	430	10,750	1,859	1937	-	18	711	0,605	28,144	0,961	9,728	15,003	92,989	В
	2	7	K1, K2, K3, K31	54	55	36	0,611	280	7,000	1,843	1953	-	30	1193	0,235	8,476	0,174	3,354	6,451	39,635	А
	2	4	К7	22	23	68	0,256	220	5,500	1,837	1960	-	13	502	0,438	31,368	0,462	5,071	8,879	54,553	В
1	3	1	K7	22	23	68	0,256	220	5,500	1,843	1953	=	13	500	0,440	31,426	0,466	5,077	8,888	54,608	В
	4	L,	K8	12	13	78	0,144	240	5,000	1,969	1828	(x)	7	263	0,913	124,953	6,355	12,268	18,192	119,412	٤
		Knotenp	unktssummen:					3950						7444							
		Gewicht	ete Mittelwerte:												0,604	37,716					

6.4 Stresemannstraße / Kieler Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

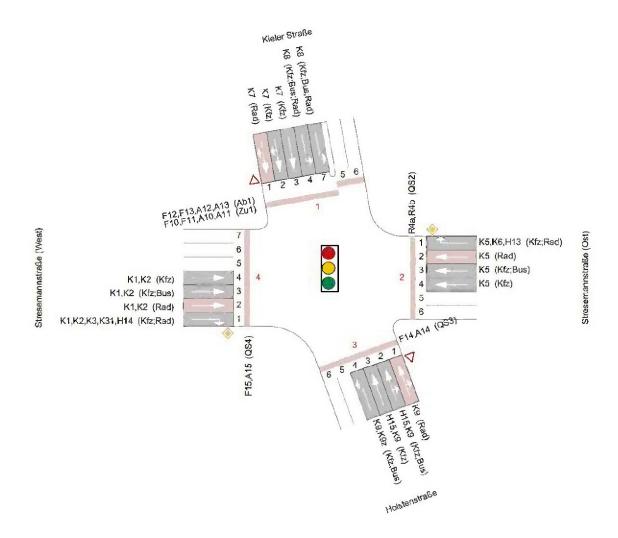
Analyse - Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Estr.Nr.	Symbol	SGR	ts [S]	tx [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NM5,95>⊓K	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Noz [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
	2	<u>+</u>	KS, K6	53	54	37	0,600	220	5,500	2,095	1718	w	26	1031	0,213	8,789	0,153	2,675	5,441	38,000	А
2	3	4	K5	29	30	61	0,333	435	10,875	1,921	1874	-	16	624	0,697	35,209	1,584	11,030	16,647	106,574	C
	4	-	K5	29	30	61	0,333	435	10,875	1,921	1874	-	16	624	0,697	35,200	1,584	11,030	16,647	106,574	c
	4	47	K9, K9z	13	14	77	0,156	150	3,750	1,953	1843	(x)	7	288	0,521	43,129	0,659	4 104	7,530	49,020	С
3	3	1	К9	13	14	77	0,156	125	3,125	1,951	1845	-	7	288	0,434	40,033	0,452	3,281	6,344	41,261	С
	2	1	К9	13	14	77	0,156	125	3,125	1,963	1834	-	7	286	0,437	40,165	0,458	3,288	6,355	41,371	C
	4	-	K1, K2	32	33	58	0,367	460	11,500	1,892	1903	-	17	698	0,659	30,426	1,288	10,890	16,471	103,866	В
4	3	→	K1, K2	32	33	58	0,367	460	11,500	1,892	1903	-	17	698	0,659	30,426	1,288	10,890	16,471	103,866	В
	2	7	K1, K2, K3, K31	49	50	41	0,556	280	7,000	1,921	1874	-	26	1042	0,269	11,157	0,210	3,865	7,190	46,030	Α
	2	4	K7	27	28	63	0,311	270	6,750	1,885	1910	-	15	594	0,455	27,902	0,498	5,915	10,028	62,876	В
1	3		K7	27	28	63	0,311	270	6,750	1,879	1916	~	15	595	0,454	27,876	0,496	5,911	10,023	62,784	В
	4	-	K8	17	18	73	0,200	240	6,000	2,020	1762	(x)	9	356	0,674	47,060	1,364	6,912	11,358	76,462	c
		Knotenp	unktssummen:					3470						7124							
		Gewichte	ete Mittelwerte:												0,556	30,702					

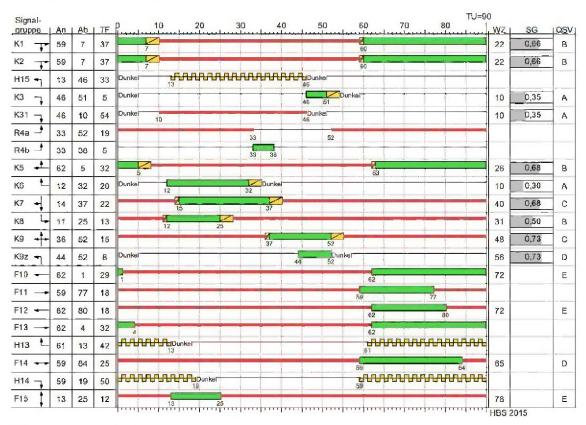
Stresemannstraße / Kieler Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse – Spitzenstunde spät


A-Signalgruppen ausgeblendet!

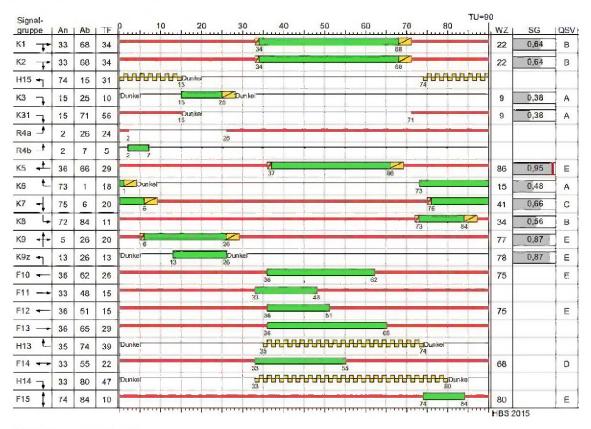
Zuf	Fstr.Nr.	Symbol	SGR	tr [3]	ta [s]	ts [s]	fA	q [Kfz/ħ]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NNS,95> NK	nc [Kfz/U]	C [Kfz/h]	×	tw [5]	Not [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	[m]	QSV
	Z	1 _	K5, K6	48	49	42	0,544	340	8,500	1,899	1896	(x)	26	1031	0,330	12,399	0,285	5,009	8,794	55,666	A
2	3	-	K5	27	28	63	0,311	500	12,500	1,838	1959	-	15	609	0,821	51,215	3,811	15,377	22,009	134,827	D
	4	•	K5	27	28	63	0,311	500	12,500	1,838	1959	-	15	609	0,821	51,215	3,811	15,377	22,009	134,827	D
	4	47	K9, K9z	16	19	72	0,211	260	6,500	1,825	1973	(x)	10	416	0,625	41,529	1,070	6,978	11,446	69,637	С
3	3	1	К9	16	19	72	0,211	265	6,625	1,867	1928	-	10	407	0,651	43,239	1,217	7,276	11,838	73,656	С
	2	1	K9	18	19	72	0,211	265	6,625	1,866	1930	-	10	406	0,653	43,388	1,229	7,291	11,858	73,638	С
	4		K1, K2	30	31	60	0,344	430	10,750	1,859	1937	la.	17	666	0,646	31,395	1,202	10,269	15,689	97,240	В
4	3	-	K1, K2	30	31	60	0,344	430	10,750	1,859	1937	-	17	665	0,546	31,395	1,202	10,269	15,689	97,240	В
	2	7	K1, K2, K3, K31	52	53	38	0,589	280	7,000	1,843	1953	-	29	1150	0,243	9,441	0,182	3,540	6,722	41,300	A
	2	4	К7	24	25	66	0,278	221	5,525	1,837	1960	-	14	545	0,406	29,097	0,402	4,899	8,642	53,096	В
1	3	1	К7	24	25	66	0,278	219	5,475	1,843	1953	-	14	543	0,403	29,042	0,396	4,848	8,572	52,666	В
	4	L	к.8	14	15	76	0,157	240	6,000	1,969	1828	(x)	8	305	0,787	67,075	2,637	8,391	13,290	87,236	D
		Knotenp	unktssummen:					3950						7353							
		Gewichte	ete Mittelwerte:												0,616	37,396					

6.5 Stresemannstraße / Kieler Straße – Knotenpunktgeometrie Planung


Quelle: eigener Vorentwurf auf Grundlage von Schmeck Junker GmbH, Busbeschleunigungsprogramm M3 Knotenpunkt Stresemannstraße/Kieler Straße; Verkehrstechnischer Lageplan, Erstverschickung, 20.06.2017

6.6 Stresemannstraße / Kieler Straße – Verkehrstechnische Bewertung Planung

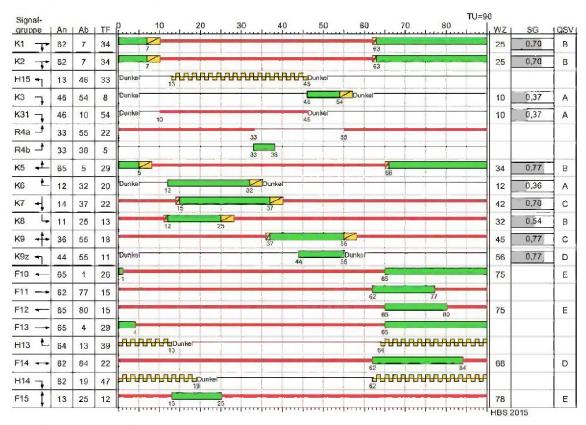
Entwicklungsstufe 1 – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм≲эs>∩к	nc [Kfz/U]	C [Kfz/h]	ж	tw [s]	Næ [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	Ł	K5, K6	52	53	38	0,589	300	7,500	2,097	1717	(x)	25	1011	0,297	10,075	0,242	3,978	7,351	51,383	А
2	3	•	KS	32	33	58	0,367	470	11,750	1,921	1874	-	17	688	0,683	31,739	1,467	11,393	17,102	109,487	8
	4	-	KS	32	33	58	0,367	470	11,750	1,921	1874	-	17	688	0,683	31,739	1,467	11,393	17,102	109,487	8
	4	41	K9, K9z	15	16	75	0,178	240	6,000	1,951	1845	(x)	8	328	0,732	55,562	1,877	7,548	12,194	79,310	٥
3	3	1	КЭ	15	16	75	0,178	185	4,625	1,953	1843	-	8	329	0,562	42,452	0,792	5,016	8,804	57,314	c
	2	1/2	K9	15	16	75	0,178	185	4,625	1,953	1843	-	8	328	0,564	42,569	0,799	5,025	8,816	57,181	С
	4	-+	K1, K2	37	38	53	0,422	530	13,250	1,892	1903	-	50	804	0,659	26,610	1,292	11,901	17,735	111,837	8
4	3	-	K1, K2	37	38	53	0.422	530	13.250	1,892	1903	-	20	804	0,659	26,610	1,292	11,901	17,735	111,837	В
	1	7	K1, K2, K3, K31	54	55	36	0.611.	400	10,000	L921	1874	(x)	29	1145	0,349	9,633	0,311	5,255	9,132	58,463	Α
	2	4	K7	22	23	68	0,256	330	8,250	1,886	1909	-	12	488	0,676	40,420	1,396	8,819	13,841	86,700	C
	3	1	K7	22	23	68	0,256	330	8,250	1,881	1914	-	12	490	0,673	40,189	1,374	8,790	13,804	86,551	С
1	4	Le	К8	13	14	77	0,289	130	3,250	2,018	1784	-	13	516	0,504	30,925	0,616	6,025	10,176	68,444	8
	5	L	К8	13	14	77	0,156	130	3,250	2,018	1784	×								44,647	
		Knotenp	unktssummen;					4230						7619							
		Gewichte	ete Mittelwerte:												0,598	30,407					

Stresemannstraße / Kieler Straße – Verkehrstechnische Bewertung Planung

Entwicklungsstufe 1 - Spitzenstunde spät

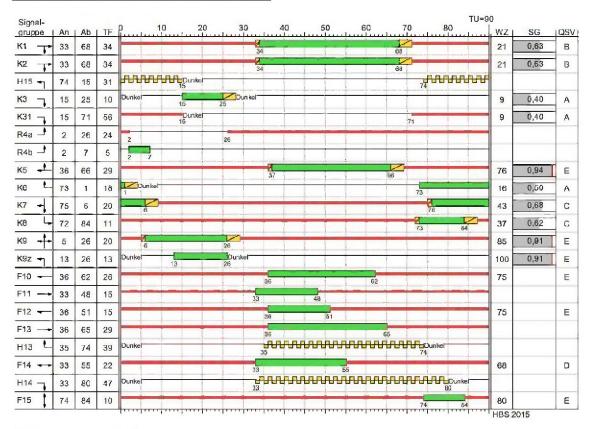

A-Signalgruppen ausgebliendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/ħ]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Им≲,96>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	t_	K5, K6	47	48	43	0,533	480	12,000	1,899	1896	(x)	25	1011	0,475	15,082	0,545	8,049	12,847	81,322	A
2	3	-	K5	29	30	61	0,333	620	15,500	1,840	1957	-	16	652	0,951	113,313	15,216	30,346	39,663	243,214	Е
	4	-	K5	29	30	61	0,333	620	15,500	1,840	1957	-	16	652	0,951	113,313	15,216	30,346	39,663	243,214	F
	4	47	K9, K9z	20	21	70	0,233	400	10,000	1,827	1970	(x)	11	459	0,871	77,684	5,670	15,293	21,907	133,414	E
3	3	1	K.9	20	21	70	0,233	390	9,750	1,867	1928	-	11	450	0,867	76,583	5,426	14,797	21,303	132,547	E
	2	1	К9	20	21	70	0,233	390	9,750	1,867	1928	-	11	450	0,867	76,583	5,426	14,797	21,303	132,419	E
	4	-	K1, K2	34	35	56	0,389	485	12,125	1,851	1934	-	19	753	0,644	28,114	1,192	11,077	16,706	103,644	В
4	3	-+	K1, K2	34	35	56	0,389	485	12,125	1,861	1934	-	19	753	0,644	28,114	1,192	11,077	16,706	103,644	В
	1	7	K1, K2, K3, K31	56	57	34	0,633	470	11,750	1,843	1953	(×)	31	1236	0,380	9,024	0,358	6,036	10,191	62,614	A
	2	-1	К7	20	21	70	0,233	301	7,525	1,831	1966	-	31	458	0,657	41,162	1,260	8,075	12,881	79,064	С
	3	1	K7	20	21	70	0,233	299	7,475	1,845	1951	~	11	455	0,657	41,227	1,260	8,030	12,822	78,855	C
1	4	L.	КВ	11	12	79	0,266	135	3,375	1,969	1828	(x)	12	486	0,556	34,200	0,776	6,590	10,932	71,758	В
	5	-	KB	11	12	79	0,133	135	3,375	1,969	1828	×								47,766	
		Knotenp	unktssummen:					5210						7815							
		Gewichte	ete Mittelwerte												0,725	58,353					

Stresemannstraße / Kieler Straße – Verkehrstechnische Bewertung Planung

Entwicklungsstufe 2 - Spitzenstunde früh

A-Signalgruppen ausgeblendet!

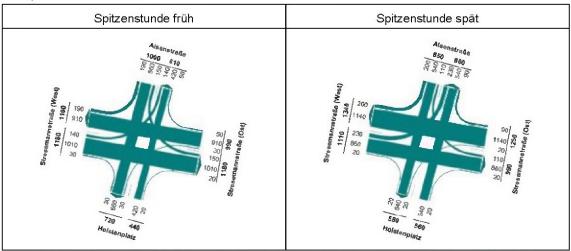

Zuf	Fstr.Nr.	Symbol	SGR	t# [5]	ta [s]	ts [s]	f^	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nыs,≋≻пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	N _{GE} [Kfz]	N _{MS} [Kfz]	Nws,95 [Kfz]	Lx [m]	QSV
	1	Ł	K5, K6	49	50	41	0,556	340	8,500	2,093	1720	(x)	24	956	0,356	12,269	0,321	5,026	8,818	61,532	A
2	3	-	K 5	29	30	61	0,333	480	12,000	1,921	1874	-	16	624	0,769	41,432	2,517	13,276	19,438	124,442	C
	4	-	K5	29	30	61	0,333	480	12,000	1,921	1974		16	624	0,760	41,432	2,517	13,276	19,438	124,442	С
	4	*1	K9, K9z	18	19	72	0,211	300	7,500	1,953	1843	(x)	10	389	0,771	56,065	2,443	9,510	14,725	95,860	D
3	3	1	К9	18	19	72	0,211	190	4,750	1,957	1840	-	10	389	0,488	36,532	0,573	4,751	8,437	55,026	С
	2	4	K9	18	19	72	0,211	190	4,750	1,956	1841	-	10	388	0,490	36,607	0,578	4,758	8,447	54.889	C
	4	-	K1, K2	34	35	56	0,389	520	13,000	1,890	1905	-	19	741	0,702	31,078	1,640	12,567	18,562	116,941	В
4	3	-	K1, K2	34	35	56	0.389	520 I	13,000	1,890	1905	1-1	19	741	0,702	31,078	1,640	12,567	18,562	116,941	В
	1	7	K1, K2, K3, K31	54	55	36	0,611	420	10,500	1,919	1876	(x)	29	1146	0,366	9,826	0,336	5,597	9,598	61,389	Α
	2	4	K7	22	23	68	0,256	339	8,475	1,887	1907	-	12	488	0,695	41,742	1,551	9,221	14,357	90,018	C
	3	1	K 7	22	23	68	0,256	341	8,525	1,879	1916	-	12	490	0,696	41,771	1,560	9,278	14,429	90,383	C
1	4	L	K8	13	14	77	0,290	140	3,500	2,012	1789	(x)	13	517	0,542	31,991	0,729	6,626	10,979	73,647	В
	5	L.	K8	13	14	77	0,156	140	3,500	2,012	1789	х								47,781	
		Knotenp	unktssummen;					4400						7493							
		Gewichte	ete Mittelwerte:												0,633	33,741					

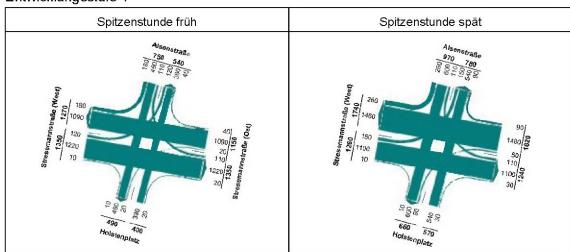
12.04.2019

Stresemannstraße / Kieler Straße – Verkehrstechnische Bewertung Planung

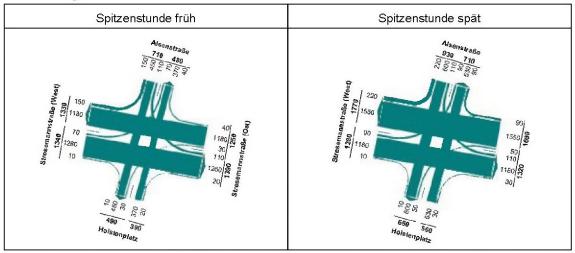
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

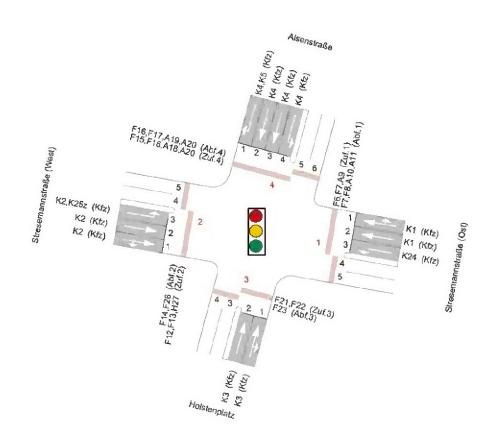

Zuf	Fstr,Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95 > NK	nc [Kfz/U]	C [Kfz/h]	х	tw [5]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Le [m]	QS
	1	<u>+</u>	K5, K6	47	48	43	0,533	510	12,750	1,897	1898	(x)	25	1012	0,504	15,621	0,619	8,760	13,766	87,056	А
2	3	4-	K5	29	30	61	0,333	610	15,250	1,838	1959		16	652	0,936	101,163	13,054	27,832	36,754	225,155	E
	4	4-	K5	29	30	61	0,333	610	15,250	1,838	1959	-	16	652	0,936	101,163	13,054	27,832	36,754	225,155	E
	4	~	K9, K9z	20	21	70	0, 233	420	10,500	1,825	1973	(x)	12	460	0,913	99,960	8,476	18,706	26,021	158,312	E
3	3	1	К9	20	21	70	0,233	390	9,750	1,867	1928	-	11	450	0,867	76,583	5,426	14,797	21,303	132,547	E
	2	4.0	К9	20	21	70	0,233	390	9,750	1,867	1928	-	11	450	0,867	76,583	5,426	14,797	21,303	132,419	E
	4	-	K1, K2	34	35	56	0,389	475	11,875	1,859	1937	E	19	75 3	0,631	27,599	1,116	10,732	16,272	100,854	В
4	3	-	K1, K2	34	35	56	0,389	475	11,875	1,859	1937	-	19	753	0,631	27,599	1,116	10,732	16,272	100,854	В
	1	7	K1, K2, K3, K31	56	57	34	0,633	490	12,250	1,843	1953	(x)	31	1236	0,396	9,210	0,385	6,385	10,659	65,489	А
	2	4	K7	20	21	70	0,233	311	7,775	1.835	1962	-	11	457	0,681	42,739	1,431	8,519	13,455	82,748	C
	3	1	K7	20	21	70	0,233	309	7,725	1.843	1953		11	455	0,679	42,652	1,416	8,455	13,373	82,164	C
1	4	1-	K8	11	12	79	0,266	150	3,750	1,962	1835	(x)	12	486	0,617	36,656	1,033	7,619	12,287	80,357	C
	5	1-	K.8	11	1.2	79	0,133	1.50	3,750	1,962	1835	x								53,379	
		Knotenp	unktssummen:					5290						7816							
		Gewichte	ete Mittelwerte:												0,729	56,957					


7 Stresemannstraße / Alsenstraße (LSA 153)

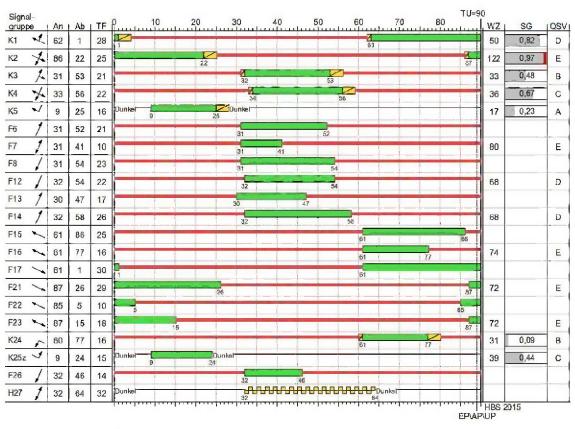
7.1 Stresemannstraße / Alsenstraße – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

Entwicklungsstufe 1

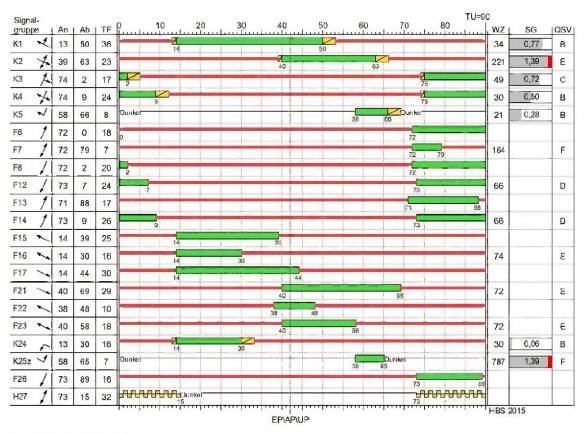


Entwicklungsstufe 2



7.2 Stresemannstraße / Alsenstraße – Knotenpunktgeometrie Bestand

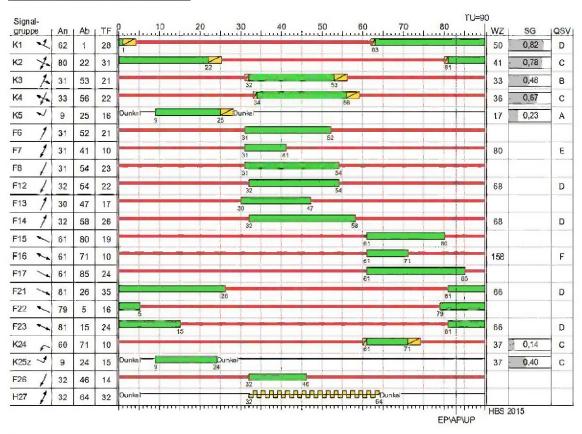
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Estr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [5]	fд	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NM5,95>11K	nc [Kfz/U]	C [Kfz/h]	X,	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	-1	K4, K5	38	39	52	0,433	190	4,750	1,858	1938	-	21	839	0,226	16,744	0,165	3,150	6,152	36,093	А
	2	1	K4	22	23	68	0,256	330	8,250	1,865	1930	-	12	493	0,669	39,879	1,345	8,751	13,754	85,495	С
4	3	1	K4	22	23	68	0,256	330	8,250	1,865	1930	-	12	493	0,669	39,879	1,345	8,751	13,754	85,495	C
	4	4	K4	22	23	68	0,256	150	3,750	1,854	1942		7	281	0,534	44,587	0,697	4,172	7,626	47,129	C
	1	-1_	K1	28	29	62	0,322	481	12,025	1,968	1829	-	15	589	0,817	50,446	3,661	14,724	21,214	139,631	D
1	2	-	К1	28	29	62	0,322	479	11,975	1,975	1823	-	15	587	0,816	50,308	3,628	14,641	21,112	138,959	D
	3	<i>F</i> -	K24	16	17	74	0,189	30	0,750	1,980	1818	-	9	344	0,087	30,647	0,053	0,671	2,056	13,570	В
	2	1	КЗ	21	22	69	0,244	220	5,500	1,910	1885	-	12	460	0,478	33,419	0,550	5,257	9,135	58 153	В
3	1	1	К3	21	22	69	0,244	220	5,500	1,904	1890	-	12	461	0,477	33,379	0,547	5,253	9,129	58,060	В
	3	t_	K2, K25z	27	28	63	0,311	140	3,500	1,877	1918	(x)	8	320	0,438	38,864	0,460	3,606	6,818	42,667	C
2	2		K2	25	26	65	0,289	522	13,050	1,922	1873	-	14	541	0,965	132,333	15,146	28,013	36,964	236,865	E
	1	7-	K2	25	26	65	0,289	518	12,950	1,938	1857	-	13	536	0,966	133,467	15, 173	27,946	36,887	236,372	E
	Knoti	enpunktss	summen:					3610						5944							
	Gewi	chtete Mi	ttelwerte:												0,728	67,541					

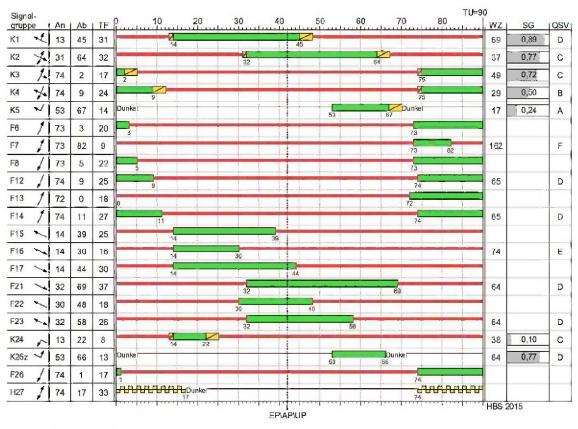
Analyse - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbal	SGR	t: [s]	ta [5]	ts [s]	f∧	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,±5≻пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NŒ [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	[x [m]	QSV
	1	4 /	K4, K5	32	33	58	0,367	200	5,000	1,854	1942	-	18	713	0,281	21,230	0,223	3,752	7,028	43,433	В
	2	1	K4	24	25	66	0,278	270	6,750	1,840	1957		14	544	0,496	31,147	0,595	6,248	10,475	64,233	В
4	3	1	K4	24	25	66	0,278	270	6,750	1,840	1957	9	14	544	0,496	31,147	0,595	6,248	10,475	64,233	В
	4	4	K4	24	25	66	0,278	110	2,750	1,800	2000	-	6	249	0,442	43,220	0,467	3,014	5,950	35,700	C
	1	1	K 1	36	37	54	0,411	616	15,400	1,848	1948		20	801	0,769	34,336	2,561	15,823	22,550	139,359	В
1	2	1	K1	36	37	54	0,411	614	15,350	1,856	1940	+	20	798	0,769	34,379	2,561	15,780	22,498	139, 173	В
	3	-	K24	16	17	74	0,189	20	0,500	1,868	1927	-	9	364	0,055	30,224	0,032	0,442	1,566	9,753	В
	2	1	К3	17	18	73	0,200	280	7,000	1,838	1959	-	10	391	0,716	49,541	1,730	8,256	13,128	80,422	С
3	1	1-	К3	17	18	73	0,200	280	7,000	1,838	1959	-	10	392	0,714	49,302	1,710	8,243	13,099	80,402	С
	3	-\$	K2, K25z	25	26	65	0,289	230	5,750	1,813	1986	(x)	4	165	1,394	787, 163	34,187	39,937	50,625	305,876	F
2	2	-	K2	23	24	67	0,257	442	11,050	1,895	1900	-	13	508	0,870	72,639	5,806	16,356	23,196	146,552	E
	1	7	Κ2	23	24	67	0,267	438	10,950	1,917	1877	4.	13	502	0,873	74,239	5,956	16,422	23,276	146,918	ε
	Knot	enpunktss	ummen:					3770						5971							
	Gewie	htete Mit	telwerte:												0,745	90,724					

7.4 Stresemannstraße / Alsenstraße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

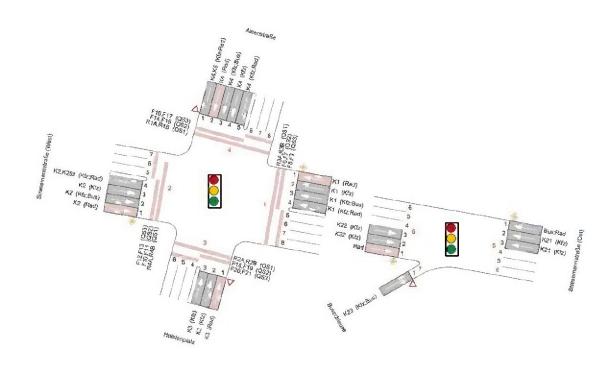
Analyse - Spitzenstunde früh


A-Signalgruppen ausgeblendet!

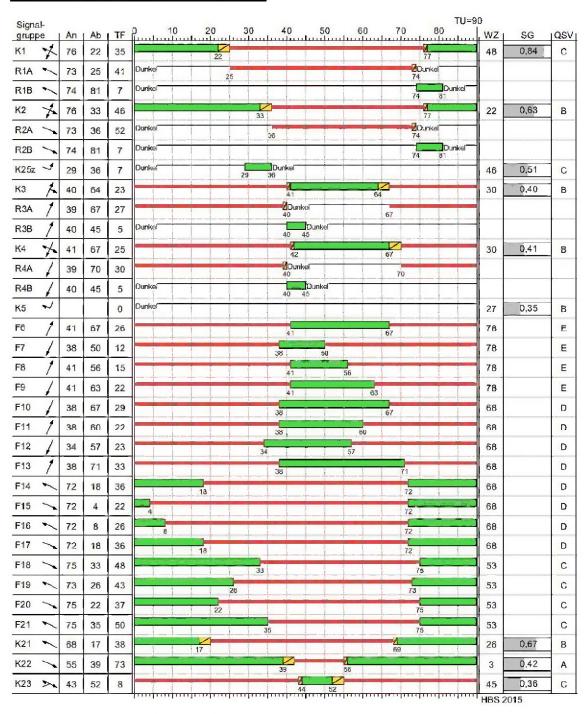
Zuf	Fstr.Nr.	Symbol	SGR	t- [s]	ta [s]	ts [s]	fa	q (Kfz/h)	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nw5,95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	-/	K4, K5	38	39	52	0,433	190	4,750	1,858	1938	-	21	839	0,226	16,744	0,165	3, 150	6,152	38,093	A
	2	1	K4	22	23	68	0,256	330	8,250	1,865	1930	-	12	493	0,669	39,879	1,345	8,751	13,754	85,495	С
4	3	1	K4	22	23	68	0, 256	330	8,250	1,865	1930	_	12	493	0,669	39,879	1,345	8,751	13,754	85,495	С
	4	Ĺ_	K4	22	23	68	0, 256	150	3,750	1,854	1942	-	7	281	0,534	44,587	0,697	4,172	7,626	47, 129	С
	1	-1	K1	28	29	62	0,322	481	12,025	1,968	1829		15	589	0,817	50,446	3,661	14,724	21,214	139,631	D
1	2	+-	K1	28	29	62	0,322	479	11,975	1,975	1823	ute.	15	587	0,816	50,308	3,628	14,641	21,112	138,959	D
	3	5	K24	10	11	80	0,122	30	0,750	1,980	1818	-	- 6	222	0,135	36,682	0,087	0,757	2,228	14,705	С
	2	1	K3	21	22	69	0, 244	220	5,500	1,910	1885	-	12	460	0,478	33,419	0,550	5,257	9,135	58, 153	В
3	1	1-	КЗ	21	22	69	0,244	220	5,500	1,904	1890	-	12	461	0,477	33,379	0,547	5, 253	9,129	58,060	В
	3	7	K2, K25z	33	34	57	0,378	140	3,500	1,877	1918	-	9	347	0,403	36,657	0,395	3,487	6,645	41,584	С
2	2		K2	31	32	59	0,356	522	13,050	1,922	1873	-	17	667	0,783	41,042	2,810	14,452	20,894	133,889	C
	1	7.	K2	31	32	59	0,356	518	12,950	1,938	1857	-	17	661	0,784	41,302	2,830	14,399	20,817	133,395	С
	Knot	enpunktss	ummen:					3610						6100							
	Gewie	chtete Mit	telwerte:												0,674	41,080					

Stresemannstraße / Alsenstraße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse – Spitzenstunde spät


A-Signalgruppen ausgeblendett

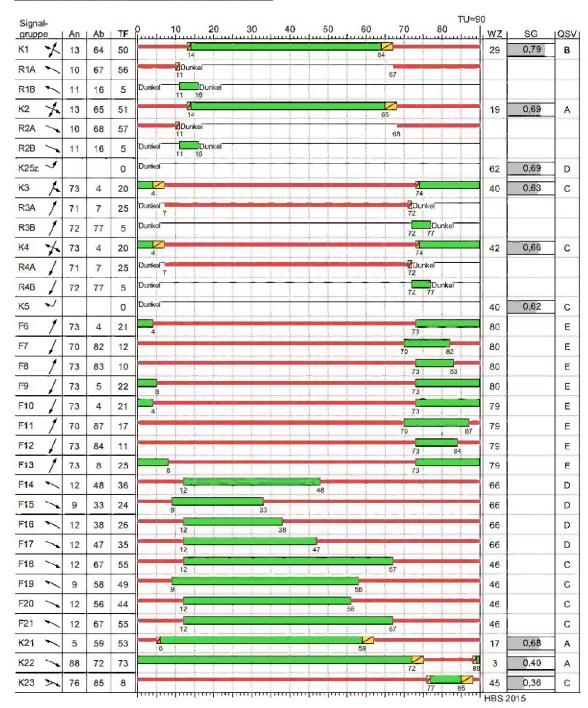
Zuf '	Estr.Nr.	Symbol	SGR	†= [2]	ta [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NM5,95>nK	n∈ [Kfz/U]	C [Kfz/h]	х	tw [s]	Nœ [Ktz]	Nus [Kfz]	NMS,05 [Kfz]	[m]	ΩSV
	٦	7	K4, K5	38	39	52	0,433	200	5,000	1,854	1942	-	21	841	0,238	16,B87	0,177	3,338	6,428	39,725	A
	2	1	K4	24	25	66	0,278	270	6,750	1,840	1957	-	14	544	0,496	31,147	0,595	6,248	10,475	64,233	В
4	3	1	K4	24	25	66	0,278	270	6,750	1,840	1957	-	14	544	0,496	31,147	0,595	6,248	10,475	64,233	В
	4	4	K4	24	25	66	0,278	110	2,750	1,800	2000	-	6	249	0,442	43,220	0,467	3,014	5,950	35,700	C
	1	-1	K1	31	32	59	0, 356	616	15,400	1,848	1948	-	17	693	0,889	68,541	7,938	22,448	30,461	188,249	D
1	2	-	K1	31	32	59	0,356	614	15,350	1,856	1940	-	17	691	0,889	68,514	7,929	22,392	30,395	188,023	D
	3	5	K24	8	9	82	0,100	20	0,500	1,868	1927	-	5	193	0,104	38,045	0,065	0,520	1,740	10,837	C
	2		K3	17	18	73	0,200	280	7,000	1,838	1959	-	10	391	0,716	49,541	1,730	8,266	13,128	80,422	Ċ
3	1	1	К3	17	18	73	0,200	280	7,000	1,838	1959		10	392	0,714	49,302	1,710	8,243	13,099	80,402	c
	3		K2, K25z	34	35	56	0,389	230	5,750	1,813	1986	(x)	8	300	0,767	64,369	2,307	7,828	12,560	75,888	D
2	2	-	K2	32	33	58	0,367	443	11,075	1,894	1901	-	17	698	0,635	29,374	1,137	10,278	15,700	99,098	В
	1	7	K2	32	33	58	0,367	437	10,925	1,918	1877	**	17	689	0,634	29,408	1,131	10,144	15,531	98,032	В
	Knot	enpunktss	ummen:					3770						6225							
	Gewi	chtete Mit	telwerte:												0,688	47,323					


7.5 Stresemannstraße / Alsenstraße – Knotenpunktgeometrie Planung

Quelle: Schlothauer & Wauer GmbH, Vorentwurf/Konzept, Stand 01/2018)

Entwicklungsstufe 1 - Spitzenstunde früh

Vorentwurf/Konzept (Büro S&W, Stand 01/2018)

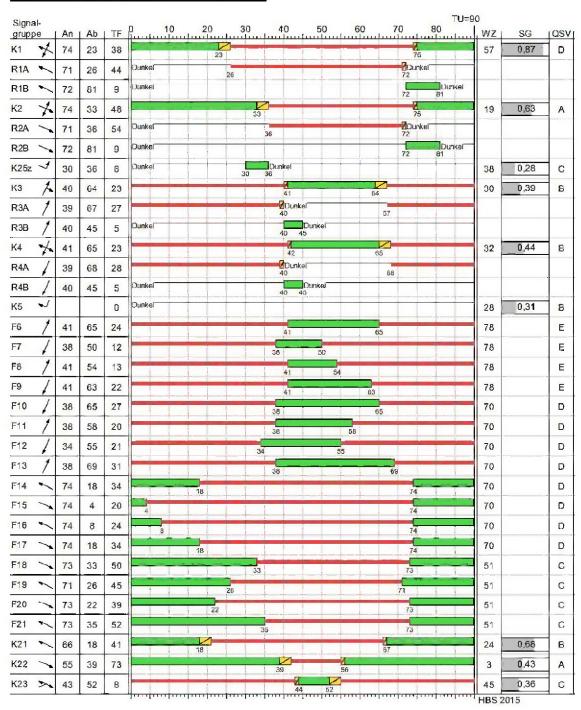


Entwicklungsstufe 1 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	13 [5]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>лк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	Nм5,95 [Kfz]	L _x	QSV
	2	Ł,	K1	35	36	55	0,400	40	1,000	2,043	1762	-	18	705	0,057	16,747	0,033	0,647	2,007	12,716	A
1	3		K1	35	36	55	0,400	608	15,200	1,975	1823	-	18	729	0,834	46, 187	4,430	18,115	25,313	166,610	С
	4	1	K1	35	36	55	0,400	502	12,550	1,974	1824	1-	15	601	0,835	53,767	4,321	15,928	22,678	149, 131	D
	4	-	K2, K25z	49	50	41	0,556	120	3,000	2,020	1782	(x)	6	236	0,508	45,814	0,621	3,412	6,536	40,942	C
2	3	~	K2	46	47	44	0,522	616	15,400	1,922	1873	-	24	978	0,630	19,421	1,114	12,082	17,961	115,094	A
	2	7-	K2	46	47	44	0,522	614	15,350	1,928	1867		24	974	0,630	19,437	1,134	12,047	17,917	114,705	Α
3	3		K 3	23	24	67	0,267	200	5,000	1,908	1887	**	13	503	0,398	29,830	0,388	4,489	8,072	51,338	В
3	2	1-	K3	23	24	67	0,267	200	5,000	1,923	1872	-	13	500	0,400	29,884	0,391	4,494	8,079	51,528	В
	1	→	K4, K5	25	26	65	0,289	180	4,500	1,999	1801	-	13	520	0,346	27,394	0,306	3,861	7,184	44,526	В
4	3	1	K4	25	26	65	0,289	230	5,750	1,870	1925	-	14	557	0,413	28,508	0,434	5,056	8,859	55,227	В
4	4	1	K4	25	26	65	0,289	230	5,750	1,870	1925	-	14	557	0,413	28,508	0,414	5,056	8,859	55,227	В
	5	4	K4	25	26	65	0,289	110	2,750	1,849	1947	÷	7	289	0.381	39,078	0,358	2,841	5,692	35,074	Ç
5	2	+	K21	38	39	52	0,433	560	14,000	1,868	1927	-	21	834	0,671	26,345	1,379	12,568	18,564	115,617	В
>	3	-	K21	38	39	52	0,433	560	14,000	1,868	1927	-	21	834	0,671	26,345	1,379	12,568	18,564	115,617	В
6	3	-	K22	73	74	17	0,822	660	16,500	1,868	1927		40	1584	0,417	3, 130	0,423	4,892	8,633	53,766	Α
6	2	~	K22	73	74	17	0,822	660	16,500	1,868	1927	-	40	1584	0,417	3,130	0,423	4,892	8,633	53,766	Α
7	1	ス	K23	8	9	82	0,100	60	1,500	2,148	1676	-	4	168	0,357	44,656	0,320	1,720	3,938	27,172	С
	Knot	enpunkts:	ummen:					6150						12153							
	Gewi	chtete Mi	ttelwerte:												0,576	25,324					

Entwicklungsstufe 1 - Spitzenstunde spät

Vorentwurf/Konzept (Büro S&W, Stand 01/2018)

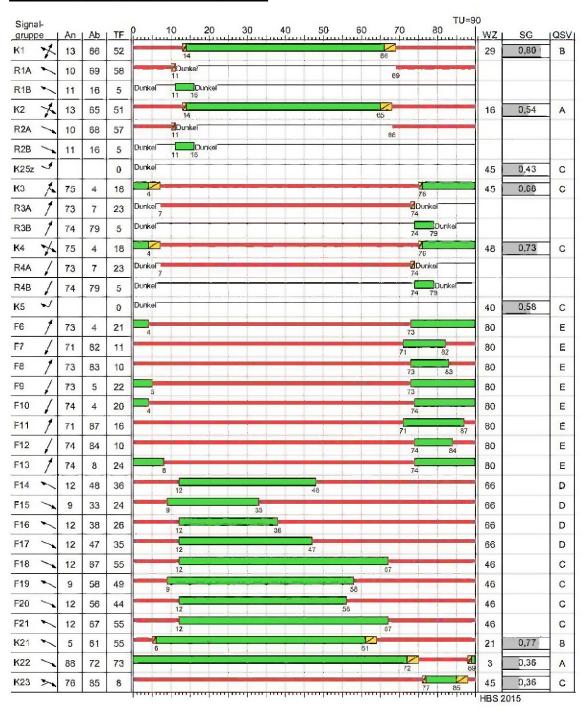


Entwicklungsstufe 1 – Spitzenstunde spät

Zuf	Estr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kf2/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	№ 5,95> ПК	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	2	ŧ.	K1	50	51	40	0,567	90	2,250	1,950	1846	(x)	26	1047	0,086	9,048	0,052	1,076	2,830	17,116	Α
1	3	+	K1	50	51 .	40	0,567	870	21,750	1,854	1942	-	28	1101	0,790	25,382	3,089	20,148	27,739	171,427	В
	4	-	K1	50	51	40	0,567	660	16,500	1,856	1940	-	21	834	0,791	35,385	3,053	17,314	24,351	150,635	C
	4	Ì	K2, K25z	51	52	39	0,578	150	3,750	1,935	1860	(x)	5	218	0,688	61,674	1,424	5,025	8,816	52,896	D
2	3	-	K2	51	52	39	0,578	557	13,925	1,895	1900	-	27	1098	0,507	13,395	0,628	8,940	13,997	88,433	A
	2	7	K2	51	52	39	0,578	553	13,825	1,905	1890	-	27	1092	0,506	13,386	0,625	8,871	13,908	87,787	Α
-	3	1	К3	20	21	70	0.233	286	7.150	1.838	1959	-	11	456	0.627	39.552	1.083	7.505	12.138	74.357	С
3	2	1	K3	20	21	70	0,233	284	7,100	1,853	1943	-	11	453	0,627	39,609	1,083	7,460	12,079	74,213	¢
	1	→ J	K4, K5	20	21	70	0,233	260	6,500	1,997	1803	(x)	11	420	0,619	39,841	1,039	6,865	11,296	69,945	С
	3	1	K4	20	21	70	0,233	300	7,500	1,841	1955	-	11	456	0,658	41,262	1,266	8,060	12,851	78,941	C
4	4	1	K4	20	21	70	0,233	300	7,500	1,841	1955	-	11	456	0,658	41,262	1,266	8,060	12,851	78,941	C
	5	L	K4	20	21	70	0.233	110	2,750	1,800	2000	-	5	193	0,570	53,931	0,809	3,438	6,574	39,444	D
_	2	+	K21	53	54	37	0,600	795	19,875	1,854	1942	-	29	1165	0,682	16,748	1,476	14,932	21,467	132,666	A
5	3	-	K21	53	54	37	0,600	795	19,875	1,854	1942	-	29	1165	0,682	16,748	1,476	14,932	21,457	132,666	A
	3	~~	K22	73	74	17	0,822	620	15,500	1,908	1887	-	39	1551.	0,400	3,034	D,392	4,503	8,092	51,465	A
5	2	-	K2Z	73	74	17	0,822	620	15,500	1,908	1887	-	39	1551	0,400	3,034	0,392	4,503	8,092	5L465	А
7	1	7	K23	8	9	82	0,100	60	1,500	2,148	1676	~	4	168	0,357	44,656	0,320	1,720	3,938	27,172	C
	Knot	enpunktss	summen:					7310						13424							
	Gewi	chtete Mil	ttelwerte:												0,610	22,852					

Entwicklungsstufe 2 - Spitzenstunde früh

Vorentwurf/Konzept (Büro S&W, Stand 01/2018)



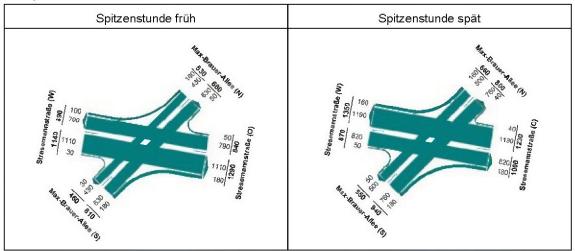
Entwicklungsstufe 2 – Spitzenstunde früh

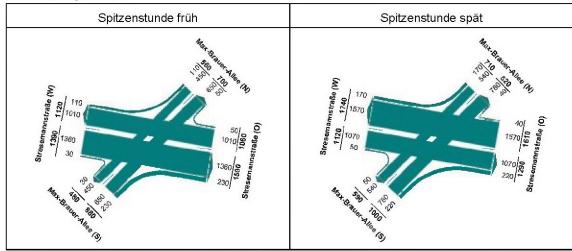
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	tı [s/Kfz]	qs [Kfz/h]	Nмs,эs>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L: [m]	QSV
	2	Ł.	K 1	38	39	52	0,433	40	1,000	2,043	1762		19	763	0,052	14,942	0,030	0,610	1,931	12,235	A
1	3	*	K1	38	39	52	0,433	686	17,150	1,975	1823	-	20	789	0,869	53,154	6,566	22,156	30,117	198,230	D
	4	+	K1	38	39	52	0,433	524	13,100	1,973	1824	-	15	603	0,869	64,488	6,066	18,369	25,617	168,457	D
	4	+	K2, K25z	51	52	39	0,578	70	1,750	2,018	1784		6	249	0,281	37,859	0,223	1,790	4,053	25,364	C
2	3		K.2	4B	49	42	0,544	636	15,900	1,922	1873	-	25	1019	0,624	17,989	1,082	12,058	17,931	114,902	A
	2	-	К2	48	49	42	0,544	634	15,850	1,928	1867	^	25	1015	0,625	18,032	1,087	12,038	17,906	114,634	A
-	3	1	К3	23	24	67	0,267	195	4,875	1,912	1883	-	13	503	0,388	29,627	0,371	4,357	7,887	50,256	В
3	2	1	K3	23	24	67	0,267	195	4,875	1,918	1877	-	13	500	0,390	29,681	0,374	4,363	7,896	50,219	В
	1	4	K4, K5	23	24	67	0,267	150	3,750	2,003	1797	-	12	480	0,313	28,348	0,262	3,261	6,315	39,216	В
	3	1	K4	23	24	67	0,267	225	5,625	1,867	1928	-	13	515	0,437	30,588	0,460	5,128	8,958	55,737	В
4	4	1	K4	23	24	67	0,267	225	5,625	1,867	1928	-	13	515	0,437	30,588	0,460	5,128	8,958	55,737	В
	5	4	K4	23	2.4	67	0,267	110	2,750	1,849	1947	-	7	275	0,400	40,281	0,389	2,892	5,768	35,542	С
5	2	-	K21	41	42	49	0,467	610	15,250	1,868	1927	-	23	900	0,678	24,451	1,436	13,330	19,505	121,477	В
٥	3	•	K21	41	42	49	0,467	610	15,250	1,868	1927	-	23	900	0,678	24,451	1,436	13,330	19,505	121,477	В
6	3		K22	73	74	17	0,822	680	17,000	1,868	1927	-	40	1584	0,429	3,216	0,446	5,120	8,947	55,722	Α
0	2	-	K22	73	74	17	0,822	680	17,000	1,868	1927	-	40	1584	0,429	3,216	0,446	5,120	8,947	55,722	Α
7	1	_\	K23	8	9	82	0,100	60	1,500	2,148	1676	-	4	168	0,357	44,656	0,320	1,720	3,938	27,172	С
	Knot	enpunkts:	um men:					6330						12362							
	Gewi	chtete Mi	telwerte:												0,590	26,425					

Entwicklungsstufe 2 - Spitzenstunde spät

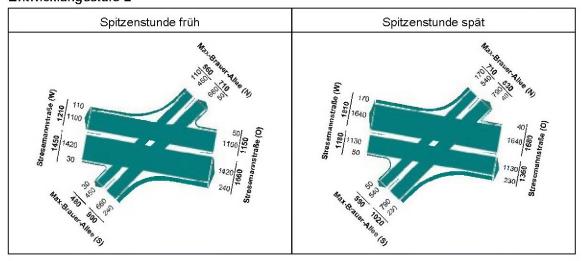
Vorentwurf/Konzept (Büro S&W, Stand 01/2018)

Entwicklungsstufe 2 – Spitzenstunde spät

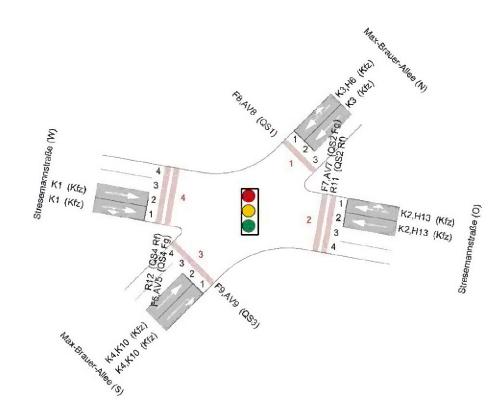

Zuf	Fstr.Nr.	Symbol	SGR	t= [5]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N ықаз>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [5]	Not [Kfz]	N _{MS} [Kfz]	N _{MS,85} (Kfz)	Lx [m]	QSV
	2	Ł.	К1	52	53	38	0,589	90	2,250	1,950	1846	-	27	1087	0,083	8,158	0,050	1,022	2,732	16,523	A
1	3		К1	52	53	38	0,589	919	22,975	1,854	1942	-	29	1144	0,803	25,352	3,473	21,390	29,212	180,530	8
	4	7	к1	52	53	38	0,589	681	17,025	1,854	1942	_	21	851	0,800	35,836	3,299	18,028	25,209	155,792	С
	4		K2, K25z	51	52	39	0,578	90	2,250	1,950	1846	-	5	210	0,429	44,701	0,441	2,537	5,231	31,637	С
2	3		K2	51	52	39	0,578	597	14,925	1,894	1901	-	27	1099	0,543	14,093	0,737	9,916	15,242	96,208	A
	2	-	K2	51	52	39	0,578	593	14,825	1,905	1889	-	27	1093	0,543	14,106	0,737	9,855	15,164	95,806	A
	3	1	K3	18	19	72	0,211	281	7,025	1,838	1959	-	10	413	0,680	45,066	1,418	7,889	12,639	77,427	С
3	2	1-	К3	18	19	72	0,211	279	6,975	1,848	1948	-	10	411	0,679	45,048	1,410	7,834	12,568	76,992	С
	1	4	K4, K5	18	19	72	0,211	220	5,500	2,001	1799	(x)	10	380	0,579	40,050	0,859	5,802	9,876	61,271	С
	3	1	K4	18	19	72	0,211	300	7,500	1,841	1955	-	10	413	0,726	49,137	1,842	8,830	13,856	85,048	С
4	4	1	K 4	18	19	72	0,211	300	7,500	1,841	1955	-	10	413	0,726	49,137	1,842	8,830	13,856	85,048	С
	5	4	K4	18	19	72	0,211	110	2,750	1,800	2000	-	4	178	0,618	59,765	1,001	3,652	6,884	41,304	D
	2	*	K21	55	56	35	0,622	935	23,375	1,854	1942	-	30	1208	0.774	20,511	2,722	19,761	27,279	168,584	8
5	3	+	K21	55	56	35	0,522	935	23,375	1,854	1942	-	30	1208	0,774	20,511	2,722	19,761	27,279	168,584	В
,	3	-	K22	73	74	17	0,822	560	14,000	1,906	1889	-	39	1551	0,361	2,791	0,329	3,873	7,201	45,755	A
6	2		K22	73	74	17	0,822	560	14,000	1,906	1889	-	39	1551	0,361	2,791	0,329	3,873	7,201	45,755	Α
7	1	1	K23	8	9	82	0,100	60	1,500	2,148	1676	-	4	168	0,357	44,656	0,320	1,720	3,938	27,172	С
	Knot	enpunktss	ummen:					7510						13378							
	Gewi	chtete Mi	ttelwerte:												0,647	24,434					


8 Stresemannstraße / Max-Brauer-Allee (LSA 18)

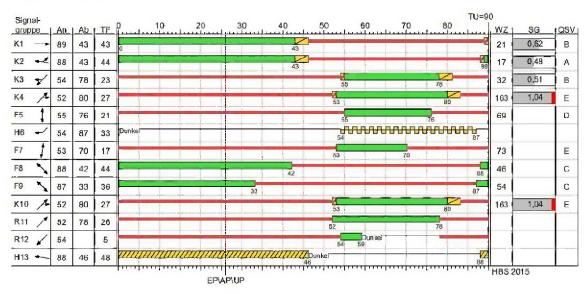
8.1 Stresemannstraße / Max-Brauer-Allee – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

Entwicklungsstufe 1

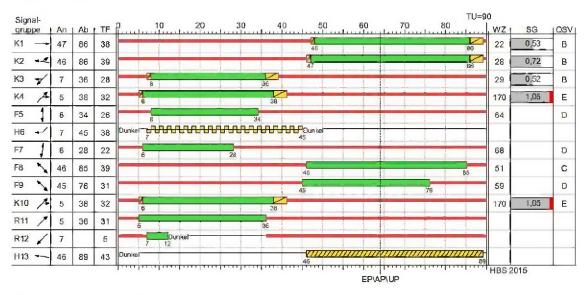


Entwicklungsstufe 2



8.2 Stresemannstraße / Max-Brauer-Allee – Knotenpunktgeometrie Bestand

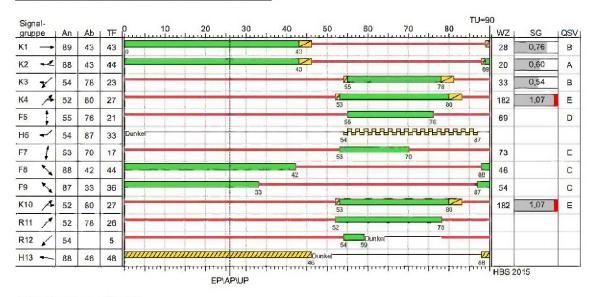
Analyse – Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta. [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,85>nk	nc [Kfz/U]	C [Kfz/h]	х	[5]	N _{GE} [Kfz]	N _M s [Kfz]	[Kfz]	[m]	QSV
	1	Y	КЗ	23	24	67	0,267	265	6,625	1,856	1939	-	13	518	0,512	32,441	0,638	6,263	10,495	64,670	В
1	2	/	КЗ	23	24	67	0,267	265	6,625	1,850	1946	-	13	520	0,510	32,371	0,633	6,255	10,485	64,671	В
,	1	-£	K2	44	45	46	0,500	419	10,475	2,043	1762	-	22	881	0,476	16,999	0,547	7,420	12,027	81,399	Α
2	2	+	K2	44	45	45	0,500	421	10,525	2,027	1776	-	22	887	0,475	16.965	0,545	7,447	12,052	81,491	Α
	2	1	K4, K10	27	28	63	0,311	630	15,750	1,847	1949	-	15	606	1,040	202,076	28 797	44,547	55,835	343,720	F
3	1	Λ	K4, K10	27	28	63	0,311	180	4,500	1,845	1951	-	15	607	0,297	24,971	0,242	3,658	6,893	42,392	В
	2	-	К1	43	44	47	0,489	572	14,300	1,908	1887	-	23	923	0,620	20,993	1,059	11,546	17,293	109,983	В
4	1	7	K1	43	44	47	0,489	568	14,200	1,922	1873	~	23	916	0,620	21,025	1,059	11,472	17,200	109,392	В
	Knote	npunktssu	ımmen:					3320						5858							
	Gewic	htete Mitt	elwerte:												0,628	56,384					

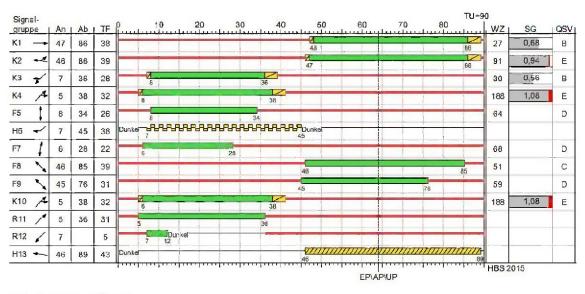
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Estr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws.es>nx	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nos [Kfz]	Nws [Kfz]	Мм5,95 [Kfz]	L _x	QSV
	1	Y	КЗ	28	29	62	0,322	331	8,275	1,824	1973		16	635	0,520	28,599	0,663	7,402	12,003	73,314	В
1	2	/	К3	28	29	62	0,322	329	8,225	1,829	1968	-	16	634	0,519	28,584	0,660	7,355	11,942	72,798	В
	1	-1_	K2	39	40	51	0,444	613	15,325	1,869	1926		21	855	0,717	28,004	1,804	14,304	20,700	128,299	В
2	2	•	K2	39	40	51	0,444	617	15,425	1,859	1937		22	850	0,717	27,964	1,805	14,387	20,802	128.931	В
	2	1	K4, K10	32	33	58	0,367	760	19,000	1,822	1976	-	18	725	1,048	204,940	35,536	54,536	67,026	406,982	F
3	1	^	K4, K10	32	33	58	0,367	180	4,500	1,800	2000		18	734	0,245	20,714	0,184	3,314	6,393	38,358	В
	2	-	К3	38	39	52	0,433	436	10,900	1,890	1905	-	21	826	0,528	21,754	0,688	8,700	13,688	86,234	В
4	1	7.	K1	38	39	52	0,433	434	10,850	1,903	1892	-	21	820	0,529	21,799	0,691	8,671	13,651	65,919	В
	Knote	npunktsst	ımmen:					3700						6090							
	Gewic	htete Mitt	elwerte:												0,682	52,627					

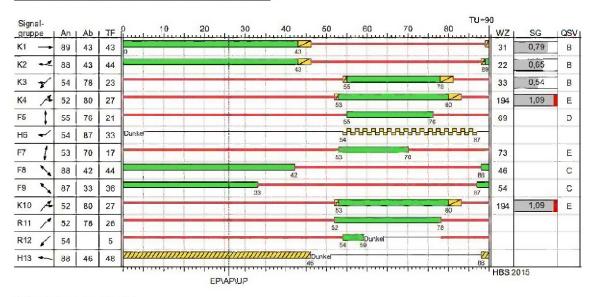
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t= [s]	ta [s]	ţ5 [S]	fA	q [Kfz/h]	m [Kfz/U]	tı [s/Kfz]	qs [Kfz/h]	Nмs,яз≻пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	Y	КЗ	23	24	67	0,267	279	6,975	1,854	1942	-	13	518	0,539	33,246	0,720	6,692	11,067	68,195	В
Ī	2	1	К3	23	24	67	0,267	281	7,025	1,852	1944	-	13	520	0,540	33,256	0,723	6,740	13,131	68,723	В
_	1	+1	K2	44	45	46	0,500	529	13,225	2,039	1765	-	22	883	0,599	19,954	0,955	10,395	15,848	107,164	A
2	2		К2	44	45	46	0,500	531	13,275	2,029	1774	-	22	887	0,599	19,936	0,955	10,430	15,892	107,462	A
	2	1	K4, K10	27	28	63	0,311	550	16,250	1,849	1947	-	15	606	1,073	237,007	34,677	50,927	62,996	388,181	F
3	1	_	K4, K1 0	27	28	63	0,311	230	5,750	1,847	1949	-	15	606	0,380	26,352	0,358	4,851	8,576	52,794	В
	2	-	K1	43	44	47	0,489	697	17,425	1,908	1887	-	23	923	0,755	27,716	2,330	16,446	23,305	148,220	В
4	1	7	K1	43	44	47	0,489	593	17,325	1,919	1876	v	23	918	0,755	27,765	2,330	16,365	23,207	147,597	В
	Knote	npunktssu	ımmen:					3890						5861							
	Gewic	htete Mitt	elwerte:									The state of			0,712	61,295					

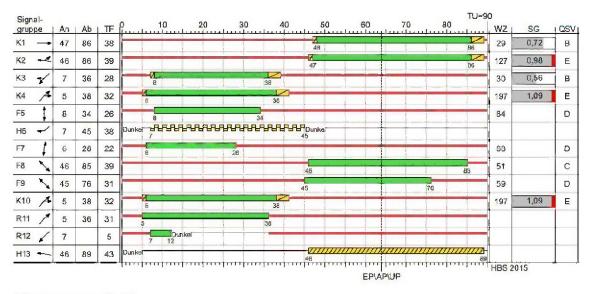
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	[6]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NMS35>rik	nc [Kfz/U]	C [Kfz/h]	ж	tw [s]	Nge [Kfz]	Nms [Kfz]	NMS.95 [Kfz]	L _×	Qsv
	1	Y	KB	28	29	62	0,322	356	8,900	1,823	1975	-	16	635	0,561	29,764	0,797	8,162	12,994	79,211	В
1	2	/	К3	28	29	62	0,322	354	8,850	1,831	1966	-	16	633	0,559	29,719	0,790	8,107	12,922	78,850	В
	1	+1_	К2	39	40	51	0,444	803	20,075	1,867	1928	-	21	856	0,938	90,844	15,932	35,060	45,074	279,369	Е
2	2		K2	39	40	51	0,444	807	20,175	1,859	1937	-	22	860	0,938	90,741	15,982	35,205	45,240	280,398	E
	2	1	K4, K10	32	33	58	0,367	780	19,500	1,822	1976	-	18	725	1,076	235,016	41,593	61,093	74,312	451,222	F
3	1	^	K4, K10	32	33	58	0,367	220	5,500	1,800	2000	-	18	734	0,300	21,469	0,246	4,158	7,607	45,642	В
	2	-	K1	38	39	52	0,433	562	14,050	1,888	1907	-	21	826	0,680	26,819	1,449	12,740	18,777	118,182	В
4	1	7	К1	38	39	52	0,433	558	13,950	1,899	1895	-	21	821	0,680	26,858	1,449	12,659	18,676	117,547	В
	Knote	npunktssi	mmen:					4440						6090							
	Gewic	htete Mitt	elwerte:												0,805	85,799					

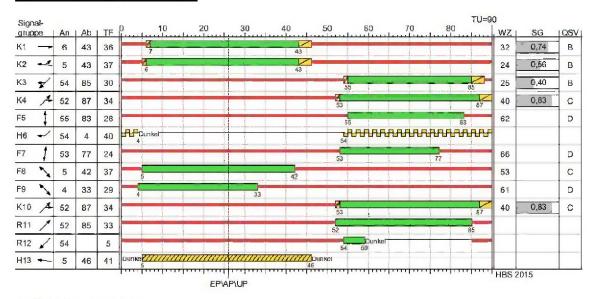
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Estr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
	1	Y	КЗ	23	24	67	0,267	279	6,975	1,854	1942		13	518	0,539	33,246	0,720	6,692	11,067	68,195	В
1	2	1	КЗ	23	24	67	0,267	281	7,025	1,852	1944	-	13	520	0,540	33,256	0,723	5,740	11,131	68,723	В
	1	+1	К2	44	45	45	0,500	57.3	14,325	2,039	1765	-	22	882	0,650	21,704	1,234	11,845	17,666	119,563	В
5	2	-	K2	44	45	46	0,500	577	14,425	2,029	1774	-	22	886	0,651	21,717	1,240	11,933	17,775	120,195	В
,	2	1	K4, K10	27	28	63	0,311	660	16,500	1,847	1949	-	15	606	1,089	254, 253	37,580	54,080	66,517	409,479	F
3	1	^	K4, K10	27	28	63	0,311	240	6,000	1,845	1951	-	15	607	0,395	26,625	0,383	5,096	8,914	54,821	В
	2	-	K1	43	44	47	0,489	727	18,175	1,908	1887	-	23	923	0,788	30,822	3,001	18,111	25,308	160,959	В
4	1	7.	K1	43	44	47	0,489	723	18,075	1,921	1874	-	23	918	0,788	30,882	3,000	18,027	25,208	160,474	В
	Knote	npunktssu	ımmen:					4060						5850							
	Gewic	htete Mitt	elwerte:												0,740	64,560					

Entwicklungsstufe 2 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	f∧	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	NMS,98>TK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nмs [Kfz]	Ммs,95 [Kfz]	Lx [m]	QSV
	1	Y	К3	28	29	62	0,322	356	8,900	1,823	1975	-	16	635	0,561	29,764	0,797	8,162	12,994	79,211	3
1	2	/	K3	28	29	62	0,322	354	8,850	1,831	1966	-	16	633	0,559	29,719	0,790	8,107	12,922	78,850	8
	1	41_	K2	39	40	51	0,444	839	20,975	1,866	1929	-	21	B57	0,979	127,780	24,561	45,190	56,559	350,553	Е
2	2	+	K2	39	40	51	0,444	841	21,025	1,859	1937	-	22	850	0,978	126,736	24,402	45,064	56,417	349,673	E
_	2	1	K4, K10	32	33	58	0,367	790	19.750	1,820	1978	-	18	726	L,088	248,055	44,280	64,030	77,563	470,497	F
3	1	^	K4, K10	32	33	58	0,367	230	5,750	1,800	2000	-	18	734	0,313	21,656	0,262	4,374	7,911	47,466	8
	2	~	K1	38	39	52	0,433	592	14,800	1,888	1907		21	826	0,717	28,835	1,802	13,972	20,294	127,730	8
4	1	-	K1	38	39	52	0,433	588	14,700	1,899	1896	1-1	21	821	0,716	28,821	1,791	13,871	20,170	126,950	8
	Knate	npunktss:	mmen:					4590						6092							
	Gewic	htete Mitt	elwerte:												0,832	102,368					

8.4 Stresemannstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

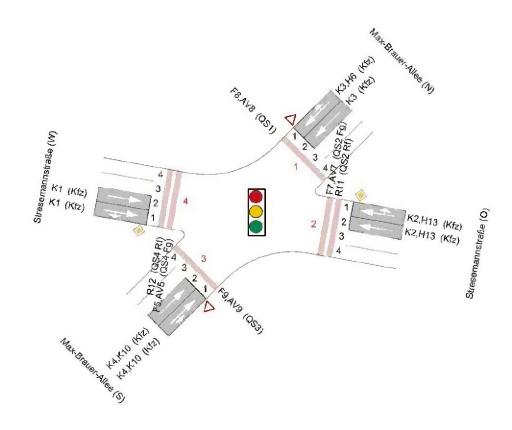
Analyse – Spitzenstunde früh

A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмsэ5≻пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	Y	КЗ	30	31	60	0,344	265	6,625	1,856	1939	-	17	667	0,397	24,511	0,386	5,419	9,356	57,652	В
1	2	1	К3	30	31	60	0,344	265	6,625	1,850	1946	~	17	669	0.396	24,491	0,385	5,416	9,352	57,683	В
	1	1	K2	37	38	53	0,422	419	10,475	2,043	1762	-	19	744	0,563	23,614	0,805	8,746	13,748	93,046	В
2	2	*-	K2	37	38	53	0,422	421	10,525	2,027	1776	-	19	749	0,562	23,563	0,802	8,777	13,787	93,145	В
	2	1	K4, K10	34	35	56	0,389	630	15,750	1,847	1949	-	19	758	0,831	45,379	4,328	18,548	25,832	159,022	C
3	1	^	K4, K10	34	35	56	0,389	180	4,500	1,845	1951	-	19	759	0,237	19,341	0,176	3,205	6,233	38,333	A
	2		K 1	36	37	54	0.411	572	14.300	1.908	1887	-	19	776	0.737	31.873	2.043	14.126	20.482	130.266	В
4	1	7	K 1	36	37	54	0,411	568	14,200	1,922	1873	-	19	770	0,738	32,020	2,056	14,061	20,403	129,763	В
	Knote	npunktssı	ımmen:					3320						5892							
	Gewic	htete Mitt	elwerte:												0,629	30,509					

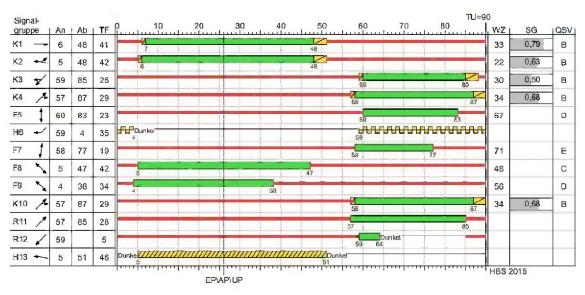
Stresemannstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse – Spitzenstunde spät



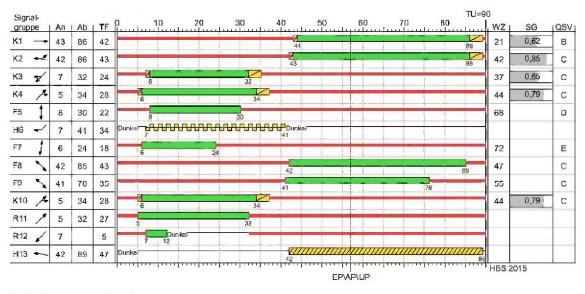
A-Signalgruppen ausgeblendet!

2uf	Fstr.Nr.	Symbol	SGR	t= [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N _{MS,95} >nx	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Noe [Kfz]	N _{MS} [Kfz]	Nws,95 [Kfz]	[m]	QSV
	1	Y	КЗ	34	35	56	G,389	330	8,250	1,824	1973	-	19	768	0,430	22,269	0,447	6,500	10,812	56,040	В
1	2	1	K3	34	35	56	0,389	330	8,250	1,829	1968	-	19	766	0,431	22,293	0,449	6,505	10,818	65,947	В
	1	1	K2	33	34	57	0,378	613	15,325	1,869	1926	-	18	728	0,842	49,264	4,798	18,780	26,109	161,824	C
2	2	+	K2	33	34	57	0,378	617	15,425	1,859	1937	-	18	732	0,843	49,414	4,852	18,933	26,292	162,958	C
	2	1	K4, K10	38	39	52	0,433	760	19,000	1,822	1976	-	21	856	0,888	59,261	8,502	26,005	34,629	210,267	D
3	1	^	K4, K10	38	39	52	0,433	180	4,500	1,800	2000	-	22	866	0,208	16,514	0,148	2,952	5,858	35,148	Α
	2		K1	32	33	58	0,367	437	10,925	1,890	1905	-	18	700	0,624	28,921	1,076	10,045	15,406	97,058	В
4	1	74	K1	32	33	58	0,367	433	10,825	1,903	1892	-	17	695	0,623	28,924	1,071	9,954	15,290	96,235	В
	Knote	npunktssu	ımmen:					3700						6111							
	Gewic	htete Mitt	elwerte:												0,696	40,153					


8.5 Stresemannstraße / Max-Brauer-Allee – Knotenpunktgeometrie Ausbaumaßnahmen

8.6 Stresemannstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Ausbaumaßnahmen

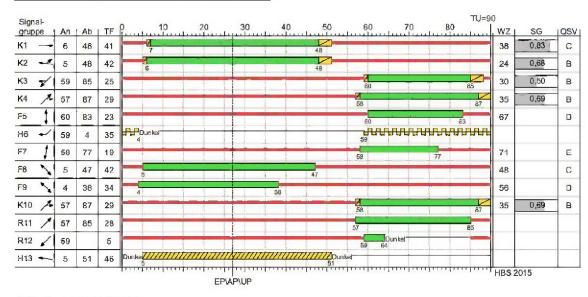
Entwicklungsstufe 1 – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws.95>rik	nc [Kfz/U]	C [Kfz/h]	ж	tw [5]	Nœ [Kfz]	Nws [Kfz]	NM5,95 [Kfz]	[m]	QSV
_	1	Y	КЗ	25	26	65	0,289	280	7,000	1,853	1943	-	14	561	0,499	30,452	0,603	6,419	10,704	65,894	В
1	2	1	КЗ	25	26	65	0,289	280	7,000	1,852	1944	-	14	562	0,498	30,423	0,601	6,415	10,699	66,056	В
	1	•£	К2	42	43	48	0,478	529	13,225	2,039	1765	-	21	844	0,627	22,184	1,096	10,954	16,551	111,918	В
2	2	*	K2	42	43	48	0,478	531	13,275	2,029	1774	-	21	848	0,626	22,125	1,090	10,978	16,582	112,127	В
	2	1	K4, K10	29	30	61	0,333	440	11,000	1,849	1947	-	16	648	0,679	33,825	1,432	10,913	16,500	101,673	В
3	1	1	K4, K10	29	30	61	0,333	440	11,000	1,846	1950	-	16	649	0,678	33,762	1,425	10,902	16,486	101,488	В
	S		K1	41	42	49	0,467	697	17,425	1,908	1887	-	22	881	0,791	32,801	3,066	17,794	24,928	158,542	В
4	1	-	K1	41	42	49	0,467	693	17,325	1,919	1876	-	22	876	0,791	32,869	3,065	17,708	24,825	157,887	В
	Knote	npunktssi	ummen:					3890						5869							
	Gewic	htete Mitt	telwerte:												0,679	29,796					

Stresemannstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Ausbaumaßnahmen

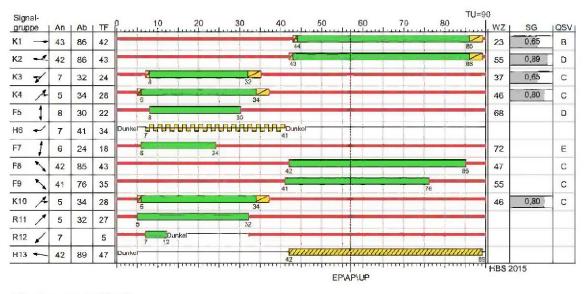
Entwicklungsstufe 1 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t- [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N _{MS} ,95> n _K	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Ner [Kfz]	Nws [Kfz]	Nws.95 [Kfz]	Lx [m]	QSV
	1	Y	K3	24	25	66	0,278	356	8,900	1,823	1975	-	14	549	0,648	36,540	1,209	9,047	14,134	86, 161	С
1	2	/	КЗ	24	25	56	0,278	354	8,850	1,831	1966	^	14	547	0,647	36,519	1,203	8,994	14,066	85,831	С
_	1	+1	K2	43	44	47	0,489	803	20,075	1,867	1928	·	24	943	0,852	41,605	5,622	23,207	31,354	194,332	С
2	2	4	K2	43	44	47	0,489	807	20,175	1,859	1937	-	24	947	0,852	41,529	5,626	23,298	31,461	194,995	c
_	2	1	K4, K10	28	29	62	0,322	499	12,475	1,822	1976		16	636	0,785	43,770	2,842	14,161	20,525	124,628	С
3	1	1	K4, K10	28	29	52	0,322	501	12,525	1,811	1988	-	16	639	0,784	43,570	2,822	14,182	20,551	124,662	C
	2		K1	42	43	48	0,478	562	14,050	1,888	1907	-	23	912	0,616	21,476	1,038	11,433	17,152	107,955	В
4	1	7	K1	42	43	48	0,478	558	13,950	1,899	1895	-	23	906	0,616	21,504	1,038	11,359	17,059	107,369	8
	Knote	npunktssi	ımmen:					4440						6079							
	Gewic	htete Mitt	elwerte:												0,745	36,171					

Stresemannstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Ausbaumaßnahmen

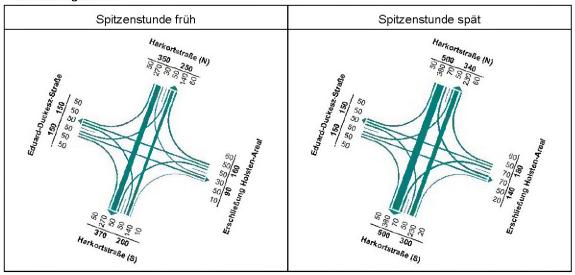
Entwicklungsstufe 2 - Spitzenstunde früh


A-Signalgruppen ausgeblendet!

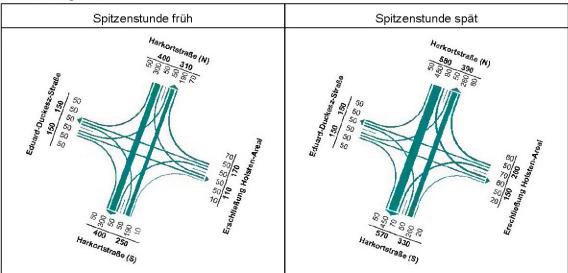
Žuf	Fstr.Nr.	Symbol	SGR	(s)	ta [s]	ts [s]	fA	q (Kfz/h)	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмsэs>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [5]	NGE [Kfz]	Nivis [Kfz]	Nws,95 (Kfz)	Lx [m]	QSV
_	1	Y	КЗ	25	26	65	0,289	280	7,000	1,853	1943	-	14	561	0,499	30,452	0,603	6,419	10,704	65,894	3
1	2	/	КЗ	25	26	65	0,289	280	7,000	1,852	1944	-	14	562	0,498	30,423	0,601	6,415	10,699	66,056	В
	1	+1_	K2	42	43	48	0,478	573	14,325	2,039	1765	-	21	843	0.680	24,359	1,450	12,529	18,515	125,310	8
2	2	•	K2	42	43	48	0,478	577	14,425	2,029	1774	-	21	847	0,681	24,377	1,458	12,622	18,631	125,983	В
,	2	/	K4, K10	29	30	61	0,333	450	11,250	1,849	1947		16	649	0,693	34,624	1,550	11,305	16,991	104,699	8
3	1	1	K4, K10	29	30	61	0,333	450	11,250	1,845	1951	-	16	650	0,692	34,550	1,541	11,292	16,975	104,396	8
	2		К1	41	42	49	0,467	727	18,175	1,908	1887	-	22	881	0,825	37,836	4,170	19,929	27,479	174,766	С
4	1	7	K1	41	42	49	0,467	723	18,075	1,921	1874	-	22	876	0,825	37,921	4,167	19,839	27,372	174,250	С
	Knote	npunktss	ımmen:					4060						5869							
	Gewic	htete Mitt	elwerte:												0,710	32,296					

Stresemannstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Ausbaumaßnahmen

Entwicklungsstufe 2 - Spitzenstunde spät

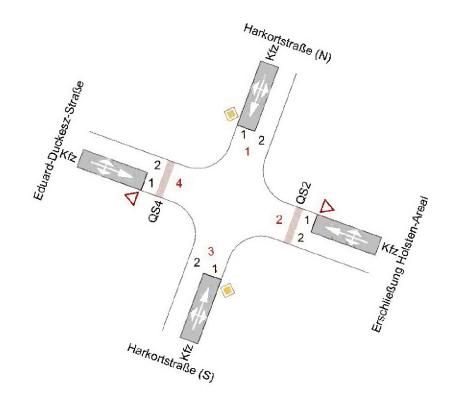

A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	f∧	q [Kfz/h]	m (Kfz/U)	te [s/Kfz]	qs [Kfz/h]	Nws,9s>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nws (Kfz)	NMS,95 [Kfz]	L: [m]	QSV
*	1	Y	К3	24	25	66	0,278	356	8,900	1,823	1975	-	14	549	0,648	36,540	1,209	9,047	14,134	86,161	С
)	2	1	кз	24	25	65	0,278	354	8,850	1,831	1966	-	14	547	0,647	36,519	1,203	8,994	14,066	85,831	С
_	1	1	K2	43	44	47	0,489	838	20,950	1,866	1929	-	24	943	0,889	54,878	8,930	27,868	36,796	228,062	D
2	2	+	K2	43	44	47	0,489	842	21,050	1,859	1937	-	24	947	0,889	54,787	8,944	27,973	36,918	228,818	D
_	2	1	K4, K10	28	29	62	0,322	509	12,725	1,822	1976	-	16	637	0,799	45,806	3,177	14,793	21,298	129,321	С
3	1	1	K4, K10	28	29	62	0,322	511	12,775	1,811	1988	-	16	640	0,798	45,575	3,153	14,810	21,319	129,321	С
	2	-	K 1	42	43	48	0,478	592	14,800	1,888	1907	-	23	912	0,649	22,623	1,228	12,428	18,390	115,747	В
4	1	-	K1	42	43	48	0,478	588	14,700	1,899	1896	-	23	907	0,648	22,610	1,221	12,338	18,279	115,048	В
	Knote	npunktssi	mmen:					4590						6082							
	Gewic	htete Mitt	elwerte.												0,770	41,688					



9 Harkortstraße / Erschließungsstraße Holsten-Areal

9.1 Harkortstraße / Erschließungsstraße Holsten-Areal – Knotenstrombelastungen Entwicklungsstufe 1


Entwicklungsstufe 2

9.2 Harkortstraße / Erschließungsstraße Holsten-Areal – Knotenpunktgeometrie Planung

Quelle: eigenes Konzept

9.3 Harkortstraße / Erschließungsstraße Holsten-Areal – Verkehrstechnische Bewertung Planung

Entwicklungsstufe 1 – Spitzenstunde früh

Arm	Zufahrt	Strom	Verkehrsstrom	q _{Fz} [Fz/h]	qpe [Pkw-E/h]	CPE [Pkw-E/h]	CFz [Fz/h]	ж [-]	R [Fz/h]	tw [s]	QSV
		3 → 4	1	50,0	50,5	893,0	884,0	0,057	834,0	4,3	Α
3	A	3 → 1	2	140,0	143,0	1.800,0	1.763,0	0,079	1.623,0	2,2	Α
		3 → 2	3	10,0	10,0	1.600,0	1.600,0	0,006	1.590,0	2,3	Α
		2 → 3	4	50,0	50,5	371,5	368,0	0,136	318,0	11,3	В
2	В	2 → 4	5	50.0	50,5	460,0	455,5	0,110	405,5	8,9	A
		2 → 1	6	60,0	60,5	1.005,0	997,0	0,060	937,0	3,8	Α
		1 → 2	7	30,0	30,5	1.084,0	1.066,0	0,028	1.036,0	3,5	А
1	C	1 → 3	8	270,0	275,5	1.800,0	1.764,5	0,153	1.494,5	2,4	Α
		1 → 4	9	50,0	50,5	1.600,0	1.584,0	0,032	1.534,0	2,3	Α
		4 → 1	10	50,0	50,5	365,5	362,0	0,138	312,0	11,5	В
4	D	4 → 2	11	50,0	50,5	473,5	469,0	0,107	419,0	8,6	Α
		4 → 3	12	50,0	50,5	836,5	828,0	0,060	778,0	4,6	Α
Miscl	nströme										
3	Α	-	1+2+3	200,0	203,5	1.800,0	1.768,0	0,113	1.568,0	2,3	Α
2	В	-	4+5+6	160,0	161,5	528,0	523,5	0,306	363,5	9,9	Α
1	C	•	7+8+9	350,0	356,5	1.800,0	1.766,5	0,198	1.416,5	2,5	Α
4	D	-	10+11+12	150,0	151,5	496,5	491,5	0,305	341,5	10,5	В
									Gesam	t QSV	В

Entwicklungsstufe 1 – Spitzenstunde spät

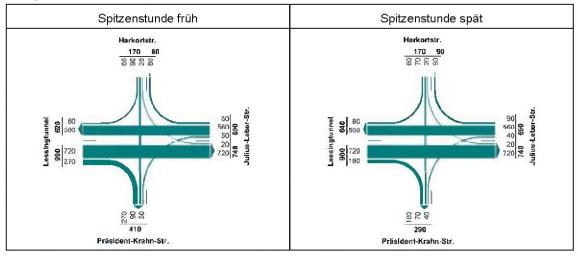
Arm	Zufahrt	Strom	Verkehrsstrom	q ^{Fz} [Fz/h]	qre [Pkw-E/h]	CPE [Pkw-E/h]	CFz [Fz/h]	ж [-]	R [Fz/h]	tw [s]	QSV
		3 → 4	1	50,0	50,5	788,0	780,0	0,064	730,0	4,9	Α
3	Α	3 → 1	2	230,0	234,5	1.800,0	1.764,5	0,130	1.534,5	2,3	Α
		3 → 2	3	20,0	20,0	1.600,0	1.600,0	0,013	1.580,0	2,3	Α
		2 → 3	4	70,0	70,5	231,5	230,0	0,305	160,0	22,5	C
2	В	2 → 4	5	50,0	50,5	300,5	297,5	0,168	247,5	14,5	В
		2 → 1	6	60,0	60,5	895,0	888,0	0,068	828,0	4,3	Α
		1 → 2	7	70,0	70,5	967,0	960,5	0,073	890,5	4,0	Α
1	С	1 → 3	8	380,0	387,5	1.800,0	1.764,5	0,215	1.384,5	2,6	Α
		1 → 4	9	50,0	50,5	1.600,0	1.584,0	0,032	1.534,0	2,3	Α
		4 → 1	10	50,0	50,5	228,0	225,5	0,221	175,5	20,5	C
4	D	4 → 2	11	50,0	50,5	307,5	304,5	0,164	254,5	14,1	В
		4 → 3	12	50,0	50,5	731,5	724,5	0,069	674,5	5,3	Α
Misch	nströme										
3	Α	-	1+2+3	300,0	305,0	1.800,0	1.770,0	0,169	1.470,0	2,4	Α
2	В	-	4+5+6	180,0	181,5	335,5	333,0	0,541	153,0	23,3	С
1	С	-	7+8+9	500,0	508,5	1.800,0	1.770,0	0,283	1.270,0	2,8	Α
4	D	-	10+11+12	150,0	151,5	333,5	330,0	0,454	180,0	19,9	В
									Gesam	t QSV	C

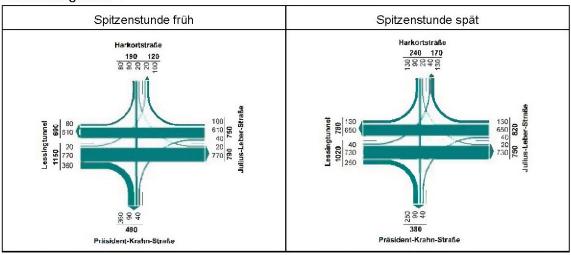
Harkortstraße / Erschließungsstraße Holsten-Areal – Verkehrstechnische Bewertung Planung

Entwicklungsstufe 2 - Spitzenstunde früh

Arm	Zufahrt	Strom	Verkehrsstrom	qFz [Fz/h]	qpe [Pkw-E/h]	CPE [Pkw-E/h]	CFz [Fz/h]	Xī [-]	R [Fz/h]	tw [s]	QSV
		3 → 4	1	50,0	50,5	863,0	854,5	0,059	804,5	4,5	Α
3	Α	3 → 1	2	190,0	194,0	1.800,0	1.763,0	0,108	1.573,0	2,3	Α
		3 → 2	3	10,0	10,0	1.600,0	1.600,0	0,006	1.590,0	2,3	Α
		2 → 3	4	50,0	50,5	307,0	304,0	0,164	254,0	14,2	В
2	В	2 → 4	5	50,0	50,5	387,0	383,0	0,130	333,0	10,8	В
		2 → 1	6	70,0	70,5	945,5	939,0	0,075	869,0	4,1	Α
		1 → 2	7	50,0	50,5	1.024,0	1.014,0	0,049	964,0	3,7	Α
1	С	1 → 3	8	300,0	306,0	1.800,0	1.764,5	0,170	1.464,5	2,5	Α
		1 → 4	9	50,0	50,5	1.600,0	1.584,0	0,032	1.534,0	2,3	Α
		4 → 1	10	50,0	50,5	294,5	291,5	0,171	241,5	14,9	В
4	D	4 → 2	11	50,0	50,5	397,5	393,5	0,127	343,5	10,5	В
		4 ↔ 3	12	50,0	50,5	806,5	798,5	0,063	748,5	4,8	Α
Miscl	nströme										
3	Α	-	1+2+3	250,0	254,5	1.800,0	1.768,0	0,141	1.518,0	2,4	Α
2	В	-	4+5+6	170,0	171,5	465,0	461,0	0,369	291,0	12,4	В
1	C	-	7+8+9	400,0	407,0	1.800,0	1.768,0	0,226	1.368,0	2,6	Α
4	D	-	10+11+12	150,0	151,5	419,5	415,5	0,361	265,5	13,5	В
									Gesam	t QSV	В

Entwicklungsstufe 2 – Spitzenstunde spät

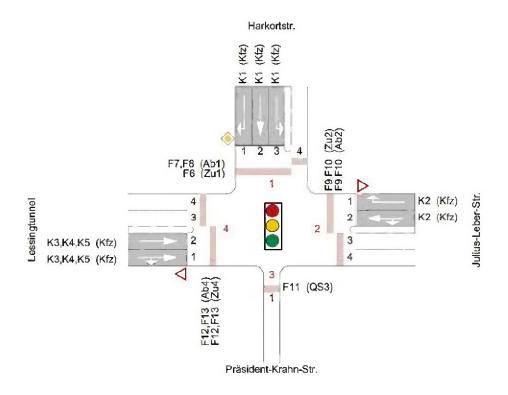

Arm	Zufahrt	Strom	Verkehrsstrom	q _{Fz} [Fz/h]	qpe [Pkw-E/h]	CPE [Pkw-E/ h]	C _{Fz} [Fz/h]	xī [-]	R [Fz/h]	tw [s]	QSI
		3 → 4	1	50,0	50,5	727,5	720,5	0,069	670,5	5,4	Α
3	Α	3 → 1	2	260,0	265,0	1.800,0	1.766,5	0,147	1.506,5	2,4	Α
		3 → 2	3	20,0	20,0	1.600,0	1.600,0	0,013	1.580,0	2,3	Α
		2 → 3	4	70,0	70,5	185,5	184,0	0,380	114,0	31,5	D
2	В	2 → 4	5	50,0	50,5	248,5	246,0	0,203	196,0	18,4	В
		2 → 1	6	80,0	81,0	862,5	851,5	0,094	771,5	4,7	Α
		1 → 2	7	80,0	81,0	934,5	922,5	0,087	842,5	4,3	Α
1	С	1 → 3	8	450,0	459,0	1.800,0	1.764,5	0,255	1.314,5	2,7	Α
		1 → 4	9	50,0	50,5	1.600,0	1.584,0	0,032	1.534,0	2,3	Α
		4 → 1	10	50,0	50,5	173,5	172,0	0,291	122,0	29,5	С
4	D	4 → 2	11	50,0	50,5	254,0	251,5	0,199	201,5	17,9	В
		4 → 3	12	50,0	50,5	671,5	665,0	0,075	615,0	5,9	Α
Miscl	hströme										
3	Α	-	1+2+3	330,0	335,5	1.800,0	1.770,0	0,186	1.440,0	2,5	Α
2	В	-	4+5+6	200,0	202,0	298,5	295,5	0,677	95,5	36,7	D
1	С	-	7+8+9	580,0	590,5	1.800,0	1.768,0	0,328	1.188,0	3,0	Α
4	D	-	10+11+12	150,0	151,5	268,0	265,5	0,565	115,5	30,8	D
									Gesam	t QSV	D


10 Julius-Leber-Straße / Harkortstraße (LSA 709)

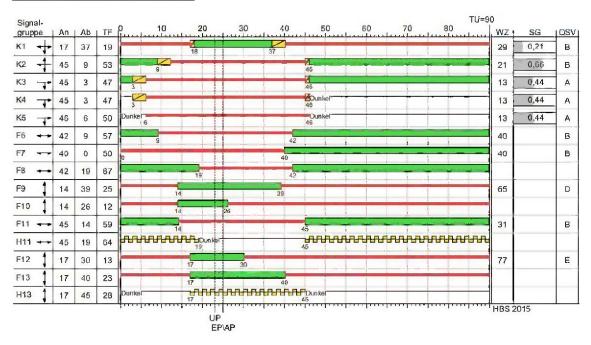
10.1 Julius-Leber-Straße / Harkortstraße – Knotenstrombelastungen

Analyse (VZ 05.06.2013)

Entwicklungsstufe 1

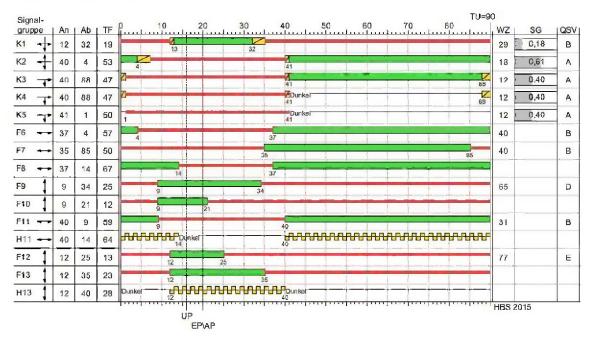


Entwicklungsstufe 2


10.2 Julius-Leber-Straße / Harkortstraße – Knotenpunktgeometrie Bestand

10.3 Julius-Leber-Straße / Harkortstraße – Verkehrstechnische Bewertung Bestand

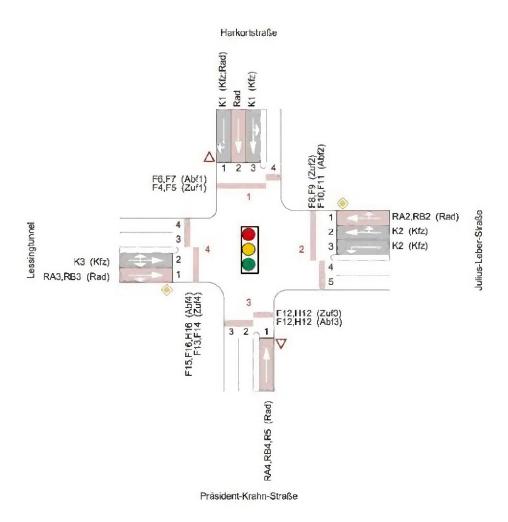
Analyse – Spitzenstunde früh



Zuf	Fstr.Nr.	Symbol	SGR	%- [5]	tn [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N _{MS,95} > n _K	nc [Kfz/U]	C [Xfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	لي	K 1	19	20	71	0,222	60	1,500	1,868	1927	-	11	428	0,140	28,876	0,091	1,295	3,220	20,054	В
1	2	1	K1	19	20	71	0,222	90	2,250	1,631	1966		11	436	0,206	29,749	0,146	1,980	4,360	26,605	В
	3	Ĺ.	K1	19	50	71	0,222	20	0,500	1,866	1927		11	428	0,047	27,752	0,027	0,420	1,516	9,442	8
-	1	Ł.	K2	53	54	37	0,600	80	2,000	1,919	1876	-	28	1126	0,071	7,654	0,042	0,878	2,463	15,753	A
2	2	•	K2	53	54	37	0,600	610	15,250	1,831	1966	-	23	931	0,655	22,959	1,268	12,901	18,976	116,019	В
	2	-	K3, K4, K5	50	51	40	0,567	494	12,350	1,832	1965	-	28	1113	0,444	12,816	0,476	7,623	12,292	75,080	A
4	1	7	K3, K4, K5	50	51	40	0,567	496	12,400	1,830	1967		28	1116	0,444	12,811	0,476	7,652	12,330	75,016	A
	Kno	tenpunkt	ssummen:					1850						5578							
	Gev	vichtete M	littelwerte:												0,472	17,442					

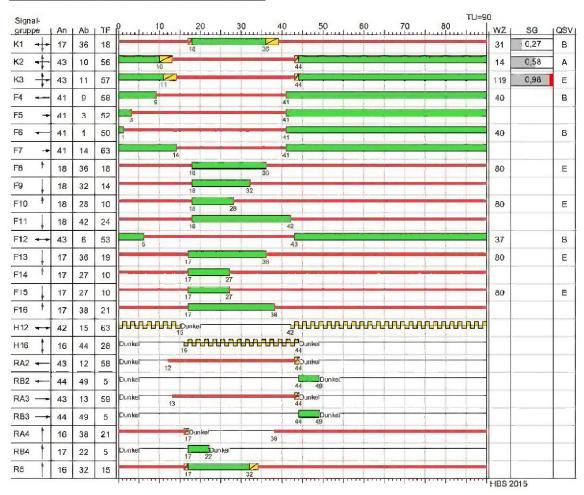
Julius-Leber-Straße / Harkortstraße – Verkehrstechnische Bewertung Bestand

Analyse – Spitzenstunde spät



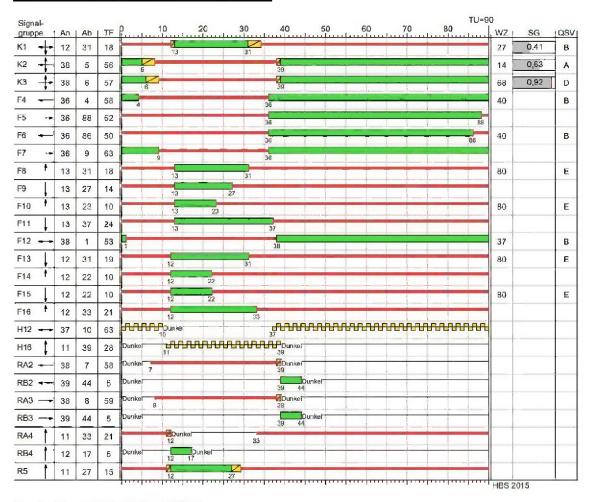
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nws.es>nc	nc [Kfz/U]	C [Kfz/h]	к	tw [s]	Nige [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	له ا	K1	19	20	71	0,222	80	2,000	1,800	2000	-	11	444	0,180	29,369	0,123	1,744	3,977	23,862	В
1	2	 	K1	19	20	71	0,222	70	1,750	1,800	2000	-	11	444	0, 158	29,079	0,105	1,516	3,598	21,588	В
	3	L.	КТ	19	20	71	0,222	20	U,500	1,800	2000	-	11	444	0,045	21,124	0,026	0,419	1,514	9,084	8
	1	Ł	К2	53	54	37	0,600	90	2,250	1,814	1985	-	30	1191	0,076	7,683	0,046	0,989	2,671	16, 154	A
2	2	•	K2	53	54	37	0,600	600	15,000	1,813	1986	-	25	985	0,609	20,047	1,004	11,836	17,654	106,030	В
	2	-	K3, K4, K5	50	51	40	0,567	449	11,225	1,805	1994	-	28	1131	0,397	12,120	0,387	6,659	11,023	66,336	A
4	1	7	K3, K4, K5	50	51	40	0,567	451	11,275	1,803	1997	-	28	1132	0,398	12,133	0,389	6,694	11,070	66,619	A
	Kno	tenpunkt	ssummen:					1760						5771							
	Gev	vichtete M	littelwerte:												0,430	16,235					

10.4 Julius-Leber-Straße / Harkortstraße – Knotenpunktgeometrie Planung


Quelle: FHH – LSBG-S2, Vorentwurf/Konzept, Stand 10/2017)

10.5 Julius-Leber-Straße / Harkortstraße – Verkehrstechnische Bewertung Planung

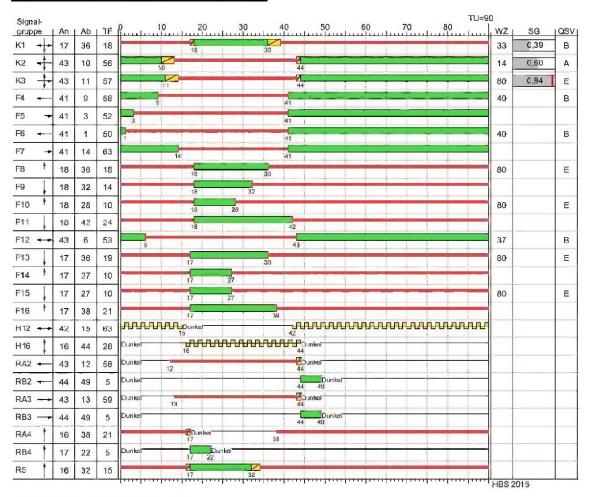
Entwicklungsstufe 1 - Spitzenstunde früh


Vorentwurf/Konzept (LSBG-S1, Stand 10/2017)

Zuf	Fstr.Nr.	Symbol	SGR	t⊧ [5]	ta [s]	\$5 [5]	fA	q [Kfz/h]	m [Kfz/U]	tu [s/Kfz]	qs [Kfz/h]	Nмs,яs>пк	nc [Kfz/U]	C [Kfz/h]	X	tw [s]	Nge [Kf2]	N _{M5} [Kfz]	NMS,95 [Kíz]	L: [m]	QSV
	1	+	K1	18	19	72	0,211	80	2,000	2,037	1767	-	9	373	0,214	30,824	0,154	1,807	4,080	25,410	В
1	3	-	К1	18	19	72	0,211	110	2,750	1,838	1959	-	10	414	0,266	31,470	0,206	2,505	5,182	31,621	В
	2	+	K2	56	57	34	0,633	710	17,750	1,865	1930	-	31	1222	0,567	12, 177	0,879	11,183	16,839	102,853	Α
2	3		K2	56	57	34	0,633	40	1,000	1,854	1942	-	3	120	0,333	48,978	0,285	1,243	3,129	18,774	C
4	2	-	КЗ	57	58	33	0,644	1150	28,750	1,884	1911	-	29	1170	0,983	118,921	33, 123	61,122	74,344	454,539	E
	Knotenpu	ınktssumi	men:					2090						3299							
_	Gewichte	te Mittelw	erte:												0,767	73,345					

Julius-Leber-Straße / Harkortstraße – Verkehrstechnische Bewertung Planung

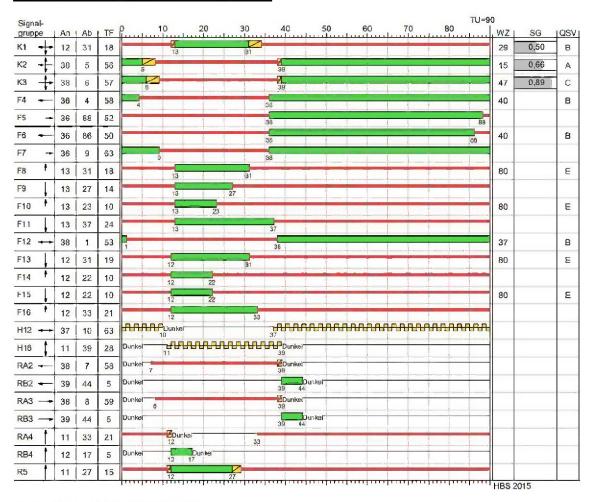
Entwicklungsstufe 1 - Spitzenstunde spät


Vorentwurf/Konzept (LSBG-S1, Stand 10/2017)

Zuf	Fstr.Nr.	Symbol	5GR	tr [s]	ta [s]	ts [s]	fA	q (Kfz/h)	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NM5,95>114	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nivis [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
4	1	له	K1	18	19	72	0,211	130	3,250	1,962	1835	х								36,042	
T	3	-	K1	18	19	72	0,308	110	2,750	1,800	2000		15	587	0,409	27,151	0,407	5,157	8,998	53,988	В
	2	4	K2	56	57	34	0,633	780	19,500	1,826	1971	-	31	1248	0,625	13,173	1,090	12,931	19,013	114,192	А
2	3	F	K2	56	57	34	0,633	40	1,000	2,028	1775	-	5	207	0,193	38,227	0,134	1,037	2,759	18,110	С
4	2	+	КЗ	57	58	33	0,644	1020	25,500	1,845	1952	-	28	1105	0,923	68,047	15,439	38,612	49,121	295,610	D
	Knotenpa	ınktssumi	men:					2080						3147							
	Gewichte	te Mittelw	erte:												0,738	42,177					

Julius-Leber-Straße / Harkortstraße – Verkehrstechnische Bewertung Planung

Entwicklungsstufe 2 - Spitzenstunde früh

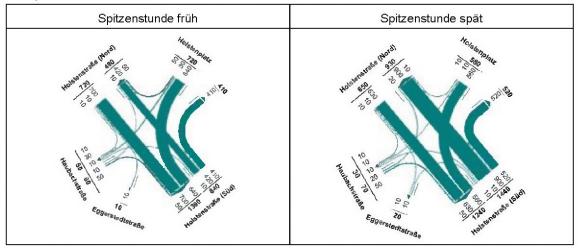

Vorentwurf/Konzept (LSBG-S1, Stand 10/2017)

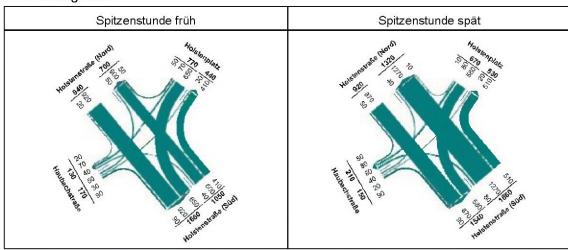
Zuf	Fstr.Nr.	Symbol	5GR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NMS,95>0k	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	[m]	Q5V
	1	4	K1	18	19	72	0,211	100	2,500	2,037	1767	-	9	373	0,268	31,700	0,208	2,299	4,863	30,287	В
1	3	-	K1	18	19	72	0,211	160	4,000	1,843	1954		10	412	0,388	33,744	0,370	3,807	7,107	43,452	В
	2	4	K2	56	57	34	0,633	730	18,250	1,871	1924	-	30	1218	0,599	12,595	0,958	11,745	17,542	107,147	A
2	3	-	K2	56	57	34	0,633	40	1,000	1,854	1942	-	4	157	0,255	43,255	0,194	1,132	2,931	17,586	С
4	2		КЗ	57	58	33	0,644	1130	28,250	1,882	1913		30	1198	0,943	79,579	21,385	47, 165	58,780	359,381	Е
	Knatenpi	unktssum:	men:					2160						3358							
(Gewichte	te Mittelw	erte:												0,742	50,656					

Julius-Leber-Straße / Harkortstraße – Verkehrstechnische Bewertung Planung

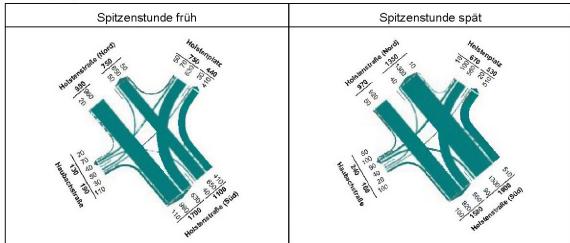
Entwicklungsstufe 2 - Spitzenstunde spät

Vorentwurf/Konzept (LSBG-S1, Stand 10/2017)

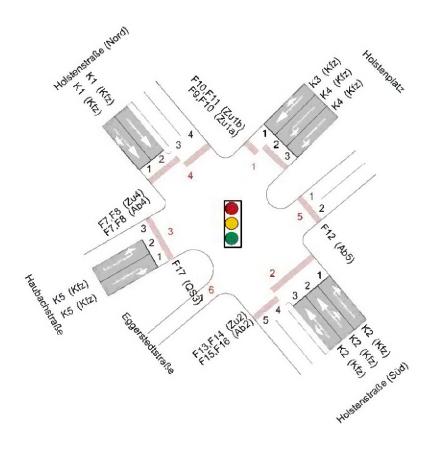

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q (Kfz/h)	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nws95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge (Kfz)	N _{MS} [Kfz]	NMS.95 [Kfz]	Lx [m]	QSV
_	1	لي	K1	18	19	72	0,211	340	3,500	1,962	1835	×								38,400	
1	3	+	K1	18	19	72	0,311	160	4,000	1,800	2000	-	15	597	0,503	29,027	0,614	6,740	11,131	66,786	В
_	2	1	K2	56	57	34	0,633	820	20,500	1,833	1964	-	31	1243	0,660	14,198	1,308	14,230	20,610	123,784	A
2	3		K2	56	57	34	0,633	40	1,000	2,028	1775	-	5	212	0,189	37,956	0,131	1,032	2,750	18,051	С
4	2	+	КЗ	57	58	33	0,644	1000	25,000	1,844	1952	-	28	1126	0,888	46,556	9,397	31,084	40,513	243,807	С
	Knotenpu	ınktssumi	men:					2160						3178							
	Gewichte	te Mittelw	reite.												0,735	31,678					


11 Holstenstraße / Holstenplatz (LSA 600)

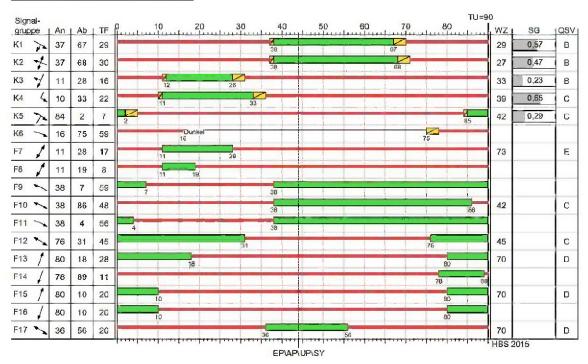
11.1 Holstenstraße / Holstenplatz – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

Entwicklungsstufe 1

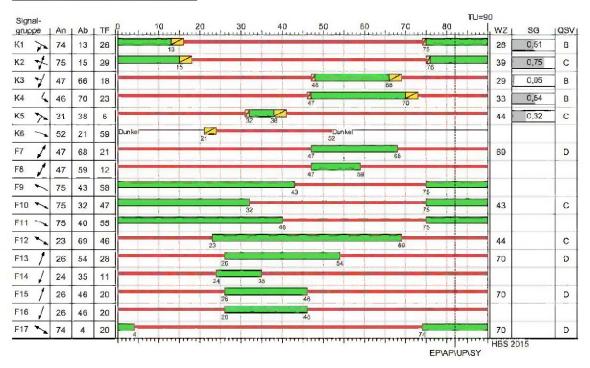


Entwicklungsstufe 2


11.2 Holstenstraße / Holstenplatz – Knotenpunktgeometrie Bestand

11.3 Holstenstraße / Holstenplatz – Verkehrstechnische Bewertung Bestand

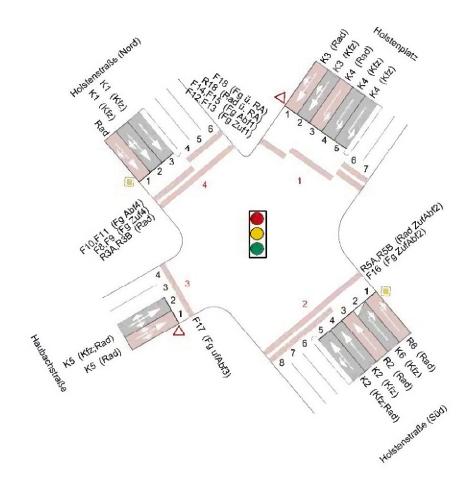
Analyse - Spitzenstunde früh



Zuf	Fstr.Nr.	Symbol	SGR	t: [s]	ta [S]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	№8,95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nius [Kfz]	Nм5,95 [Kfz]	Lx [m]	QSV
	1	7	КЗ	16	17	74	0,189	80	2,000	1,918	1877	-	9	355	0,225	32,575	0, 164	1,858	4,163	27,601	В
1	2	4	K4	22	23	68	0,256	320	8,000	1,876	1919	-	12	491	0,652	38,918	1,230	8,375	13,269	82,958	С
	3	4	K4	22	23	68	0,256	320	8,000	1,875	1919	-	12	491	0,652	38,918	1,230	8,375	13,269	82,958	C
	3	X	K2	30	31	60	0,344	238	5,950	1,948	1848	-	13	511	0,466	30,746	0,522	5,466	9,420	61,381	В
2	2	*	K2	30	31	60	0,344	299	7,475	1,935	1860	-	16	640	0,467	26,025	0,525	6,367	10,634	69,036	В
	1	<	K2	30	31	60	0,344	303	7,575	1,912	1883	(x)	16	648	0,468	26,009	0,527	6,450	10,745	68,467	В
•	2	>	K5	7	8	83	0,089	10	0,250	1,800	2000	-	4	178	0,056	38,201	0,033	0,262	1,128	6,768	C
3	1	~	K5	7	8	83	0,089	50	1,250	1,827	1970	*	4	175	0,286	43,012	0,228	1,396	3,394	20,669	С
	1	Y	К1	29	30	61	0,333	355	8,875	1,911	1884	*	16	628	0,565	29,309	0,811	8,102	12,916	82,223	В
4	2	1	K1	29	30	61	0,333	355	8,875	1,906	1889	-	16	628	0,565	29,309	0,811	8, 102	12,916	82,068	В
	Knotenpu	ınktesumi	men:					2330						4745							
(5ewichte	te Mittelw	/erte:												0,534	31,689					

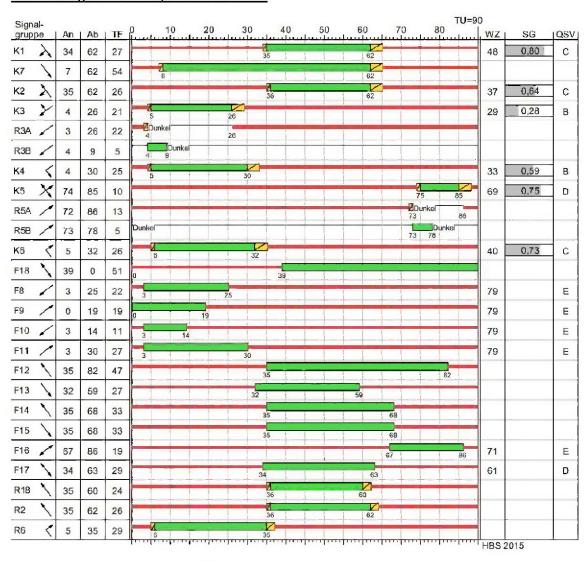
Holstenstraße / Holstenplatz – Verkehrstechnische Bewertung Bestand

Analyse - Spitzenstunde spät



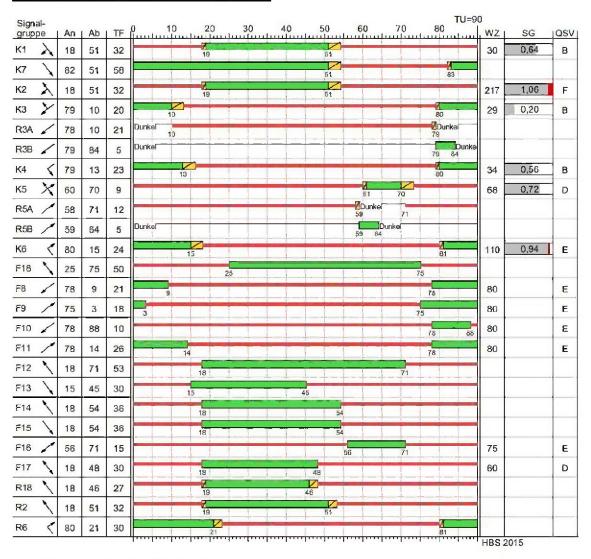
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tx [\$]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kf2/h]	Nмs,95>пк	nc [Kfz/U]	C (Kfz/h)	Х	tw [s]	Nge [Kfz]	Nms [Kfz]	NMS,95 [Kfz]	L _*	QSV
	1	Y	K3	18	19	72	0,211	20	0,500	1,800	2000	-	11	422	0,047	28,524	0,027	0,425	1,52B	9, 168	В
1	2	4	K4	23	24	67	0,267	290	7,000	1,849	1947		13	521	0,537	33,152	0,713	6,703	11,082	68,287	В
	3	4	K4	23	24	67	0,267	280	7,000	1,849	1947	-	13	521	0,537	33,152	0,713	6,703	11,082	68,287	В
	3	X	K2	29	30	61	0,333	459	11,475	1,866	1930		15	613	0,749	40,319	2,187	12,460	18,430	114,671	С
2	2	4	K2	29	30	61	0,333	482	12,050	1,866	1929	-	16	643	0,750	39,046	2,208	12,921	19,000	118,332	С
	1	<	K2	29	30	61	0,333	489	12,225	1,838	1959	(x)	16	652	0,750	38,886	2,210	13,078	19,194	117,582	С
_	2	3	K5	6	7	84	0,078	20	0,500	1,800	2000	-	4	156	0,128	40,532	0,082	0,548	1,800	10,800	С
3	1	4	K5	6	7	84	0,078	50	1,250	1,800	2000	-	4	156	0,321	45,467	0,270	1,452	3,490	20,940	С
,	1	X	K1	28	29	62	0,322	320	8,000	1,843	1953	-	16	630	0,508	28,320	0,628	7,113	11,624	71,278	В
4	2	1	K1	28	29	62	0,322	320	8,000	1,838	1959	-	16	631	0,507	28,293	0,626	7,108	11,617	71,166	В
	Knotenpo	unktssumi	men:					2720						4945							
	Gewichte	te Mittelw	verte:												0,631	35,543					

11.4 Holstenstraße / Holstenplatz – Knotenpunktgeometrie Planung


Quelle: Schlothauer & Wauer GmbH, Vorentwurf/Konzept, Stand 01/2018)

11.5 Holstenstraße / Holstenplatz – Verkehrstechnische Bewertung Planung

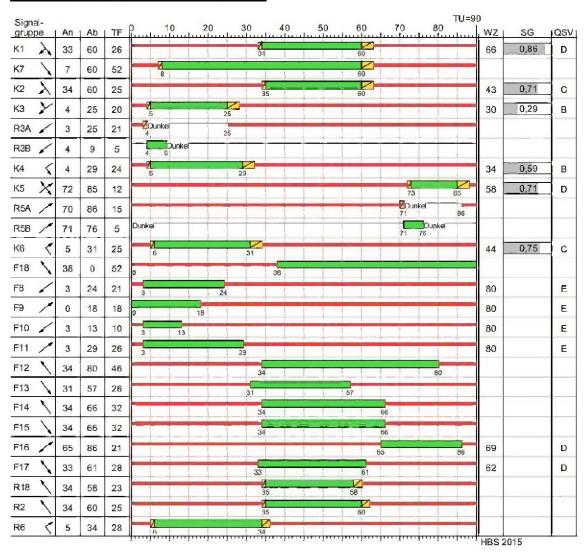
Entwicklungsstufe 1 - Spitzenstunde früh


Vorentwurf/Konzept (Büro S&W, Stand 01/2018)

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>nk	nc [Kfz/U]	C (Kfz/h)	х	tw [s]	NGE [Kfz]	NMS [Kfz]	N MS,99 [Kfz]	L: [m]	QSV
	2	Y	КЗ	21	22	69	0,244	120	3,000	2,020	1783	-	11	435	0,276	29,372	0,217	2,649	5,402	34,843	В
1	4	4	K4	25	26	65	0,289	325	8,125	1,879	1916		14	554	0,587	33,225	0,897	7,854	12,594	78,889	В
	5	4	K 4	25	26	65	0,289	325	8,125	1,879	1916	-	14	554	0,587	33,225	0,897	7,854	12,594	78,889	В
	S	X	K2	26	27	64	0,300	287	7,175	1,932	1864	~	11	451	0,636	39,595	1,132	7,560	12,210	79,487	С
2	4	1	KZ	26	27	64	0,300	353	8,825	1,949	1847	(x)	14	554	0,637	34,686	1,143	8,780	13,791	89,614	В
	2	<	K6	26	27	64	0,300	410	10,250	1,912	1883		14	565	0,726	40,143	1,876	11,049	16,671	106,228	С
3	2	×	K5	10	11	80	0,122	170	4,250	1,929	1867		6	228	0,746	69,142	1,962	6,067	10,233	62,442	D
	2	Y	K1	27	28	63	0,311	470	11,750	1,909	1886	-	15	587	0,801	48,069	3,199	13,981	20,305	129,140	C
4	3	1	K1	27	28	63	0,311	470	11,750	1,906	1889		15	587	0,801	48,069	3,199	13,981	20,305	129,018	€
	Knotenpu	nktssumi	men:					2930						4515							
	Gewichte	te Mittelw	erte:												0,682	41,681					

Holstenstraße / Holstenplatz – Verkehrstechnische Bewertung Planung

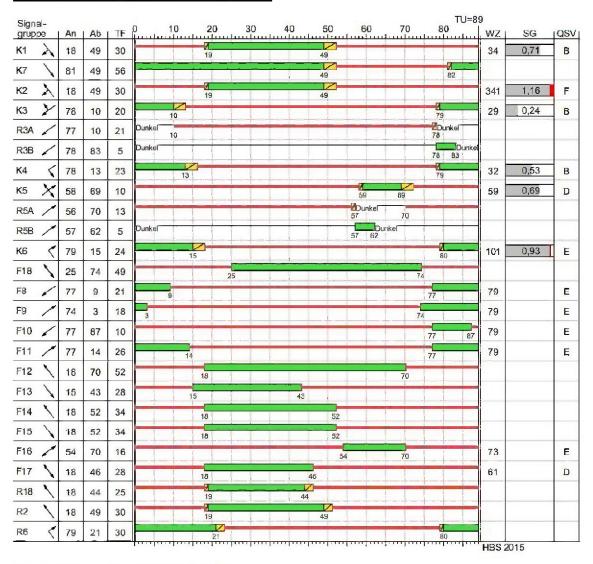
Entwicklungsstufe 1 - Spitzenstunde spät


Vorentwurf/Konzept (Büro S&W, Stand 01/2018)

Zuf	Fstr.Nr.	Symbol	SGR	[s]	ta [s]	ts [s]	fA	q [Kfz/h]	en. [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	Х	tw [5]	NGE [Kfz]	NMS [Kfz]	NM5,95 [Kfz]	Lx [m]	QS\
	2	Y	КЗ	20	21	70	0,233	90	2,250	1,815	1983	-	12	462	0,195	28,793	0,136	1,944	4,302	25,812	В
1	4	4	K4	23	24	67	0,267	290	7,250	1,847	1949	**	13	520	0,558	33,839	0,784	7,029	11,513	70,874	В
	5	4	K4	23	24	67	0,267	290	7,250	1,847	1949	44	13	520	0,558	33,839	0,784	7,029	11,513	70,874	В
	5	X	K2	32	33	58	0,367	602	15,050	1,858	1937	-	14	570	1,056	220,745	29,921	44,971	56,312	350,373	F
2	4	1	K2	32	33	58	0,367	748	18,700	1,867	1928	(x)	18	708	1,056	213,829	36,451	55,151	67,711	421,298	F
	2	<	K6	24	25	66	0,278	510	12,750	1,840	1957	-	14	544	0,938	110,297	11,872	24,325	32,666	200,308	Е
3	2	X	K5	9	10	81	0,111	150	3,750	1,917	1878	-	5	208	0,721	67,873	1,688	5,312	9,210	55,260	D
	2	Y	K1	32	33	58	0,367	458	11,450	1,850	1946	-	18	714	0,641	29,492	1,173	10,650	16, 169	99,148	В
4	3	1	K1	32	33	58	0,367	462	11,550	1,838	1959	-	18	718	0,643	29,542	1,185	10,754	16,300	99,854	В
	Knotenpe	unktssumi	men:					3600						4964							
<	Gewichte	te Mittelv	erte:												0,818	113,511					

Holstenstraße / Holstenplatz – Verkehrstechnische Bewertung Planung

Entwicklungsstufe 2 - Spitzenstunde früh

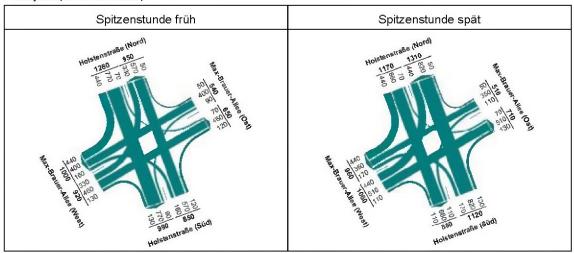

Vorentwurf/Konzept (Büro S&W, Stand 01/2018)

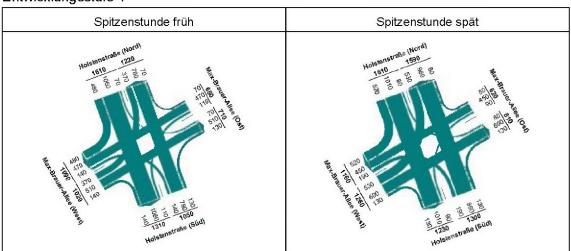
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	№5.95> пк	nc [K fz/U]	C [Kfz/h]	х	tw [s]	Not [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	[m]	QSV
	2	7	КЗ	20	21	70	0,233	120	3,000	2,020	1783	-	10	415	0,289	30,397	0,232	2,699	5,477	35,327	В
1	4	4	K4	24	25	66	0,278	315	7,875	1,877	1918		13	533	0,591	34,243	0,914	7,718	12,416	77,699	В
	5	4	K4	24	25	66	0,278	315	7,875	1,877	1918	-	13	533	0,591	34,243	0,914	7,718	12,416	77,699	В
	5	X	K2	25	26	65	0,289	311	7,775	1,935	1860	-	11	437	0,712	45,696	1,701	8,847	13,877	90,423	C
2	4	1	К2	25	26	65	0,289	379	9,475	1,949	1847	(x)	13	533	0,711	40,168	1,708	10,187	15,585	101,271	C
	2	~	K6	25	26	65	0,289	410	10,250	1,912	1883	-	14	544	0.754	43,937	2,244	11,562	17,313	110,318	C
3	2	×	K5	12	13	78	0,144	190	4,750	1,929	1866	-	7	269	0,706	58,024	1,593	6,119	10,303	62,683	D
	2	1	K1	26	27	64	0,300	490	12,250	1,907	1888	-	14	567	0,864	65,682	5,657	17,232	24,253	154,104	D
4	3	1	K1	26	27	64	0,300	490	12,250	1,908	1887	-	14	567	0.864	65,682	5,657	17,232	24,253	154,249	D
	Knotenpu	inktssumi	men:					3020						4398							
	Gewichte	te Mittelw	erte:												0,724	49,027					

Holstenstraße / Holstenplatz – Verkehrstechnische Bewertung Planung

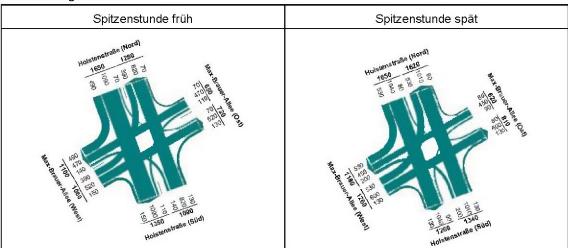
Entwicklungsstufe 2 - Spitzenstunde spät

Vorentwurf/Konzept (Büro S&W, Stand 01/2018)

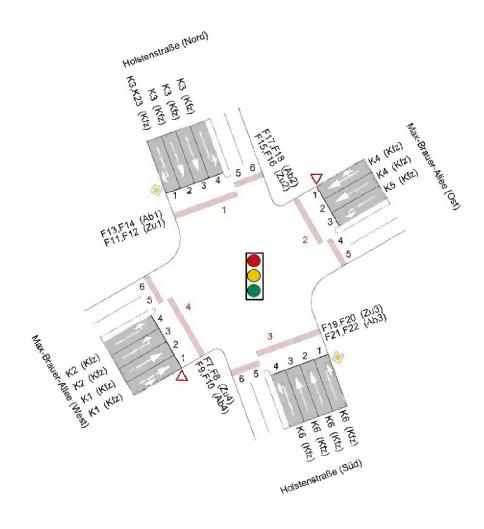

Zuf	Fstr.Nr.	Symbol	5GR	tr [s]	t _A [s]	ts [s]	f∧	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	çs [Kfz/h]	NMS,95> r)K	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	Nivis,95 [Kfz]	Lx [m]	QSV
	2	Y	КЗ	20	21	69	0,236	110	2,719	1,812	1986	-1	12	469	0,235	28,836	0,174	2,374	4,980	29,880	В
1	4	4	K4	23	24	66	0,270	280	6,922	1,849	1947	-	13	527	0,531	32,431	0,695	6,594	10,937	67,394	В
	5	4	K4	23	24	66	0.270	280	5.922	1,849	1947	-	13	527	0,531.	32,431	0.695	6,594	10,937	67,394	В
	5	X	K2	30	31	59	0,348	611	15, 105	1,857	1938	-	13	526	1,162	346,766	45,933	61,038	74,251	461,990	£
2	4	1	к2	30	31	59	0,348	779	19,250	1,868	1927	(x)	17	671	1,161	337,015	57,408	76,667	01,475	560,706	F
	2	<	К6	24	25	65	0,281	510	12,608	1,840	1957	м	14	550	0,927	101,308	10,725	22,984	31,092	190,656	E
3	2	7	K5	10	11	79	0,124	160	3,956	1,918	1877	-	6	233	0,687	59,330	1,424	5,212	9,073	54,438	D
	2	×	K1	30	31	59	0,348	484	11,966	1,848	1948		17	678	0,714	34,501	1,757	12,138	18,030	110,452	В
4	3	1	K1	30	31	59	0,348	486	12,015	1,840	1957	-	17	682	0,713	34,382	1,747	12,166	18,065	110,775	В
	Knotenpu	ınktssum	men:					3700						4863							
	Gewichte	te Mittelw	erte:												0,868	159,543					


12 Holstenstraße / Max-Brauer-Allee (LSA 131)

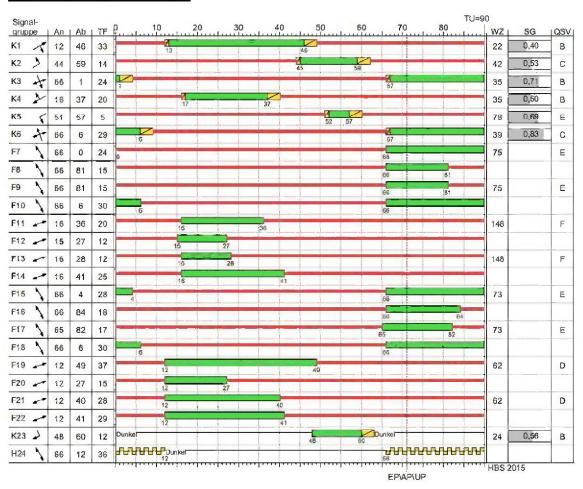
12.1 Holstenstraße / Max-Brauer-Allee – Knotenstrombelastungen


Analyse (VZ 04.02.2016)

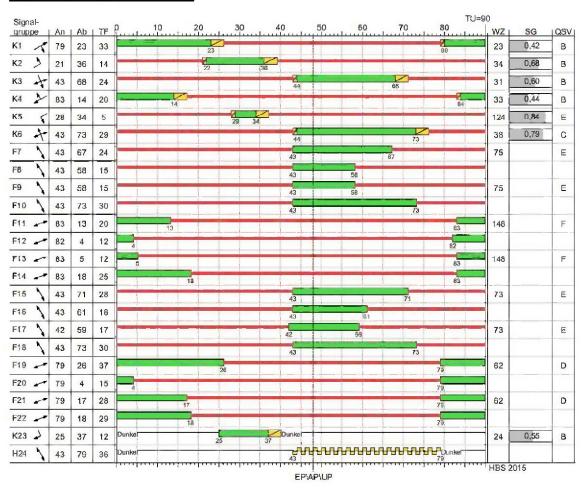
Entwicklungsstufe 1



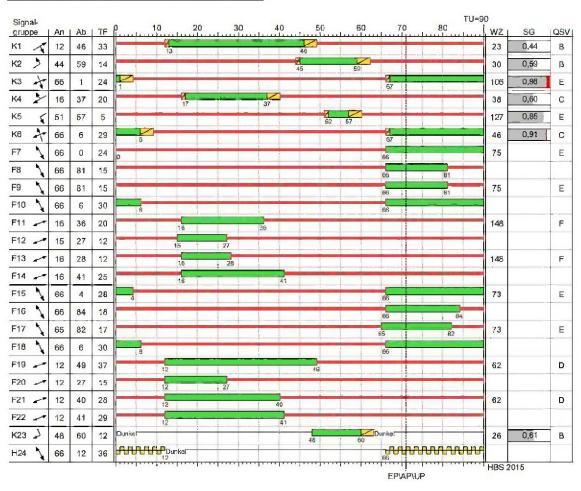
Entwicklungsstufe 2



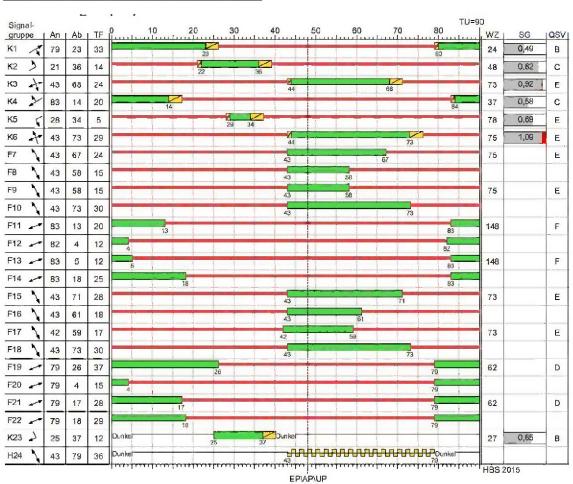
12.2 Holstenstraße / Max-Brauer-Allee – Knotenpunktgeometrie Bestand


Analyse - Spitzenstunde früh

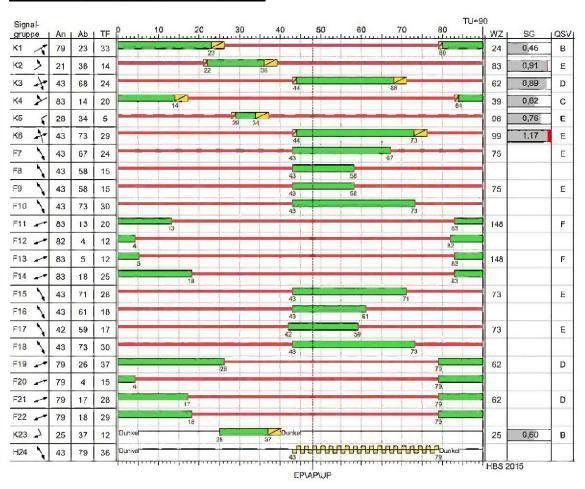
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m (Kfz/U)	ts [s/Kfz]	qs [Kfz/h]	Nыs,95>п.к	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Xfz]	N _{MS,95} [Kfz]	L; [m]	QSV
	1	7	K3, K23	36	37	54	0,411	440	11,000	1,888	1907	-	20	784	0,561	23,954	0,798	9,219	14,354	90,344	8
	2	1	К3	24	25	56	0,278	385	9,625	1,856	1940	-	14	540	0,713	40,784	1,729	10,396	15,849	98,042	С
1	3	1	K3	24	25	bb	0,278	385	9,625	1,856	1940	-	74	540	0,713	40,784	1,729	10,396	15,849	98,042	C
	4	Lo	K3	24	25	56	0,278	70	1,750	1,800	2000	1	7	269	0,260	37,572	0,200	1,769	4,018	24,108	C
	1	2	K4	20	21	70	0,233	225	5,625	1,855	1941	1	11	452	0,498	34,727	0,600	5,481	9,440	58,113	В
2	2		K4	20	21	70	0,233	225	5,625	1,849	1947	-	11	454	0,496	34,642	0,594	5,472	9,428	58,095	В
	3	6	K5	5	6	85	0,067	90	2,250	1,845	1951	-	3	131	0,687	78,161	1,350	3,551	6,738	41,439	Е
	4	47	K6	29	30	61	0,333	160	4,000	1,868	1927	-	5	194	0,825	96,848	3,081	7,004	11,480	71,497	E
7	3	1	K6	29	30	61	0,333	285	7,125	1,861	1934	-	16	644	0,443	26,128	0,473	6,048	10,207	63,324	8
3	2	1	K6	29	30	51	0,333	285	7,125	1,861	1934	-	16	644	0,443	26,128	0,473	6,048	10,207	63,324	8
	1	10	K6	29	30	51	0,333	120	3,000	1,868	1927	-	16	642	0,187	22,072	0,129	2,263	4,807	29,938	8
	4	7	K2	14	15	76	0,167	165	4,125	1,915	1880	-	8	313	0,527	42,036	0,678	4,446	8,012	51,149	C
,	3	>	K2	14	15	76	0, 167	165	4,125	1,915	1880	-	8	313	0,52,7	42,036	0,678	4,446	8,012	51,149	C
4	2	_	K1	33	34	57	0,378	294	7,350	1,856	1940		18	733	0,401	22,450	0,393	5,781	9,847	60,914	В
	1	~	K1	33	34	57	0,378	296	7,400	1,851	1945		18	736	0,402	22,461	0,395	5,823	9,904	61,326	В
	Knote	npunktssu	ımmeni					3590						7389							
	Gewic	htete Mitt	elwerte:												0,534	35,480					


Analyse - Spitzenstunde spät

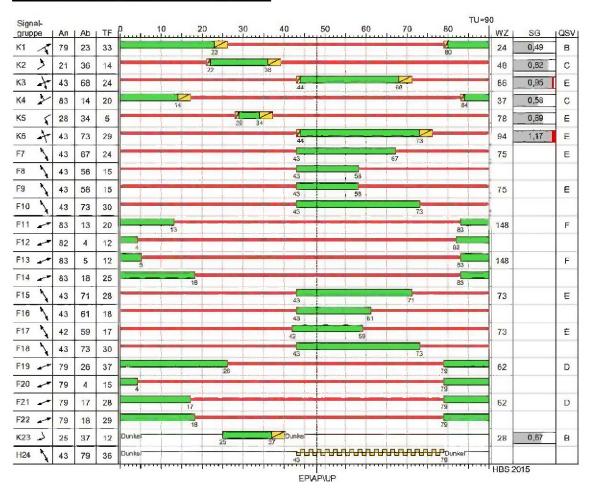
Zuf	Fstr.Nr.	Symbol	SGR	t _F [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMs,95>nx	nc [Kfz/U]	C [Kfz/h]	к	tw [s]	Nee [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	7	K3, K23	36	37	54	0,411	440	11,000	1,858	1938	-	20	797	0,552	23,653	0,766	9,146	14,261	88,304	В
	2	1	КЗ	24	25	66	0,278	330	8,250	1,825	1973		14	548	0,602	34,499	0,963	8,117	12,935	78,697	8
1	3	1	К3	24	25	66	0,278	330	8,250	1,825	1973	-	14	548	0,602	34,499	0,963	8,117	12,935	78,697	8
	4	10	КЗ	24	25	66	0,278	70	1,750	1,800	2000	-	6	227	0,308	40,654	0,255	1,862	4,170	25,020	С
	1	2	K4	20	21	70	0,233	200	5,000	1,834	1963	-	11	457	0,438	33,121	0,462	4,733	8,412	51,481	3
2	2	~	K4	20	21	70	0,233	200	5,000	1,834	1963	-	11	457	0,438	33,121	0,462	4,733	8,412	51,431	8
	3	7	K5	5	6	85	0,067	170	2,750	1,836	1961		3	131	0,840	123,621	2,988	5,707	9,747	59,652	Е
	4	4	К6	29	30	61	0,333	170	4,250	1,807	1992	-	5	216	0,787	80,581	2,487	6,630	10,985	66,174	E
_	3	1	K 6	29	30	61	0,333	410	10,250	1,820	1978	-	16	658	0,623	31,115	1,070	9,696	14,962	90,759	8
3	2	1	к6	29	30	61	0,333	410	10,250	1,820	1978	-	16	658	0,623	31,115	1,070	9,696	14,962	90,759	В
	1	(*	K6	29	30	61	0,333	130	3,250	1,800	2000	-	17	666	0,195	22,145	0,136	2,454	5,103	30,618	8
	4	3	K2	14	15	76	0,167	220	5,500	1,856	1940	×								67,384	
	3	3	K2	14	75	76	0,334	220	5,500	1,856	1940	(x)	16	648	0,679	33,770	1,432	10,907	16,492	102,020	8
4	2	_	K1	33	34	57	0,378	310	7,750	1,831	1966	-	19	743	0,417	22,713	0,422	6,145	10,337	63,076	8
	1	1	K1	33	34	57	0,378	310	7,750	1,827	1971	-	19	746	0,416	22,685	0,420	5,140	10,331	63,164	В
	Knote	npunktssu	ummen:					3860						7500							
	Gewic	htete Mitt	telwerte:												0,559	34,687					


Entwicklungsstufe 1 - Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	[5]	ţA [s]	[s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws.es>nk	nc [Kfz/U]	C [Kfz/h]	×	[x]	N⊚ [Kfz]	Nins [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
	1	7	K3, K23	36	37	54	0,411	480	12,000	1,890	1905	-	20	783	0,613	25,563	1,021	10,469	15,941	100,428	В
	2	1	КЗ	24	25	66	0,278	530	13,250	1,856	1940	-	14	540	0,981	147,434	17,277	30,431	39,761	245,962	E
1	3	1	К 3	24	25	66	0,278	530	13,250	1,856	1940	-	14	540	0,981	147,434	17,277	30,431.	39,761	245,962	Ε
	4	\m	К3	24	25	66	0,278	70	1,750	1,800	2000	-	6	231	0,303	40,328	0,249	1,852	4,154	24,924	C
	1	2	K4	20	21	70	0,233	269	6,725	1,855	1941	-	11	452	0,595	38,125	0,928	6,916	11,364	69,957	С
2	2	~	K4	20	21	70	0,233	271	6,775	1,845	1951	-	11	454	0,597	38,180	0,937	6,973	11,439	70,350	C
	3	5	K5	5	6	85	0,067	110	2,750	1,849	1947	-	3	130	0,846	126,818	3,080	5,800	9,873	60,837	Е
	4	4	K5	29	30	61	0,333	140	3,500	1,868	1927	(x)	4	154	0,909	151,483	4,723	8,196	13,038	81,201	E
7	3	1	K5	29	30	61	0,333	390	9,750	1,863	1932	-	16	643	0,607	30,629	0,989	9,140	14,253	88,511	В
3	2	1	K6	29	30	61	0,333	390	9,750	1,863	1932	-	16	643	0,607	30,629	0,989	9,140	14,253	88,511	В
	1	7	K6	29	30	61	0,333	130	3,250	1,863	1932	-	16	643	0,202	22,265	0,143	2,467	5,123	31,814	В
	4	>	K2	14	15	76	0,167	185	4,625	1,917	1878	×								57,676	
	3	٤	K2	14	15	76	0,334	185	4,625	1,917	1878	(x)	16	626	0,591	30,137	0,916	8,592	13,549	86,578	В
4	2	7	К1	33	34	57	0,378	325	8,125	1,854	1942	-	18	733	0,443	23,234	0,473	6,543	10,869	67,170	В
	1	4	K1	33	34	57	0,378	325	8,125	1,849	1947	-	18	736	0,442	23,206	0,471	6,538	10,862	67,258	В
	Knote	npunktssi	ummen:					4330						7308							
	Gewic	htete Mit	telwerte:												0,671	64,703					

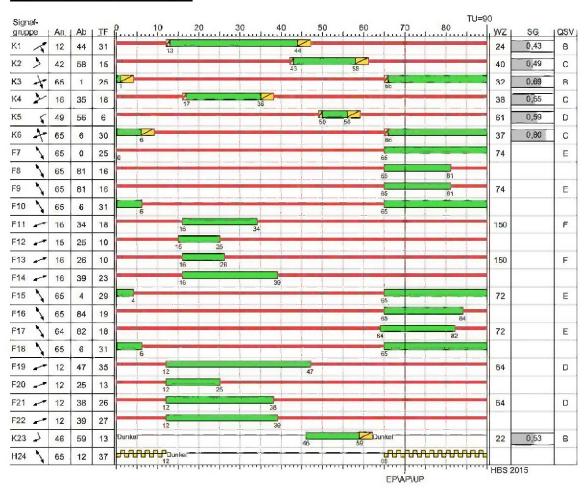

Entwicklungsstufe 1 - Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tx [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nivis,95>17x	nc [Kfz/U]	C [Kfz/h]	Х	tw [s]	NŒ [Kfz]	N _{MS} [Kfz]	Nws.95 [Kfz]	[.x [m]	QSV
	1	لم	K3, K23	36	37	54	0,411	520	13,000	1,859	1937	-	20	796	0,653	26,996	1,251	11,717	17,506	108,502	В
	2	1	КЗ	24	25	66	0,278	505	12,625	1,827	1970		14	548	0,922	98,393	10,176	22,433	30,443	185,398	E
1	3	1	КЗ	24	25	66	0,278	505	12,625	1,827	1970	-	14	548	0,922	98, 393	10,176	22,433	30,443	185,398	E
	4	10	K3	24	25	66	0,278	80	2,000	1,800	2000	-	5	207	0,386	44,055	0,365	2,233	4,760	28,560	С
	1	2	K4	20	21	70	0,233	265	6,625	1,835	1961		11	457	0,580	37,432	0,866	6,741	11,132	68,128	C
2	2		K4	20	21	70	0,233	265	6,625	1,836	1961	-	11	457	0,580	37,432	0,866	6,741	11,132	68,128	С
	3	4	K5	5	6	85	0,067	90	2,250	1,845	1951	-	3	131	0,687	78,161	1,350	3,551	6,738	41,439	Е
	4	47	К6	29	30	61	0,333	190	4,750	1,807	1992	(x)	4	174	1,092	301,051	12,565	17,315	24,352	146,695	F
	3	1	K6	29	30	61	0,333	490	12,250	1,822	1976	-	16	659	0,744	38,212	2,123	12,985	19,079	115,848	С
3	2	1	K6	29	30	61	0,333	490	12,250	1,822	1976	-	16	659	0,744	38,212	2,123	12,985	19,079	115,848	С
	1	7.	K6	29	30	61	0,333	130	3,250	1,800	2000	-	17	666	0,195	22,145	0,136	2,454	5,103	30,618	В
	4	>	K2	14	15	76	0,167	265	6,625	1,856	1940	×								92,685	
	3	3	K2	14	15	76	0,334	265	6,625	1.856	1940	(x)	16	648	0,818	48,269	3,745	15.887	22,628	139,977	С
4	2	_	K1,	33	34	57	0,378	365	9,125	1,832	1965	-	19	743	0,491	24,207	0,584	7,553	12,201	74,524	В
	1	7	K1	33	34	57	0,378	365	9,125	1,823	1975	-	19	746	0,489	24,152	0,579	7,542	12,187	74,292	В
	Knote	npunktsst	ımmen:					4790						7439							
	Gewic	htete Mitt	elwerte:												0,715	59,410					


Entwicklungsstufe 2 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tF [s]	45 [2]	[s]	fA	q [Kfz/h]	m [Xfz/U]	ts [s/Kfz]	qs [Kfz/h]	N м5,95 > n к	nc [Kfz/U]	C [Kfz/h]	х	₹₩ [s]	NGE [Kfz]	NMS [Kfz]	NNS,95 [Kfz]	Lx [m]	QSV
	1	7	K3, K23	36	37	54	0,411	490	12,250	1,888	1907	-	20	784	0,625	25,981	1,083	10,792	16,348	102,894	В
	2	1	КЗ	24	25	66	0,278	545	13,625	1,854	1942	-	14	540	1.009	174,437	21,292	34,917	44,911	277,550	F
1	3	1	КЗ	24	25	65	0,278	545	13,625	1,854	1942	-	14	540	1,009	174,437	21,292	34,917	44,911	277,550	F
	4	ما	КЗ	24	25	65	0,278	70	1,750	1,800	2000	-	6	225	0,311	40,822	0,258	1,867	4,178	25,068	С
	1	2	К4	20	21	70	0,233	269	6,725	1,855	1941	-	11	452	0,595	38,125	0,928	6,916	11,364	69,957	Ċ
2	2	~	K4	20	21	70	0,233	271	6,775	1,845	1951	-	11	454	0,597	38,180	0,937	6,973	11,439	70,350	С
	3	4	K5	5	6	85	0,067	110	2,750	1,849	1947	-	3	130	0,846	126,818	3,080	5,800	9,873	60,837	E.
	4	4	К6	29	30	61	0,333	140	3,500	1,868	1927	(x)	4	154	0,909	151,483	4,723	8,196	13,038	81,201	E
_	3	1	K6	29	30	61	0,333	410	10,250	1,859	1937	-	16	644	0,637	31,822	1,147	9,824	15,125	93,745	В
3	2	1	K6	29	30	61	0,333	410	10,250	1,859	1937		16	644	0,637	31,822	1,147	9,824	15,125	93,745	В
	1	(*	К6	29	30	61	0,333	130	3,250	1,863	1932	-	16	643	0,202	22,265	0,143	2,467	5,123	31,814	В
	4	>	K2	14	15	76	0,167	195	4,875	1,917	1878	х								61,108	
	3	•	K2	14	15	75	0,334	195	4,875	1,917	1878	(x)	16	628	0,621	31,248	1,058	9,251	14,395	91,984	В
4	2	1	K1	33	34	57	0,378	335	8,375	1,856	1940	-	18	733	0,457	23,515	0,503	6,800	11,210	69,345	В
	1	7	K1	33	34	57	0,378	335	8,375	1,852	1944		18	735	0,456	23,490	0,501	6,795	11,204	69,375	В
	Knote	npunktsse	ımmen;					4450						7306							
	Gewic	ntete Mitt	elwerte:												0,689	71,552					

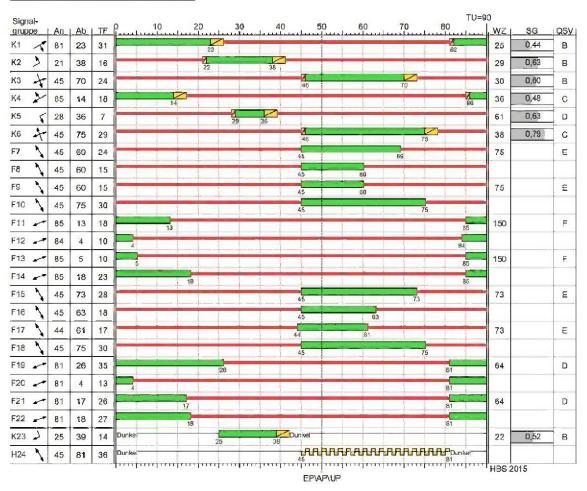
Entwicklungsstufe 2 - Spitzenstunde spät



Zuf	Fstr.Nr.	Symbol	SGR	t: [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	№5,95>пк	nc [Kfz/U]	C [Kf ₂ /h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS.95 [Kfz]	[m]	QSI
	1	٦	K3, K23	35	37	54	0,411	530	13,250	1,859	1937	•	20	796	0,666	27,560	1,341	12,087	17,967	111,359	8
	2	1	К3	24	25	65	0,278	520	13,000	1,825	1973	-	14	548	0,949	118,849	13,241	25,991	34,613	210,585	E
1	3	1	КЗ	24	25	65	0,278	520	13,000	1,825	1973		14	548	0,949	118,849	13,241	25,991	34,513	210,585	Е
	4	سا	K3	24	25	66	0,278	80	2,000	1,800	2000	-	5	204	0,392	44,418	0,375	2,246	4,781	28,686	С
	1	1	K4	20	21	70	0,233	265	6,625	1,835	1961		11	458	0,579	37,377	0,862	6,736	11,125	68,085	С
2	2		K4	20	21	70	0,233	265	6,625	1,831	1965	*	11	458	0,579	37,377	0,862	6,736	11,125	67,885	С
	3	5	К5	5	6	85	0,067	90	2,250	1,845	1951	-	3	131	0,687	78,161	1,350	3,551	6,738	41,439	Е
	4	4	К6	29	30	61	0.333	200	5,000	1,807	1992	(x)	4	171	1,170	407,614	17,408	22,408	30,414	183,214	E
	3	1	К6	29	30	61	0,333	505	12,625	1,822	1976		16	658	0,767	40,516	2,491	13,800	20,083	121,944	С
3	2	1	K6	29	30	61	0,333	505	12,625	1,822	1976		16	658	0,767	40,516	2,491	13,800	20,083	121,944	С
	1	70	К6	29	30	61	0,333	130	3,250	1,800	2000	¥	1.7	666	0,195	22,145	0,136	2,454	5,103	30,618	8
	4	3	KZ	14	15	76	0,167	265	6,525	1,856	1940	x								92,685	
	3	3	K2	14	15	76	0.334	265	6,625	1,856	1940	(x)	16	648	0,818	48.269	3,745	15.887	22,628	139,977	С
4	2	1	К1	33	34	57	0,378	365	9,125	1,832	1965	~	19	743	0,491	24,207	0,584	7,553	12,201	74,524	8
	1	1	K1	33	34	57	0,378	365	9,125	1,823	1975		19	746	0,489	24,152	0,579	7,542	12,187	74,292	8
	Knote	npunktssu	ımmen:					4070						7433							
	Gewic	htete Mitt	elwerte:												0,732	69,233					

12.4 Holstenstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

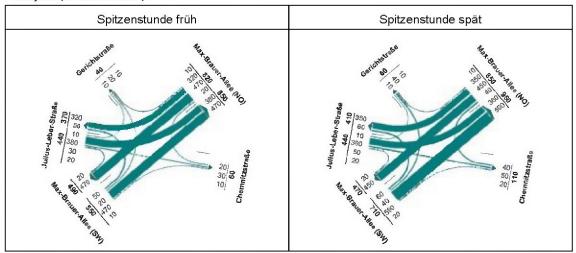
Analyse - Spitzenstunde früh

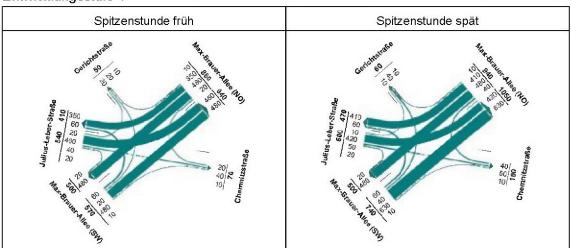


Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5.95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [5]	Nge [Kfz]	NMS [Kfz]	Nivis,95 [Kfz]	L _x [m]	QSV
	1	٨	K3, K23	38	39	52	0,433	440	11,000	1,888	1907	-	21	826	0,533	21,876	0,704	8,812	13,832	87,059	8
	2	1	K3	25	26	65	0,289	385	9,625	1,856	1940		14	561	0,686	37,884	1,482	10,018	15,371	95,085	C
1	3	1	КЗ	25	26	65	0,289	385	9,625	1,856	1940	-	14	561	0,685	37,884	1,482	10,018	15,371	95,085	C
	4	10	КЗ	25	26	65	0,289	70	1,750	1,800	2000	-	7	277	0,253	37,070	0,192	1,754	3,994	23,964	C
	1	2	K4	18	19	72	0,211	224	5,600	1,855	1941	-	10	409	0,548	38,251	0,747	5,743	9,796	60,304	С
2	2	~	K4	18	19	72	0,211	226	5,650	1,849	1947		10	411	0,550	38,295	0,754	5,797	9,869	60,813	C
	3	5	K5	6	7	84	0,078	90	2,250	1,845	1951	-	4	152	0,592	61,019	0,883	3,058	6,015	36,992	D
	4	~	K6	30	31	60	0,344	160	4,000	1,868	1927	-	5	199	0,804	88,647	2,718	6,630	10,985	68,415	E
,	3	1	K6	30	31	60	0,344	285	7,125	1,861	1934	-	17	665	0,429	25,127	0,445	5,928	10,046	62,325	В
3	2	1	K6	30	31	60	0,344	285	7,125	1,861	1934	-	17	665	0.429	25,127	0,445	5,928	10,046	62,325	В
	1	5	K6	30	31	60	0,344	120	3,000	1,868	1927	-	17	663	0,181	21,324	0,124	2,223	4.745	29,552	В
	4	٥	K2	15	16	75	0,178	165	4,125	1,915	1880	-	8	334	0,494	39,664	0,587	4,305	7,814	49,885	C
	3	>	K2	15	16	75	0,178	165	4,125	1,915	1880	0-1	8	334	0,494	39,664	0,587	4,305	7,614	49,885	C
4	2	7	K1	31	32	59	0,356	295	7,375	1,856	1940		17	691	0,427	24,307	0,441	6,042	10,199	63,091	В
	1	4	K1	31	32	59	0,356	295	7,375	1,851	1945	-	17	693	0,426	24,280	0,439	6,038	10,194	63,121	8
	Knote	npunktssı	ımmen:					3590						7441							
	Gewic	htete Mitt	elwerte:												0,527	34,148					

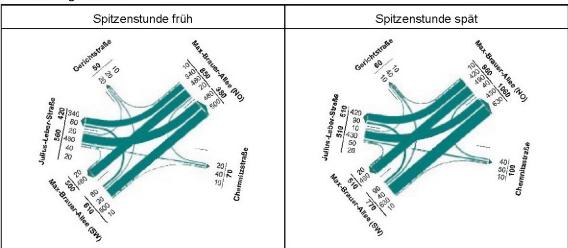
Holstenstraße / Max-Brauer-Allee – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse – Spitzenstunde spät

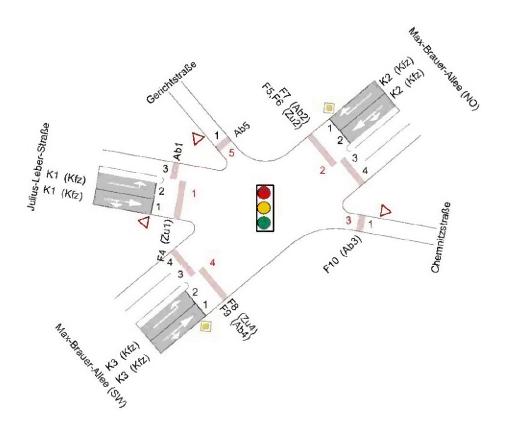

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta (s/Kfz)	qs [Kfz/h]	NMS,95>nx	nc [Kfz/U]	C [Kfz/h]	ж	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	N MS,95 [Kfz]	[m]	QS\
	1	7	K3, K23	38	39	52	0,433	440	11,000	1,858	1938	-	21	839	0,524	21,614	0,676	8,743	13,744	85,103	8
	2	1	К3	24	25	66	0,278	330	8,250	1,825	1973	-	14	548	0,602	34,499	0,963	8,117	12,935	78,697	В
1	3	1	К3	24	25	66	0,278	330	8,250	1,825	1973		14	548	0,602	34,499	0,963	8,117	12,935	78,697	8
	4	10	К3	24	25	66	0,278	70	1,750	1,800	2000		6	227	0,308	40,654	0,255	1,862	4,170	25,020	C
	1	2	K4	18	19	72	0,211	200	5,000	1,834	1963	-	10	414	0,483	36,070	0,561	4,954	8,718	53,354	C
2	2	~	K4	18	19	72	0,211	200	5,000	1,834	1963	-	10	414	0,483	36,070	0,561	4,954	8,718	53,302	С
	3		K5	7	8	83	0,089	110	2,750	1,836	1961		4	175	0,629	61,202	1,052	3,706	6,962	42,607	D
	4	4	K6	29	30	61	0,333	170	4,250	1,807	1992	-	5	216	0,787	80,581	2,487	6,630	10,985	66,174	Е
3	3	1	K6	29	30	61	0,333	410	10,250	1,820	1978	-	16	658	0,623	31,115	1,070	9,696	14,962	90,759	В
3	2	1	Кб	29	30	61	0,333	410	10,250	1,820	1978	-	16	658	0,623	31,115	1,070	9,696	14,962	90,759	8
	1	5	K6	29	30	61	0,333	130	3,250	1,800	2000	-	17	666	0,195	22,145	0,136	2,454	5,103	30,618	В
	4	3	K2	16	17	74	0,189	220	5,500	1,856	1940	x								62,503	
	3	>	K2	16	17	74	0,362	220	5,500	1,856	1940	(x)	18	703	0,626	29,250	1,087	10,161	15,552	96,205	В
4	2	1	K1 1	31	32	59	0,356	310	7,750	1,831	1966	-	18	700	0,443	24,591	0,473	6,398	10,676	65,145	8
	1	4	K1	31	32	59	0,356	310	7,750	1,827	1971		18	702	0,442	24,563	0,471	6,394	10,671	65,242	8
	Knote	npunktss	ummen:					3860						7468							
	Gewic	htete Mit	telwerte:												0,552	32,768					


13 Max-Brauer-Allee / Julius-Leber-Straße (LSA 706)

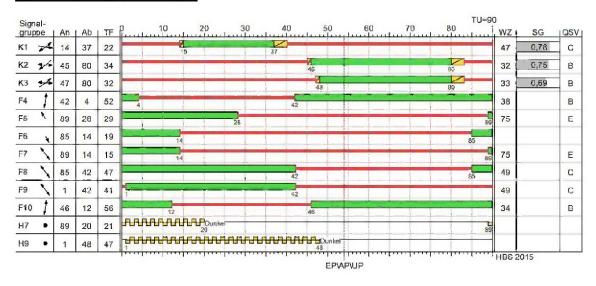
13.1 Max-Brauer-Allee / Julius-Leber-Straße – Knotenstrombelastungen


Analyse (VZ 05.06.2013)

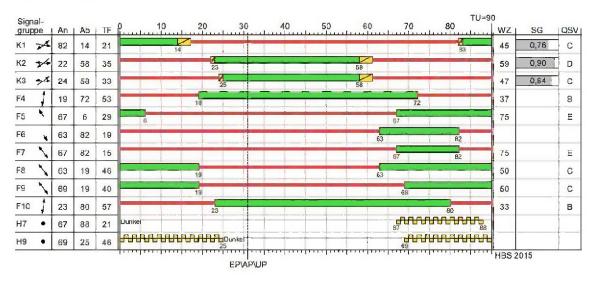
Entwicklungsstufe 1



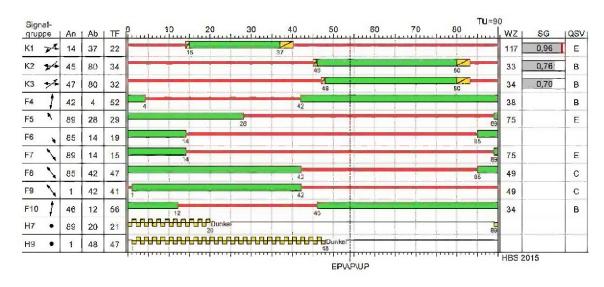
Entwicklungsstufe 2



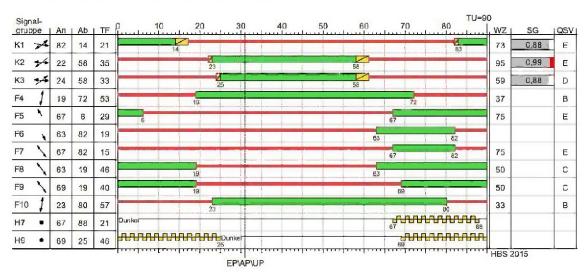
13.2 Max-Brauer-Allee / Julius-Leber-Straße – Knotenpunktgeometrie Bestand


Analyse – Spitzenstunde früh

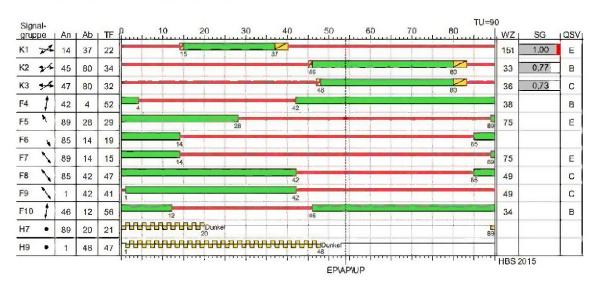
Zuf	Fstr.Nr.	Symbol	5GR	†* [s]	t. [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5.95>пк	nc [Kfz/U]	C [Kfz/h]	ж	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	V	K2	34	35	56	0,389	330	8,250	1,828	1969	-	19	766	0,431	22,293	0,449	6,505	10,818	65,947	В
2	2	X	KZ	34	35	56	0,389	490	12,250	1,888	1907	**	16	657	0,746	37,789	2,152	12,957	19,045	120,098	C
	2	>	K3	32	33	58	0,367	70	1,750	1,896	1898	-	6	243	0,288	38,949	0,231	1,815	4,093	26,400	C
4	1	1	КЗ	32	33	58	0,367	480	12,000	1,895	1900	-	17	698	0,688	31,910	1,510	11,672	17,450	110,354	В
	2	7	K1	2.2	23	68	0,256	390	9,750	1,839	1958	1-	13	501	0,778	50,045	2,636	11,694	17,477	107,169	D
1	1	7	K1	22	23	68	0,256	50	1,250	1,939	1857	-	12	475	0,105	26,090	0,065	1,021	2,730	16,790	В
	Knotenpi	ınktssumi	men:					1810						3340							
	Gewichte	te Mittelw	erte:												0,645	35,767					

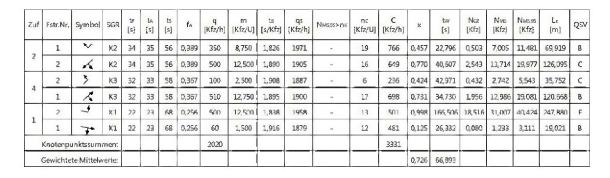

Analyse – Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	SGR.	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws.95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	v	К2	35	36	55	0,400	360	9,000	1,800	2000	-	20	800	0,450	21,952	0,488	7,073	11,571	69,426	8
2	2	X	K2	35	36	55	0,400	490	12,250	1,874	1921		14	542	0,904	87,002	8,411	20,216	27,820	174,431	Е
	2	>	К3	33	34	57	0,378	100	2,500	1,800	2000	-	7	264	0,379	40,531	0,355	2,639	5,386	32,316	С
4	1	1	КЗ	33	34	57	0,378	610	15,250	1,968	1927	-	16	729	0,837	48,000	4,563	18,439	25,701	160,220	С
	2	_ 	КТ	21	22	69	0,244	370	9,250	1,804	1996	-	12	487	0,760	48,702	2,317	10,902	16,486	99,114	С
1	1	7	K1	21	22	69	0,244	70	1,750	1,839	1958	~	12	478	0,146	27,392	0,096	1,468	3,517	21,102	8
	Knotenpi	unktssumi	men:					2000						3300							
	Gewichte	te Mittelw	rerte:												0,722	51,902					

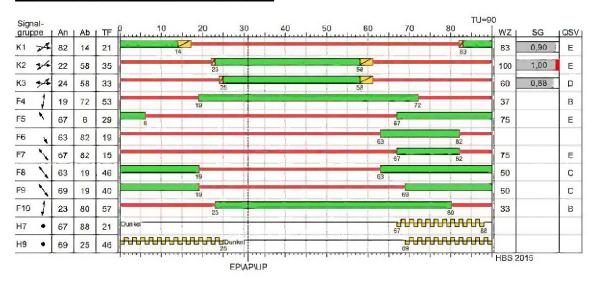

Entwicklungsstufe 1 - Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nм5,95> пқ	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS.95 [Kfz]	Lx [m]	Q5V
-	1	V	K2	34	35	56	0,389	360	9,000	1,830	1967	-	19	765	0,471	23,086	0,535	7,268	11,827	72,168	В
2	2	1	K2	34	35	56	0,389	500	12,500	1,890	1905	-	16	656	0,762	39,432	2,403	13,516	19,734	124,561	С
	2	3	К3	32	33	58	0,367	80	2,000	1,901	1893	-	6	236	0,339	40,478	0,295	2,122	4,586	29,580	C
4	1	1	К3	32	33	58	0,367	490	12,250	1,897	1898	-	17	697	0,703	32,803	1,646	12,096	17,978	113,801	В
	2	_t	К1	22	23	68	0,256	480	12,000	1,836	1960	-	13	502	0,956	128,195	13,277	25,098	33,571	205,656	E
1	1	~~	K1	22	23	68	0,256	60	1,500	1,916	1879	-	12	481	0,125	26,332	0,080	1,233	3,111	19,021	В
	Knotenpu	unktssumi	men:					1970						3337							
	Gewichte	te Mittelw	erte:												0,705	56,067					

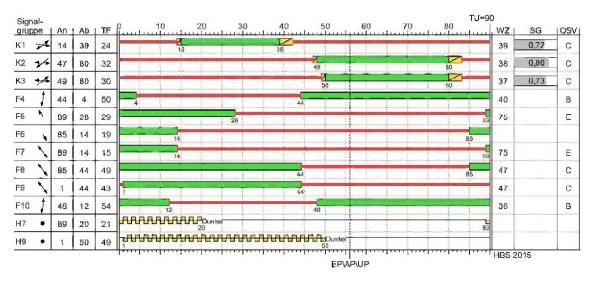

Entwicklungsstufe 1 - Spitzenstunde spät



Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kíz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,9s>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m:]	QSV
	1	V	K2	35	36	55	0,400	420	10,500	1,800	2000	-	20	800	0,525	23,562	0,679	8,654	13,629	81,774	В
2	2	X	K2	35	36	55	0,400	520	13,000	1,875	1920	-	13	528	0,985	151,895	17,520	30,446	39,778	249,408	E
	2	>	КЗ	33	34	57	0,378	100	2,500	1,800	2000	-	6	233	0,429	43,754	0,441	2,765	5,577	33,462	C
4	1	X	КЗ	33	34	57	0,378	640	16,000	1,869	1.926	-	18	728	0,879	61,658	7,196	22,100	30,051	187,338	D
	2	4	K1	21	22	69	0,244	430	10,750	1,804	1996	-	12	487	0,883	80,831	6,500	16,859	23,803	143,104	E
1	1	-	K1	21	22	59	0,244	70	1,750	1,839	1958	-	12	478	0,146	27,392	0,096	1,468	3,517	21,102	В
	Knotenpu	ınktssumi	men:					2180						3254							
	Gewichte	te Mittelw	/erte:												0,793	77,703					


Entwicklungsstufe 2 – Spitzenstunde früh

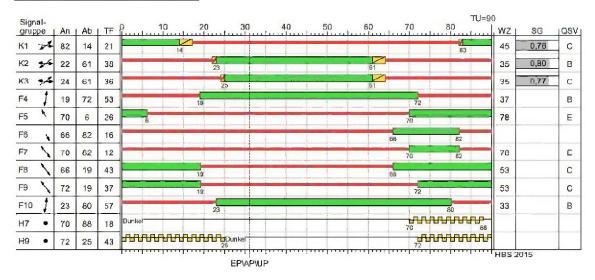
Entwicklungsstufe 2 - Spitzenstunde spät


Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N _{MS,95} > n _K	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	اد [m]	QSV
	1	V	K2	35	36	55	0,400	430	10,750	1,800	2000	-	20	800	0,538	23,878	0,719	8,938	13,994	83,964	В
2	2	1	К2	35	36	55	0,400	530	13,250	1.877	1918	-	13	532	0.996	162,139	19,160	32,390	42,015	263,686	Е
	2	>	K3	33	34	57	0,378	130	3,250	1,800	2000	-	6	233	0,558	49,465	0,772	3,842	7,157	42,942	С
4	1	1	КЗ	33	34	57	0,378	640	16,000	1,869	1926	-	18	728	0,879	61,658	7,196	22,100	30,051	187,338	D
	2		К1	21	22	69	0,244	440	11,000	1,804	1996	-	1.2	487	0,903	91,496	7,915	18,581	25,871	155,536	Ε
1	1	7	K1	21.	22	69	0,244	70	1,750	1,839	1958	-	12	478	0.146	27,392	0,096	1,458	3,517	21,102	В
	Knotenpu	ınktssumi	men:					2240						3258							
	Gewichtete Mittelwerte:														0,804	82,263					

12.04.2019 151

13.4 Max-Brauer-Allee / Julius-Leber-Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

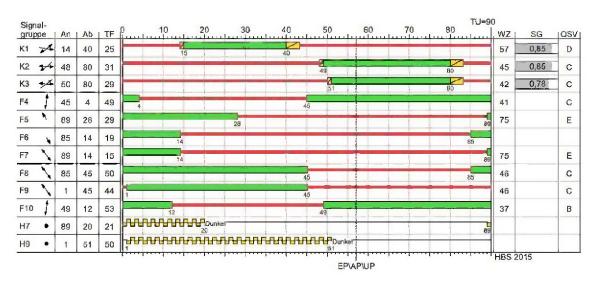
Analyse - Spitzenstunde früh



Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tx [s]	ts [s]	fa.	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nga [Kfz]	N _{MS} [Kfz]	NMS.95 [Kfz]	L. [m]	QSV
	1	V	K2	32	33	58	0,367	330	8,250	1,828	1969	-	18	722	0,457	24,173	0,503	6,778	11,181	68,159	В
2	2	K	K2	32	33	58	0,367	490	12,250	1,888	1907	-	15	613	0,799	46,485	3,164	14,351	20,758	130,900	С
	2	>	Х3	30	31	60	0,344	70	1,750	1,896	1898	-	5	234	0,299	39,686	0,244	1,837	4, 129	26,632	C
4	1	1	КЗ	30	31	60	0,344	480	12,000	1,895	1900	-	16	654	0,734	36,849	1,988	12,519	18,503	117,013	С
	2	4	K1	24	25	66	0,278	390	9,750	1,839	1958	-	14	544	0,717	41,024	1,772	10,564	16,061	98,486	С
٦	1	7	K1	24	25	66	0,278	50	1,250	1,939	1857	-	13	516	0,097	24,527	0,060	0,988	2,669	16,414	В
	Knoten punktssummen:							1810						3283							
- 4	Sewichte	te Mittelw	erte:												0,663	37,815					

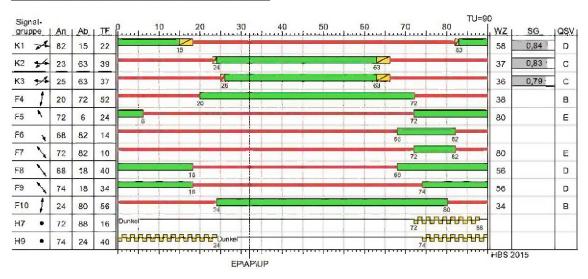
Max-Brauer-Allee / Julius-Leber-Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse – Spitzenstunde spät

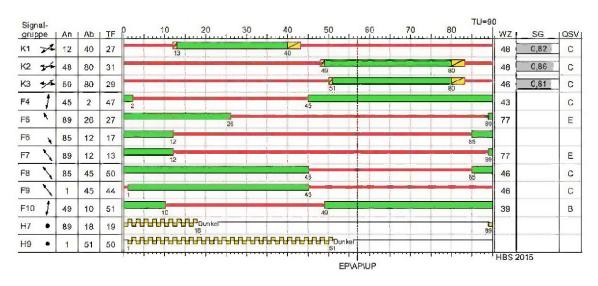


Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nk	n⊂ [Kfz/U]	C [Kfz/h]	К	tw [s]	Non [Kfz]	Nms [Kfz]	NMS98 [Kfz]	Lx [m]	QSV
	1	V	K2	38	39	52	0,433	360	9,000	1,800	2000		22	866	0,416	19,395	0,421	6,645	11,005	66,030	Α
2	2	/	K2	38	39	52	0,433	490	12,250	1,874	1921	-	15	615	0,797	46,160	3,114	14,296	20,691	129,733	С
	2	>	К3	36	37	54	0,411	100	2,500	1,800	2000	-	7	279	0,358	39,206	0,323	2,586	5,306	31,836	C
4	1	4	КЗ	36	37	54	0,411	610	15,250	1,868	1927		20	792	0,770	34,562	2,579	15,720	22,425	139,797	В
	2	t_	K1	21	22	69	0,244	370	9,250	1,804	1996	-	12	487	0,760	48,702	2,317	10,902	16,486	99,114	С
1	1	-	К1	21	22	69	0,244	70	1,750	1,839	1958	-	12	478	0,146	27,392	0,096	1,468	3,517	21,102	В
	Knotenpu	nktssumi	men;					2000						3517							
	Gewichte	te Mittelw	erte:												0,669	37,271					

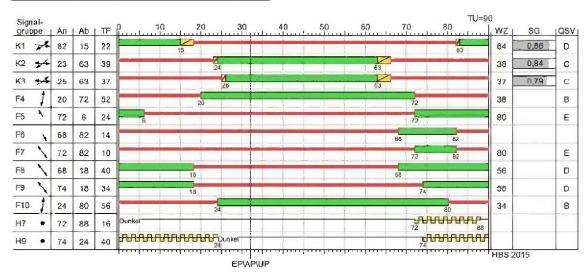
12.04.2019 153


Entwicklungsstufe 1 - Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	23 [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N _M s,55 > n K	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nws [Kfz]	Nivis,95 [Kfz]	Lx [m]	QSV
	1	v	К2	31	32	59	0,356	360	9,000	1,830	1967	-	18	700	0,514	26,165	0,646	7,740	12,445	75,939	В
2	2	1	K2	31	32	59	0,356	500	12,500	1,890	1905	-	15	590	0,847	58,506	4,827	16,523	23,398	147,688	D
-	2	>	К3	29	30	61	0,333	80	2,000	1,901	1893	-	6	222	0,360	41,899	0,325	2,169	4,660	30,057	С
4	1	1	КЗ	29	30	61	0,333	490	12,250	1,897	1898	-	16	632	0,775	41,982	2,633	13,646	19,894	125,929	С
	2	9	K.I.	25	26	65	0,289	480	12,000	1,836	1960		14	566	0,848	60,841	4,828	16,130	22,922	140,420	D
1	1	7	K1	25	26	65	0,289	60	1,500	1,916	1879	-	14	543	0,110	23,952	0,069	1,171	3,001	18,348	В
	Knotenpu	ınktssumi	men:					1970						3253							
	Gewichte	te Mittelw	rerte:												0,726	47,328					

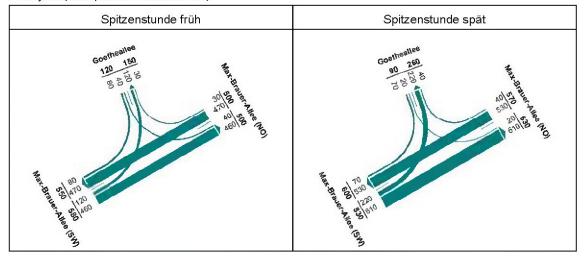

Entwicklungsstufe 1 - Spitzenstunde spät

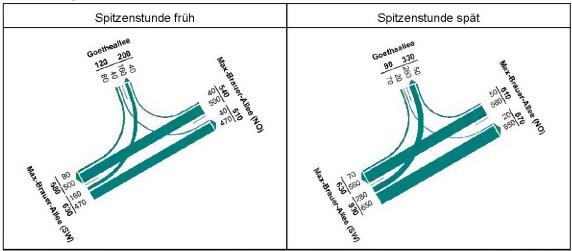
Zuf	Fstr.Nr.	Symbol	SGR	ts [3]	ta [s]	ts [s]	fA	q [Kfz/ħ]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	Nwzaz [Kfz]	[m]	QSV
^	1	*	K2	39	40	51	0,444	420	10,500	1,800	2000	-	22	888	0,473	19,798	0,540	7,930	12,693	76,158	A
2	2	K	K2	39	40	51	0,444	520	13,000	1,875	1920	-	16	629	0,827	51,030	4,044	16,032	22,804	142,981	D
	2	>	К 3	37	38	53	0,422	100	2,500	1,800	2000	-	7	267	0,375	40,226	0,348	2,628	5,370	32,220	C
4	1	1	КЗ	37	38	53	0,422	640	16,000	1,869	1926	-	20	812	0,788	35,700	2,972	16,827	23,765	148,151	С
	2	f	K1	22	23	68	0,256	430	10,750	1,804	1996		13	511	0,841	62,861	4,417	14,609	21,073	126,691	D
1	1	1	K1	22	23	68	0.256	70	1,750	1,839	1958	-	13	501	0,140	26,489	0,091	1,441	3,471	20,826	В
	Knotenpi	ınktssum	men:					2180						3608							
	Gewichte	te Mittelw	erte:												0,707	41,562					


Entwicklungsstufe 2 - Spitzenstunde früh

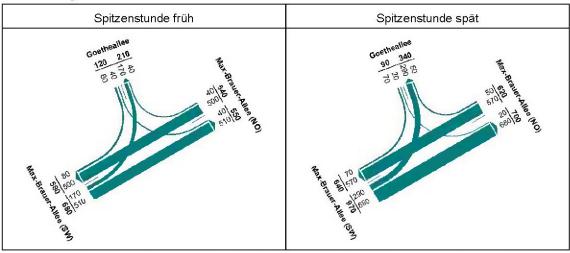
Zuf	Fstr.Nr.	Symbol	SGR	tr [≤]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/Ū]	te [s/Kf2]	qs [Kfz/h]	News,95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS.95 [Kfz]	ե [m]	QSV
	1	V	K2	31	32	59	0,356	350	8,750	1,826	1971	¥	18	701	0,499	25,797	0,604	7,456	12,074	73,531	В
2	2	1	K2	31	32	59	0,356	500	12,500	1,890	1905	-	15	582	0,859	62,915	5,418	17,186	24,197	152,731	D
	2	>	К3	29	30	61	0,333	100	2,500	1,908	1887		6	223	0,448	44,693	0,479	2,807	5,641	36,384	С
4	1	1	K3	29	30	61	0,333	510	12,750	1,895	1900	-	16	633	0,806	46,502	3,365	14,989	21,537	136,200	С
	2		Kl	27	28	63	0,311	500	12,500	1,838	1958	-	15	610	0,820	50,977	3,779	15,340	21,964	134,683	D
1	1	1-	Kl	27	28	63	0,311	60	1,500	1,916	1879	-	15	584	0,103	22,464	0,064	1,132	2,931	17,920	В
	Knotenpi	ınktssumi	men:					2020						3333							
1	Gewichte	te Mittelw	erte:												0,731	47,281					

Entwicklungsstufe 2 - Spitzenstunde spät

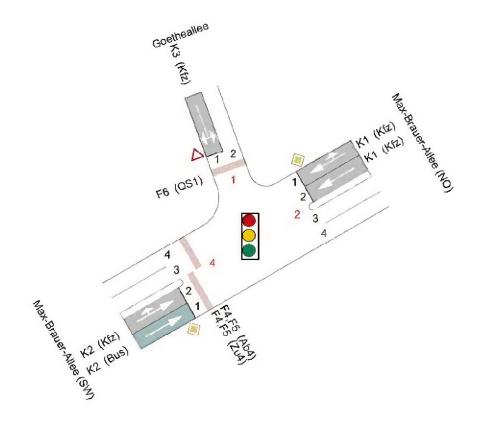

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95> пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge (Kfz)	N _M s [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	V	К2	39	40	51	0,444	430	10,750	1,800	2000	-	22	888	0,484	20,018	0,567	8, 180	13,017	78,102	В
2	2	1	K2	39	40	51	0,444	530	13,250	1,877	1918	-	16	633	0,837	53,200	4,447	16,712	23,526	148,277	D
	2	>	кз	37	38	53	0,422	130	3,250	1,800	2000	-	7	263	0,494	44,277	0,585	3,603	6,813	40,878	C
4	1	1	КЗ	37	38	53	0,422	640	16,000	1,869	1926	-	20	812	0,788	35,700	2,972	16,827	23,765	148,151	C
	2	_+	К1	22	23	68	0,256	440	11,000	1,804	1996	-	13	511	0,861	69,495	5,329	15,827	22,555	135,601	D
1	1	7	К1	22	23	68	0.256	70	1.750	1,839	1958	-	13	501	0,140	26,489	0.091	1,441	3,471	20,826	В
	Knotenpu	unktssumi	men:					2240						3608							
(Sewichte	te Mittelw	erte:												0,718	43,678					


14 Max-Brauer-Allee / Goetheallee (LSA 1771)

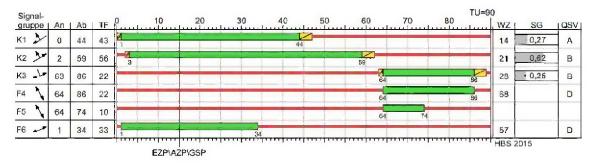
14.1 Max-Brauer-Allee / Goetheallee – Knotenstrombelastungen

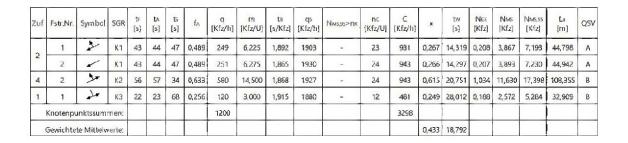

Analyse (Stichprobe VZ 26.06.2018)

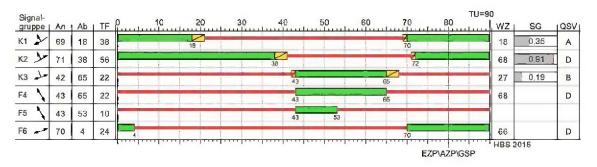
Entwicklungsstufe 1



Entwicklungsstufe 2

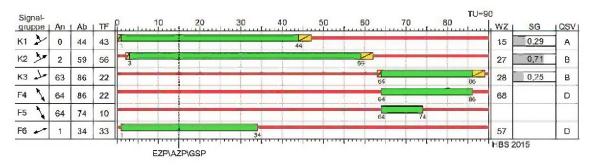

14.2 Max-Brauer-Allee / Goetheallee – Knotenpunktgeometrie Bestand



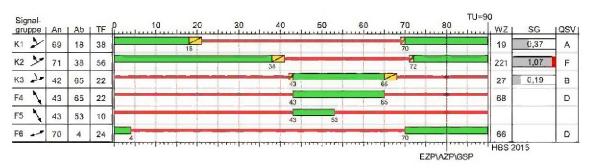

14.3 Max-Brauer-Allee / Goetheallee – Verkehrstechnische Bewertung Bestand

Analyse - Spitzenstunde früh

Analyse - Spitzenstunde spät



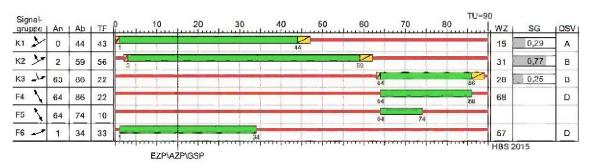
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nx	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kŕz]	Nws [Kfz]	Nies,96 [Kfz]	L: [m]	QSV
_	1	2	к1	38	39	52	0,433	282	7,050	1,899	1896	*	21	821	0,343	18,314	0,302	4,997	8,778	\$4,617	Α
2	2	-	K1	38	39	52	0,433	288	7,200	1,865	1930		21	835	0,345	18,323	0,305	5,104	8,925	55,478	Α
4	2	2-	K2	56	57	34	0,633	830	20,750	1,867	1928	-	23	912	0,910	67,882	11,638	30,637	40,229	250,305	D
1	1	1	КЗ	22	23	68	0,256	90	2,250	1,892	1903	-	12	487	0, 185	27,093	0,128	1,885	4,207	26,050	В
	Knotenpi	unktssumi	men:					1490						3055							
	Gewichte	te Mittelw	rerte:												0,650	46,458					


Max-Brauer-Allee / Goetheallee – Verkehrstechnische Bewertung Bestand

Entwicklungsstufe 1 - Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Мм5,95>πк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
2	1	2	K1	43	44	47	0,489	268	6,700	1,893	1902	-	23	930	0,288	14,575	0,232	4,217	7,690	47,801	Α
2	2	~	K1	43	44	47	0,489	272	6,800	1,865	1930	-	24	944	0,288	14,562	0,232	4,276	7,773	48,317	Α
4	2	مر	K2	56	57	34	0,633	630	15,750	1,867	1928	-	22	882	0,714	26,931	1,773	14,467	20,900	130,040	В
1	1	مل	КЗ	22	23	68	0,256	120	3,000	1,915	1880	-	12	481	0,249	28,012	0,188	2,572	5,284	32,909	В
	Knotenpi	unktssum-	men:					1290						3237							
	Gewichte	te Mittelw	erte:												0,492	21,857					

Entwicklungsstufe 1 - Spitzenstunde spät

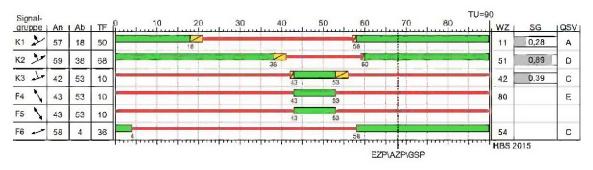


Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nw6,95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nœ [Kfz]	N _{MS} [Kf ₂]	Nмs,55 [Kfz]	L _x [m]	QSV
7	1	2	K 1	38	39	52	0,433	302	7,550	1,900	1895	-	21	821	0,368	18,695	0,339	5,431	9,372	58,256	Α
2	2	~	К1	38	39	52	0,433	308	7,700	1,867	1928		21	836	0,368	18,669	0,339	5,532	9,510	59, 171	Α
4	2	•	K2	56	57	34	0,633	930	23,250	1,867	1928	-	22	870	1,069	221,265	47,502	70,752	84,978	528,733	F
1	1	ملد	К3	22	23	68	0,256	90	2,250	1,892	1903	-	12	487	0,185	27,093	0,128	1,885	4,207	26,050	В
	Knotenpu	unktssu ma	men:					1630						3014					_		
	Sewichte	te Mittelw	rerte:												0,758	134,731					

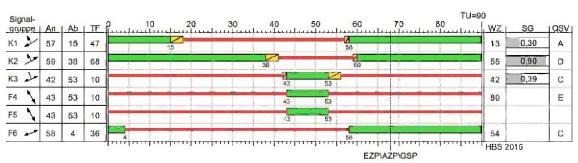
Max-Brauer-Allee / Goetheallee – Verkehrstechnische Bewertung Bestand

Entwicklungsstufe 2 - Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nмs,55≻пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	[m]	QSV
_	1	2	K1	43	44	47	0,489	268	6,700	1,893	1902	-	23	930	0,288	14,575	0,232	4,217	7,690	47,801	Α
2	2	~	K1	43	44	47	0,489	272	6,800	1,865	1930		24	944	0,288	14,562	0,232	4,276	7,773	48,317	Α
4	2	3~	К2	56	57	34	0,633	680	17,000	1,866	1929	-	22	886	0,767	30,643	2,539	16,733	23,651	147,157	В
1	1	ملم	К3	22	23	68	0,256	120	3,000	1,915	1880	-	12	481	0,249	28,012	0,188	2,572	5,284	32,909	В
	Knotenpi	ınktssumi	nen:					1340						3241							
	Gewichte	te Mittelw	erte:												0,528	23,930					


Entwicklungsstufe 2 - Spitzenstunde spät

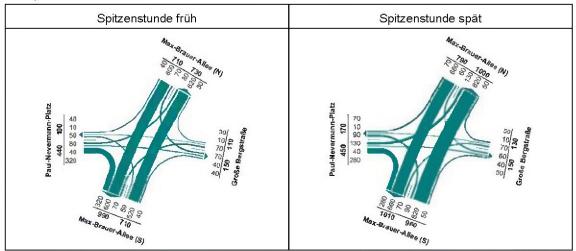
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs (Kfz/h)	Nws,95>nk	nc (Kfz/U)	C [Kfz/h]	х	tw [s]	Nœ [Kfz]	Nws [Kfz]	NMS.95 (Kfz)	[m]	QSV
-	1	2	K1	38	39	52	0,433	308	7,700	1,902	1893		21	820	0,376	18,825	0,352	5,567	9,557	59,521	Α
2	2	~	K 1	38	39	52	0,433	312	7,800	1,865	1930	-	21	835	0,374	18,768	0,349	5,626	9,637	59,904	Α
4	2	3-	ΚZ	56	57	34	0,633	970	24,250	1,865	1930		22	859	1,116	273,055	59,938	84,188	99,706	619,772	F
1	1	سلم	K3	22	23	68	0,256	90	2,250	1,892	1903	-	12	487	0,185	27,093	0,128	1,885	4,207	26,050	В
	Knotenpu	inktssu mi	men:					1600						3011							
	Gewichte	te Mittelw	rerte:												0,793	166,045					

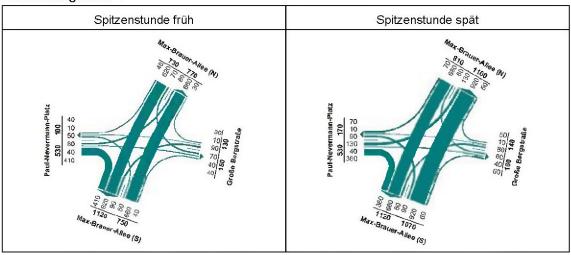


Entwicklungsstufe 1 - Spitzenstunde spät

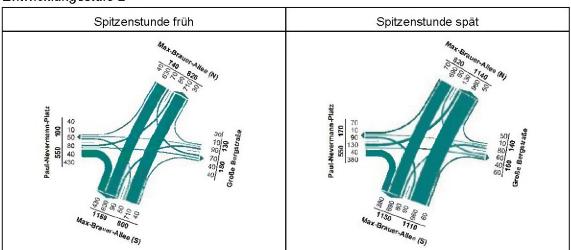
Zuf	Fstr.Nr,	Symbol	SGR	tr [s]	ta [5]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N _{MS,55} ≻n _K	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Not [Kfz]	N _{MS} [Kfz]	N MS.95 [Kfz]	Lx [m]	QSV
	1	2	К1	50	51	40	0,567	302	7,550	1,900	1895	-	27	1074	0,281	10,783	0,223	4,112	7,541	46,875	A
2	2	*	K1	50	51	40	0,567	308	7,700	1,867	1928	-	27	1094	0,282	10,783	0,225	4,194	7,658	47,648	A
4	2	30	K2	68	69	22	0,767	930	23,250	1,867	1928		26	1044	0,891	51,182	9,535	30,138	39,423	245,290	D
1	1	مل	КЗ	10	11	80	0,122	90	2,250	1,892	1903		6	232	0,388	42,139	0,369	2,443	5,086	31,493	С
	Knotenpo	unktssum	nen.					1630						3444							
	Gewichte	te Mittelw	erte:												0,635	35,564					

Entwicklungsstufe 2 – Spitzenstunde spät

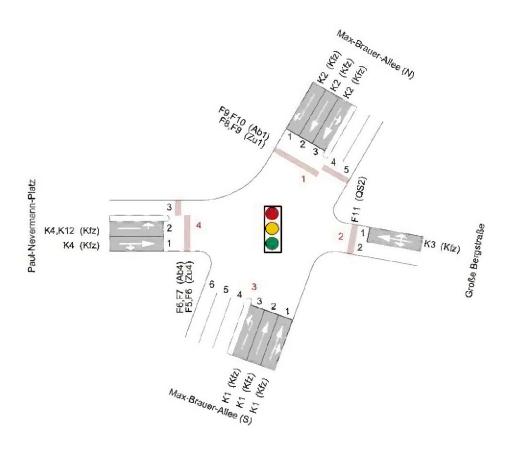

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [s]	f∧	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	Nivis [Kfz]	NMS.95 [Kfz]	Lr [m]	QSV
	1	2	К1	47	48	43	0,533	307	7,675	1,902	1893	-	25	1009	0,304	12,608	0,251	4,528	8,127	50,615	A
2	2	~	K1	47	48	43	0,533	313	7,825	1,865	1930	-	26	1028	0,304	12,591	0,251	4,612	8,244	51,245	A
4	2	>-	K2	68	69	22	0,767	970	24,250	1,865	1930	-	27	1076	0,901	54,898	11,124	32,680	42,348	263,235	D
1	1	مل	КЗ	10	11	80	0,122	90	2,250	1,892	1903	-	6	232	0,388	42,139	0,369	2,443	5,086	31,493	C
	Knotenpi	unktssumi	men:					1680						3345							
	Gewichte	te Mittelw	erte:												0,653	38,604					


15 Max-Brauer-Allee / Große Bergstraße (LSA 321)

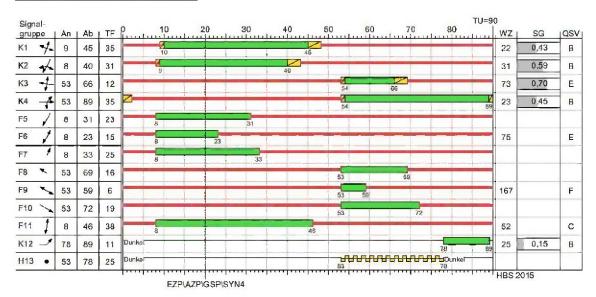
15.1 Max-Brauer-Allee / Große Bergstraße – Knotenstrombelastungen


Analyse (VZ 04.03.2010)

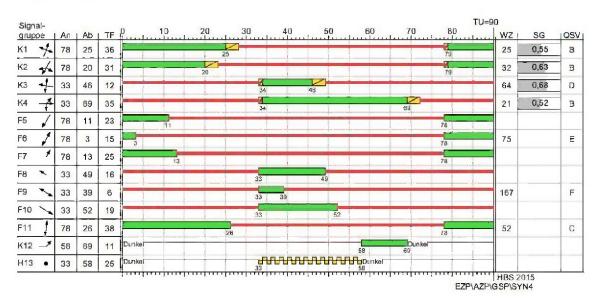
Entwicklungsstufe 1



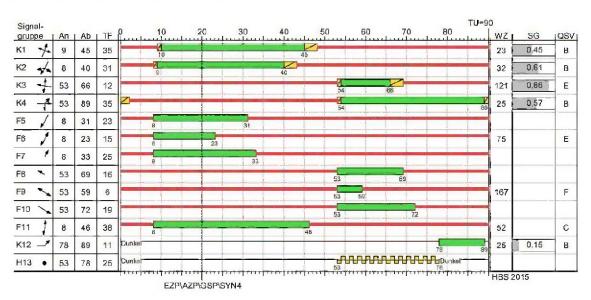
Entwicklungsstufe 2



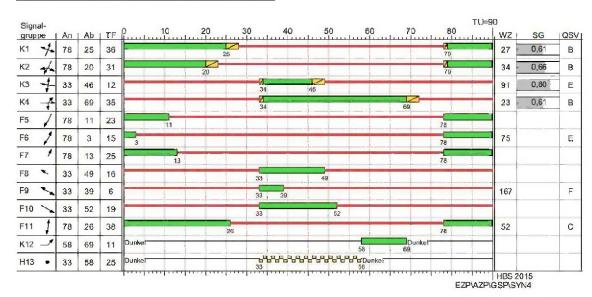
15.2 Max-Brauer-Allee / Große Bergstraße – Knotenpunktgeometrie Bestand


Analyse - Spitzenstunde früh

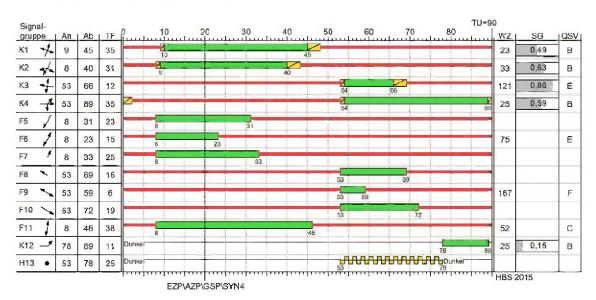
Zuf	Fstr.Nr.	Symbol	SGR	t≠ [s]	ta [5]	ts [5]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм595>пк	nc [Kfz/U]	C [Kfz/h]	к	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	*	K2	31	32	59	0,356	40	1,000	1,935	1860	r	17	662	0,060	19,260	0,035	0,693	2,101	13,551	Α
1	2	1	K2	31	32	59	0,356	395	9,875	1,910	1885	-	17	672	0,588	28,447	0,904	8,947	14,006	89,762	В
	3	1	K2	31	32	59	0,356	275	6,875	1,879	1916	-	12	466	0,590	37,110	0,907	6,982	11,451	72,760	Ç
2	1	+	K3	12	13	78	0,144	110	2,750	2,192	1642	-	4	157	0,701	73,250	1,475	4,140	7,581	55,220	E
	3	7	K1	35	36	55	0,400	50	1,250	1,827	1970	-	8	312	0,160	33,966	0,107	1,187	3,030	18,453	В
3	2	1	K1	35	36	55	0,400	329	8,225	1,865	1930	-	19	771	0,427	21,596	0,441	6,393	10,669	66,319	В
	1	1	K1	35	36	55	0,400	331	8,275	1,866	1930	-	19	773	0,428	21,609	0,443	6,434	10,724	66,853	В
	2		K4, K12	35	36	55	0,400	80	2,000	1,800	2000	_	14	545	0,147	25,412	0,096	1,611	3,758	22,548	₿
4	1	7-	K4	35	36	55	0,400	360	9,000	1,812	1987	-	20	795	0,453	22,022	0,494	7,089	11,592	70,039	В
	Knote	npunktssu	ımmen:					1970						5153							
	Gewic	htete Mitt	elwerte:												0,477	28,521					


Analyse - Spitzenstunde spät

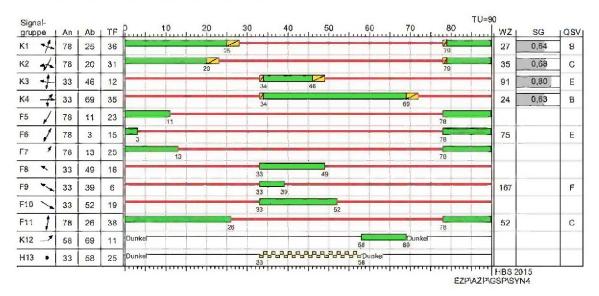
Zuf	Fstr.Nr.	Symbol	SGR	tr= [s]	ta [5]	ts [\$]	fA	q [Kfz/h]	m [Kf2/U]	te [s/Kfz]	qs [Kfz/h]	NMS,95>FIK	nc [Kf2/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nws [Kfz]	Nws,95 [Kfz]	L ₁ [m]	QSV
	1	*/	K2	31	32	59	0,356	70	1,750	1,800	2000	-	18	712	0,098	19,641	0,060	1,228	3,102	18,612	Α
1	2	1	K2	31	32	59	0,356	432	10,800	1,868	1927	-	17	686	0,630	29,879	1,109	10,075	15,443	96,179	В
	3	1	K2	31	32	59	0,356	288	7,200	1,855	1940	-	17	458	0,629	39,444	1,094	7,554	12,202	76,067	C
2	1	+	K3	12	13	78	0,144	130	3,250	1,977	1821	-	5	191	0,681	64,456	1,360	4,493	8,078	57,289	D
	3	7	К1	36	37	54	0,411	90	2,250	1,800	2000	-	7	292	0,308	37,509	0,255	2,267	4,613	28,878	С
3	2	1	K1	36	37	54	0,411	434	10,850	1,852	1944	_	20	798	0,544	23,441	0,739	8,970	14,035	86,652	В
	1	1/4	K1	36	37	54	0,411	436	10,900	1,853	1943	-	20	799	0,546	23,489	0,746	9,024	14,104	87,247	В
	2	_±	K4, K12	35	36	55	0,400	130	3,250	1,800	2000	х								33,234	
4	1	→	K4	35	36	55	0,437	320	8,000	1,812	1986	-	22	871	0,517	21,134	0,655	8,837	13,865	83,856	В
	Knote	npunktssi	ımmen:					2330						4807							
	Gewic	htete Mitt	elwerte:												0,551	28,894					


Entwicklungsstufe 1 - Spitzenstunde früh

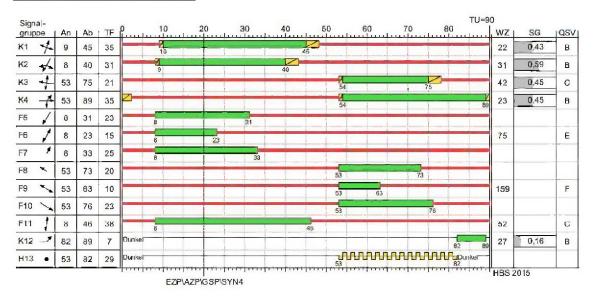
Zuf	Fstr.Nr.	Symbol	SGR	[5]	[s]	[2]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc (Kfz/U)	C [Kfz/h]	×	tw [s]	NGE [Kfz]	NMS [Kfz]	Nws.95 [Kfz]	Lx [m]	QSV
	1	*/	К2	31	32	59	0,356	40	1,000	1,935	1860	-	17	662	0,060	19,260	0,035	0,693	2,101	13,551	A
1	2	1	K2	31	32	59	0,356	410	10,250	1,908	1887		17	672	0,610	29,219	1,004	9,436	14,631	93,053	В
	3	1	K2	31	32	59	0,356	280	7,000	1,883	1912	-	11	459	0,610	38,270	0,997	7,229	11,776	74,966	С
2	1	+	К3	12	13	78	0,144	130	3,250	2,195	1640	-	4	152	0,855	121,383	3,427	6,629	10,983	80,198	Ε
	3	7	K3	35	36	55	0,400	50	1,250	1,827	1970	-	8	306	0,163	34,246	0,109	1,193	3,040	18,514	В
3	2	1	K2	35	36	55	0,400	350	8,750	1,870	1925	-	19	771	0,454	22,116	0,497	6,912	11,358	70,806	В
	1	1	KI	35	36	55	0,400	350	8,750	1,866	1929	-	19	773	0,453	22,086	0,494	6,906	11,350	70,756	В
	2		K4, K12	35	36	55	0,400	80	2,000	1,800	2000	-	14	545	0,147	25,412	0,096	1,611	3,758	22,548	В
4	1	+	K4	35	36	55	0,400	450	11,250	1,812	1987	-	20	795	0,566	24,641	0,817	9,542	14,766	89,216	В
	Knote	npunktssi	ımmen:					2140						5135							
	Gewic	htete Mitt	elwerte:												0,526	32,500					


Entwicklungsstufe 1 – Spitzenstunde spät

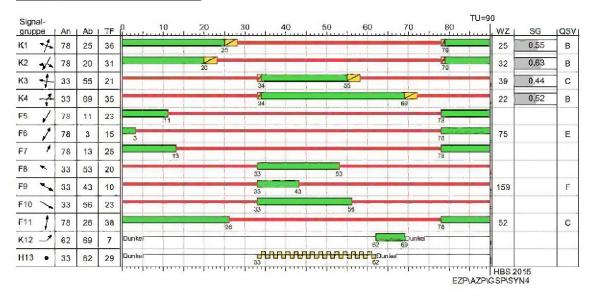
Zuf	Fstr.Nr.	Symbol	SGR	TF [S]	(5)	[s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nи5,95>пк	nc [Kfz/U]	C [Kfz/h]	x	(x)	NGF (Kfz)	N _{MS} [Ktz]	NMS,95 [Kfz]	[x [m]	QSV
	1	•/	K2	31	32	59	0,356	70	1,750	1,800	2000		18	712	0,098	19,641	0,060	1,228	3,102	18,612	Α
1	2	1	K2	31	32	59	0,356	455	11,375	1,868	1927		17	686	0,663	31,330	1,315	10,904	16,489	102,693	В
	3	1	K2	31	32	59	0,356	285	7,125	1,853	1943	-	11	431	0,661	42,647	1,284	7,781	12,499	77,769	C
2	1	+	К3	12	13	78	0,144	140	3,500	1,983	1816	-	4	176	0,795	90,998	2,505	5,930	10,048	71,019	E
	3	7	K1	36	37	54	0,411	90	2,250	1,800	2000	1	7	286	0,315	37,932	0,264	2,283	4,838	29,028	C
3	2	1	K1	36	37	54	0,411	490	12,250	1,856	1940	-	20	798	0,614	25,510	1,026	10,677	16,203	100,232	В
	1	4	K1	36	37	54	0,411	490	12,250	1,850	1946	-	20	800	0,613	25,464	1,021	10,666	16,189	100 048	В
	2		K4, K12	35	36	55	0,400	130	3,250	1,800	2000	×								33,234	
4	1	_	K4	35	36	55	0,438	400	10,000	1,810	1989	-	22	874	0,606	23,419	0,988	11,125	16,766	101,200	В
	Knote	npunktssu	іттел:					2550						4763							
	Gewic	htete Mitt	elwerte:												0,611	31,893					


Entwicklungsstufe 2 - Spitzenstunde früh

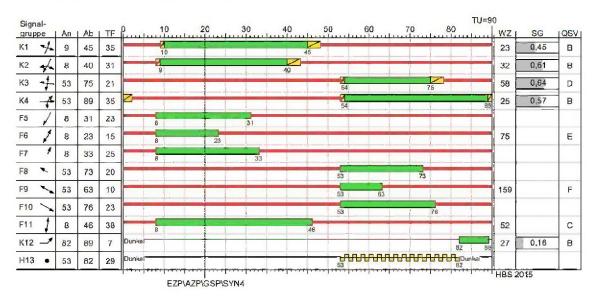
Zuf	Fstr.Nr.	Symbol	SGR	b- [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m (Kfz/U]	ts [s/Kfz]	cps [Kfz/h]	Nм5,95 >л к	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Not [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L _i [m]	QSV
	1	•/	K2	31	32	59	0,356	40	1,000	1,935	1850	-	1.7	662	0,060	19,260	0,035	0,693	2,101	13,551	Α
1	2	1	K2	31	32	59	0,356	42£	10,525	1,910	1885	-	17	672	0,626	29,833	1,086	9,808	15,105	96,158	8
	3	1	K2	31	32	59	0,356	279	6,975	1,877	1918	-	11	445	0,627	39,813	1,082	7,351	11,936	75,698	C
2	1	+	K3	12	13	78	0,144	130	3,250	2,195	1640	-	4	152	0,855	121,383	3,427	6,629	10,983	80,198	E
	3	7	K1	35	36	55	0,400	50	1,250	1,827	1970	-	8	303	0,155	34,366	0,111	1,196	3,046	18,550	8
3	2	1	K1	35	36	55	0,400	375	9,375	1,865	1930	-	19	771	0,486	22,775	0,571	7,553	12,201	75,841	В
	1	1	K1	35	36	55	0,400	375	9,375	1.864	1931	-	19	772	0.486	22.772	0.571	7.553	12.201	75.988	В
	2	_+	K4, K12	35	36	55	0,400	80	2,000	1,800	2000	-	14	545	0,147	25,412	0,096	1,611	3,758	22,548	8
4	1	→	K4	35	36	55	0,400	470	11,750	1,812	1987	-	20	795	0,591	25,377	0,919	10,152	15,541	93,899	В
	Knote	npunktssı	ımmen:					2220						5117							
	Gewic	htete Mitt	elwerte:												0,547	32,872					


Entwicklungsstufe 2 - Spitzenstunde spät

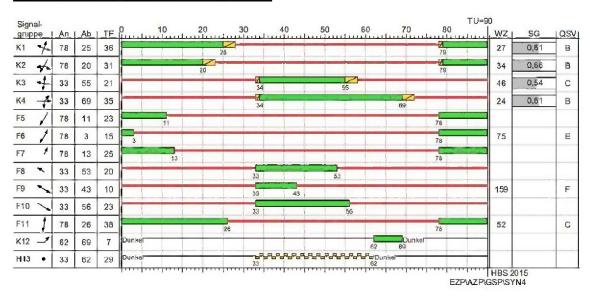
Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kíz/h]	m [Kfz/Ư]	te [s/Kfz]	qs (Kfz/h)	Nмs,35>лк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NŒ [Kfz]	NMS [Kfz]	NMS,95 (Kfz)	Lx [m]	QSV
	1	* /	K2	31	32	59	0,356	70	1,750	1,800	2000		1.8	712	0,098	19,641	0,060	1,228	3,102	18,612	Α
1	2	1	К2	31	32	59	0,356	464	11,600	1,865	1930	-	17	686	0,676	31,983	1,411	11,249	16,921	105,181	В
	3	1	K2	31	32	59	0,356	286	7,150	1,857	1939	-	11	423	0,676	44,096	1,389	7,947	12,715	79,342	С
2	1	+	К3	12	13	78	0,144	140	3,500	1,983	1816	-	4	176	0,795	90,998	2,505	5,930	10,048	71,019	E
	3	ا ر•	K1	36	37	54	0,411	90	2,250	1,800	2000	-	7	284	0,317	38,061	0,266	2,287	4,845	29,070	С
3	2	1	K1	36	37	54	0,411	510	12,750	1,852	1944	-	20	798	0,639	26,419	1,163	11,347	17,044	105,230	В
	1	1	К1	36	37	54	0,411	510	12,750	1,850	1946	-	20	800	0,637	26,328	1,151	11,324	17,015	305,153	В
	2	1	K4, K <u>12</u>	35	36	55	0,400	130	3,250	1,800	2000	x								33,234	
4	1	→ 1	K4	35	36	55	0,439	420	10,500	1,813	1986	-	22	874	0,629	24,125	1,107	11,763	17,563	106,221	В
	Knote	npunktssi	ımmen:					2620						4753							
	Gewic	htete Mitt	elwerte:												0,630	32,504					


Analyse - Spitzenstunde früh

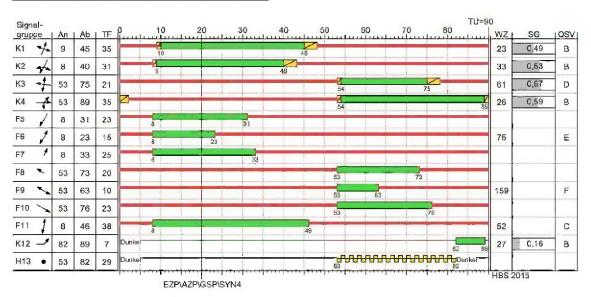
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	t _A [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [5]	Nge [Kfz]	Nivis [Kfz]	Nм5,95 [Kfz]	£x [m]	QSV
	1	₩/	K2	31	32	59	0,356	40	1,000	1,935	1860		17	662	0,060	19,260	0,035	0,693	2,101	13,551	A
1	2	1	K2	31	32	59	0,356	395	9,875	1,910	1885	-	17	672	0,588	28,447	0,904	8,947	14,006	89,162	8
	3	4	K2	31	32	59	0,356	275	6,875	1,879	1916	1-	12	466	0,590	37,110	0,907	6,982	11,451	72,760	C
2	1	+	K3	21	22	69	0,244	110	2,750	2,192	1642	-	6	246	0,447	41,829	0,477	2,982	5,903	42,997	С
	3	7	K1	35	36	55	0,400	50	1,250	1,827	1970	-	8	312	0,160	33,966	0,107	1,187	3,030	18,453	В
3	2	1	K1	35	36	55	0,400	329	8,225	1,865	1930	-	19	771	0,427	21,596	0,441	6,393	10,669	66,319	8
	1	1	K1	35	36	55	0,400	331	8,275	1,866	1930	-	19	773	0,428	21,609	0,443	6,434	10,724	66,853	В
	2		K4, K12	35	36	55	0,400	80	2,000	1,800	2000	=	13	514	0,156	26,601	0,103	1,651	3,824	22,944	В
4	1	7	K4	35	36	55	0,400	360	9,000	1,812	1987	-	20	795	0,453	22,022	0,494	7,089	11,592	70,039	В
	Knote	npunktssu	ımmen:					1970						5211							
	Gewic	htete Mitt	elwerte:												0,463	26,815					


Analyse – Spitzenstunde spät

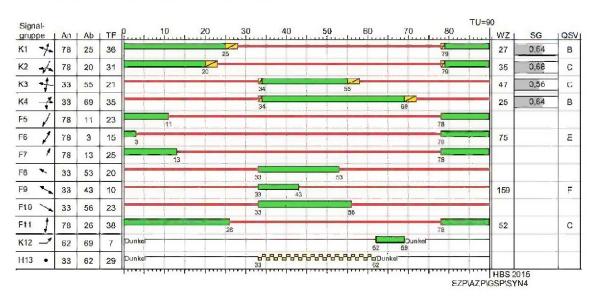
Zuf	Fstr.Nr.	Symbol	SGR	14	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nм5.95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw (s)	Noe [Kfz]	N _{MS} [Kfz]	Nws,95 [Kfz]	L× [m]	QSV
	1	•/	K2	31	32	59	0,356	70	1,750	1,800	2000	-	18	712	0,098	19,641	0,060	1,228	3, 102	18,612	A
1	2	1	K2	31	32	59	0,356	432	10,800	1,868	1927	-	17	686	0,630	29,879	1,109	10,075	15,443	96,179	В
	3	1	K2	31	32	59	0,356	288	7,200	1,855	1940	-	11	458	0,629	39,444	1,094	7,554	12,202	76,067	С
2	1	+	К3	21	22	69	0,244	130	3,250	1,977	1821	-	7	299	0,435	39,332	0,454	3,380	6,489	46,020	С
	3	7	K1	36	37	54	0,411	90	2,250	1,800	2000	-	7	292	0,308	37,509	0,255	2,267	4,813	28,878	С
3	2	1	K1	36	37	54	0,411	434	10,850	1,852	1944	-	20	798	0,544	23,441	0,739	8,970	14,035	86,652	В
	1	1	K1	36	37	54	0,411	436	10,900	1,853	1943	_	20	799	0,546	23,489	0,746	9,024	14,104	87,247	В
	2	_	K4, K12	35	36	55	0,400	130	3,250	1,800	2000	х								33,882	
4	1	7	K4	35	36	55	0,431	320	8,000	1,812	1986	-	21	858	0,524	21,656	0,676	8,945	14,003	84,690	В
	Knote	npunktssu	mmen:					2330						4902							
	Gewic	htete Mitt	elwerte:												0,538	27,593					


Entwicklungsstufe 1 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	₩./	K2	31	32	59	0,356	40	1,000	1,935	1860	-	17	662	0,060	19,260	0,035	0,693	2,101	13,551	А
1	2	1	K2	31	32	59	0,356	410	10,250	1,908	1887	-	17	672	0,610	29,219	1,004	9,436	14,631	93,053	В
	3	14	K2	31	32	59	0,356	280	7,000	1,883	1912	-	11	459	0,610	38,270	0,997	7,229	11,776	74,966	С
2	1	+	КЗ	21	22	69	0,244	130	3,250	2,195	1540	-	5	202	0,644	57,887	1,139	4,234	7,714	56,328	D
	3	7	K 1	35	36	55	0,400	50	1,250	1,827	1970	-	8	306	0,163	34,246	0,109	1,193	3.040	18,514	В
3	2	1	X1	35	36	55	0,400	350	8,750	1,870	1925	-	19	771	0,454	22,116	0,497	6,912	11,358	70,806	В
	1	1	K1	35	36	55	0,400	350	8,750	1,866	1929	-	19	773	0,453	22,086	0,494	6,906	11,350	70,756	В
	2		K4, K12	35	36	55	0,400	80	2,000	1,800	2000	-	13	514	0,156	26,601	0,103	1,651	3,824	22,944	В
4	1		K4	35	36	35	0,400	450	11,250	1,812	1987	-	20	795	0,566	24,641	0,817	9,542	14,766	89,216	В
	Knote	npunktssu	ımmen:					2140						5154							
	Gewic	htete Mitt	elwerte:												0,514	28,687					

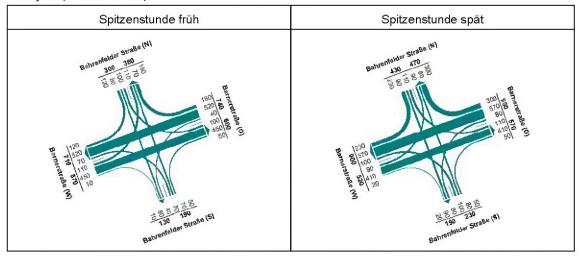

Entwicklungsstufe 1 - Spitzenstunde spät

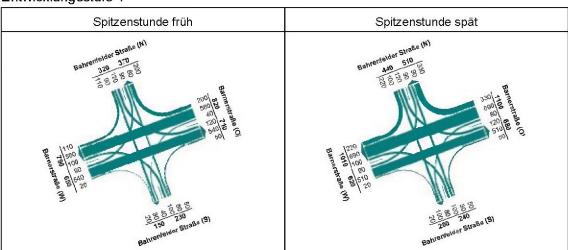
Zuf	Fstr.Nr.	Symbol	SGR	[5]	[s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nes.95 > nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NŒ [Kfz]	Nus [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	-/	К2	31	32	59	0,356	70	1,750	1,800	2000	-	18	712	0,098	19,641	0,060	1,228	3,102	18,612	A
1	2	1	K2	31	32	59	0,356	455	11,375	1,868	1927	_	17	686	0,663	31,330	1,315	10,904	16,489	102,693	В
	3	1/4	K2	31	32	59	0,356	285	7,125	1,853	1943	-	11	431	0,661	42,647	1,284	7,781	12,499	77,769	С
2	1	+	K3	21	22	69	0,244	140	3,500	1,983	1816	~	6	259	0,541	45,801	0,718	3,969	7,338	51,865	С
	3	7	Ki	36	37	54	0,411	90	2,250	1,800	2000	-	7	286	0,315	37,932	0,264	2,283	4,838	29,028	С
3	2	1	K1	36	37	54	0,411	490	12,250	1.856	1940	-	20	798	0,614	25,510	1,026	10,677	16,203	100,232	В
	1	1	K1	36	37	54	0,411	490	12,250	1,850	1946	-	20	800	0,613	25,464	1,021	10,666	16,189	100,048	В
-37-	2		K4, K12	35	36	55	0,400	130	3,250	1,800	2000	х								33,882	
4	1	-	K4	35	36	55	0,434	400	10,000	3,810	1989	-	22	865	0,613	23,894	1,022	11,240	16,910	102,069	В
	Knote	npunktssu	ımmen;					2550						4837							
	Gewic	htete Mitt	elwerte:												0,599	29,510					


Entwicklungsstufe 2 – Spitzenstunde früh

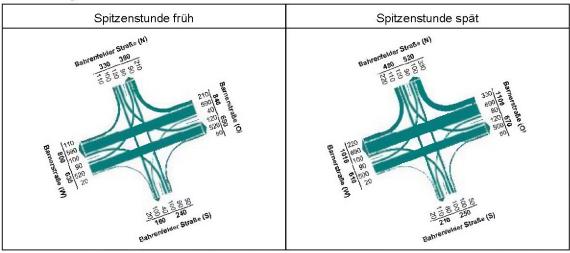
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	1A [5]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	[s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	NMS [Kfz]	№мs,95 [Kfz]	[m]	QSV
	1	₩/	K2	31	32	59	0,356	40	1,000	1,935	1860	-	17	662	0,060	19,260	0,035	0,693	2,101	13,551	А
1	2	1	K2	31	32	59	0,356	421	10,525	1,910	1885	-	17	672	0,626	29,833	1,086	9,808	15,105	96,158	В
	3	4	K2	31	32	59	0,356	279	6,975	1,877	1918	-	11	445	0,627	39,813	1,082	7,351	11,936	75,698	С
2	1	+	K3	21	22	69	0,244	130	3,250	2,195	1640		5	195	0,667	61,385	1,270	4,380	7,919	57,825	D
	3	. 7	К1	35	36	55	0,400	50	1,250	1,827	1970	~	8	303	0,165	34,366	0,111	1,196	3,046	18,550	8
3	2	1	K1	35	36	55	0,400	375	9,375	1,865	1930	-	19	771	0.486	22,775	0,571	7,553	12,201	75,841	В
	1	1	K1	35	36	55	0,400	375	9,375	1,854	1931	-	19	772	0,486	22,772	0,571	7,553	12,201	75,988	8
	2		K4, K12	35	36	55	0,400	80	2,000	1,800	2000	-	13	514	0,156	26,601	0,103	1,651	3,824	22,944	8
4	1	7*	K4	35	36	55	0,400	470	11,750	1,812	1987	-	20	795	0,591	25,377	0,919	10,152	15,541	93,899	В
	Knote	npunktssi	ımmen:					2220						5129							
	Gewic	htete Mitt	elwerte:												0,536	29,402					

Entwicklungsstufe 2 - Spitzenstunde spät

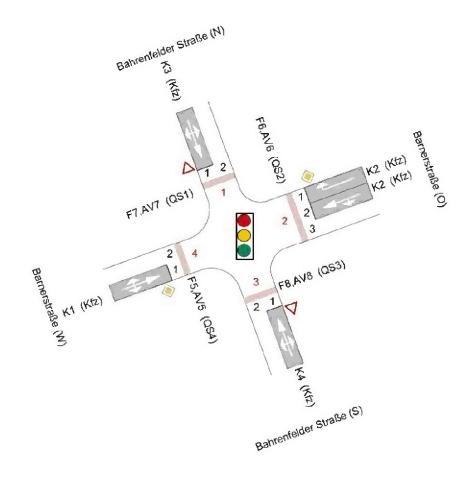

Zuf	Fstr.Nr.	Symbol	SGR	(s)	₹A [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs (Kfz/h)	Νм5,95≥лк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	NMS,95 (Kfz)	Lx (m)	QSV
	1	•/	K2	31	32	59	0,356	70	1,750	1,800	2000	-	18	712	0,098	19,641	0,060	1,228	3,102	18,612	Α
1	2	1	K2	31	32	59	0,356	464	11,600	1,865	1930	-	17	686	0,676	31,983	1,411	11,249	16,921	105,181	В
	3	1/4	K2	31	32	59	0,356	286	7,150	1,857	1939	-	11	423	0,676	44,096	1,389	7,947	12,715	79,342	C
2	1	+-	К3	21	22	69	0,244	140	3,500	1,983	1816	-	6	250	0,560	47,469	0,780	4,050	7,454	52,685	С
	3	7	К1	36	37	54	0,411	90	2,250	1,800	2000	-	7	284	0,317	38,061	0,266	2,287	4,845	29,070	C
3	2	1	К1	36	37	54	0,411	510	12,750	1,852	1944	-	20	798	0,639	26,419	1,163	11,347	17,044	105,230	В
	1	14	К1	36	37	54	0,411	510	12,750	1,850	1946	-	20	800	0,637	26,328	1,151	11,324	17,015	105,153	В
	2		K4, K12	35	36	55	0,400	130	3,250	1,800	2000	х								33,882	
4	1	-	K4	35	36	55	0,435	420	10,500	1,813	1986	-	22	865	0,636	24,633	1,147	11,887	17,718	107,158	В
	Knote	npunktssi	ımmen:					2620						4818							
	Gewic	htete Mitt	elwerte:												0,619	30,285					


16 Barnerstraße / Bahrenfelder Straße (LSA 417)

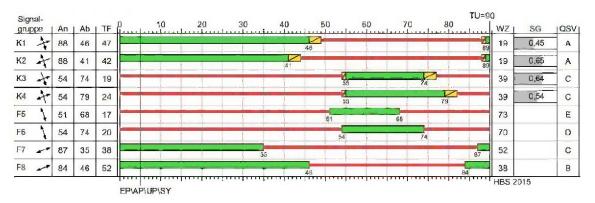
16.1 Barnerstraße / Bahrenfelder Straße – Knotenstrombelastungen


Analyse (VZ 06.11.2012)

Entwicklungsstufe 1

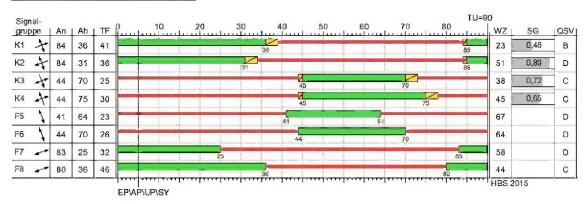


Entwicklungsstufe 2



16.2 Barnerstraße / Bahrenfelder Straße – Knotenpunktgeometrie Bestand

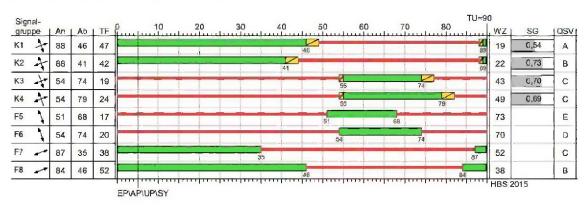
Analyse – Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N м5,95≯пк	nc [Kfz/U]	C [Kfz/h]	к	tw [s]	N∈ [Kfz]	N _{M5} [Kfz]	NMS,95 [Kfz]	L× [m]	QSV
	1	r	K2	42	43	48	0,478	180	4,500	1,950	1846	×								33,578	
2	2	~	K2	42	43	48	0,558	520	13,000	1,841	1955	-	27	1074	0,652	18,009	1,250	13,408	19,601	120,311	A
	3	5	K 2	42	43	48	0,478	40	1,000	2,080	1731	~	8	332	0,120	30,896	0,076	0,903	2,510	16,190	В
3	1	4	K4	24	25	66	0,278	190	4,750	2,101	1714	-	9	353	0,538	39,177	0,713	4,955	8,720	59,069	С
,	2	2	К1	47	48	43	0,533	110	2,750	2,041	1764	-	8	316	0,348	35,856	0,308	2,716	5,503	34,834	С
4	1	1	K1	47	48	43	0,533	460	11,500	1,856	1940	-	26	1034	0,445	14,530	0,478	7,518	12,155	75,118	A
	7	7	КЗ	19	20	71	0,259	200	5,000	2,015	1787	-	12	466	0,644	38,763	1,179	7,849	12,587	80,280	С
ı	2	1.0	кз	19	20	71	0,222	100	2,500	1,980	1818	х								33,139	
	Knotenpi	ınktssumi	men:					1800						3575							
	Gewichte	te Mittelw	erte:												0,555	24,190					

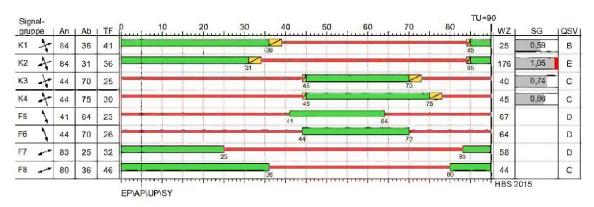
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	No. [Kfz]	N _{MS} [Kfz]	Nws,95 [Kfz]	[m]	QSV
	1	1	K2	36	37	54	0,411	300	7,500	1,950	1846	×								58,545	
2	2	~	K2	36	37	54	0,504	570	14,250	1,800	2000	٠	25	980	0,888	52,869	8,937	28,465	37,488	224,928	D
	3	1	K2	36	37	54	0,411	80	2,000	1,935	1860	-	8	306	0,261	35, 152	0,201	1,946	4,305	25,830	С
3	1	4	K4	30	31	60	0,344	230	5,750	2,092	1721	-	9	356	0,646	44,609	1,181	6,445	10,739	75,066	C
	2	٠	К1	41	42	49	0,467	90	2,250	1,935	1860	-	6	234	0,385	41,727	0,364	2,431	5,068	30,408	C
4	1	~	K1	41	42	49	0,467	430	10,750	1,856	1940	-	23	906	0,475	18,594	0,545	7,908	12,664	78,188	A
	1	A	КЗ	25	26	65	0,322	320	8,000	1,936	1859	-	15	596	0,721	37,957	1,824	11,316	17,005	102,744	С
7	2	10	К3	25	26	65	0.289	110	2,750	1,962	1835	×								33,213	
	Knotenpi	inktssumi	men:					2130						3378							
(Gewichte	te Mittely	rerte:												0,700	40,911					

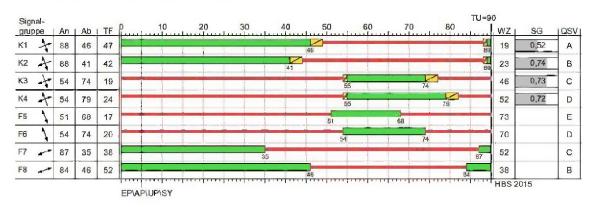
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	2	Қ 2	42	43	48	0,478	200	5,000	1,950	1846	×								36,705	
2	2	~	К2	42	43	48	0,558	580	14,500	1,841	1955	-	27	1074	0,726	21,227	1,924	16,412	23,263	142,788	В
	3	5	K2	42	43	48	0,478	40	1,000	2,080	1731	,	7	278	0,144	33,645	0,094	0,953	2,604	16,796	В
3	1	7	K4	24	25	66	0,278	230	5,750	2,116	1701	1	8	335	0,687	49,215	1,457	6,797	11,206	77,859	C
	2	3	K1	47	48	43	0,533	90	2,250	2,047	1759	-	7	287	0,314	36,525	0,263	2,248	4,784	30,369	С
4	1	~	K1	47	48	43	0,533	560	14,000	1,859	1937	-	26	1032	0,543	16,382	0,737	9,938	15,270	94,460	A
	1	4	КЗ	19	20	71	0,252	200	5,000	2,006	1794	(95)	11	455	0,703	43,400	1,619	8,890	13,933	88,697	С
1	2	Le	КЗ	19	20	71	0,222	120	3,000	1,983	1815	х								39,489	
	Knatenpu	ınktssumi	men:					2020						3461							
	Gewichte	te Mittelw	erte:												0,637	27,511					

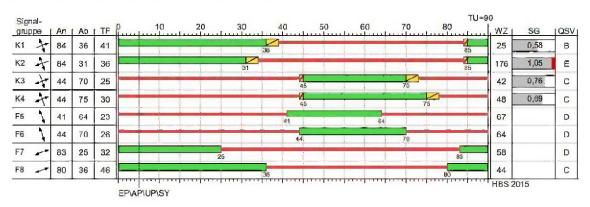
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nus [Kfz]	N _{M5,95} [Kfz]	t,x [m]	QSV
	1	2	K2	36	37	54	0,411	330	8,250	1,949	1847	х								64,311	
2	2	-	K2	36	37	54	0,501	690	17,250	1.800	2000		24	976	1,045	191,618	45,862	71,362	85,549	513,894	F
	3	5	K2	36	37	54	0,411	80	2,000	1,935	1860	-	6	251	0,319	39,043	0,269	2,077	4,514	27,084	C,
3	1	4	K4	30	31	60	0,344	240	6,000	2,085	1726	-	9	363	0,661	45,266	1,276	6,780	11,184	78,176	С
	2	3	K1	41	42	49	0,467	90	2,250	1,935	1860	*	5	196	0,459	47,073	0,501	2,617	5,353	32,118	С
4	1	7	K1	41	42	49	0,467	530	13,250	1,855	1941	-	23	906	0,585	21,141	0,894	10,611	16,120	99,525	В
	1	4	КЗ	25	26	65	0,319	320	8,000	1,936	1859	-	15	592	0,743	40,104	2,097	11,915	17,753	107,264	C
1	2	1.0	К3	25	26	65	0,289	120	3,000	1,958	1839	х								35,904	
	Knotenpu	ınktssum	men:					2400						3284							
	Gewichte	te Mittely	erte:												0,803	101,052					

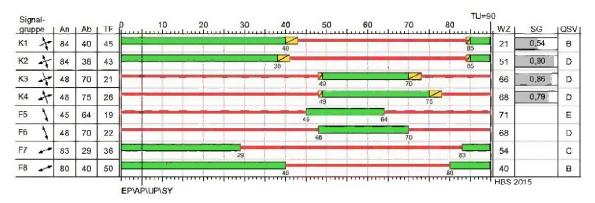
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	t _A [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N _{MS 95} > n _K	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nws [Kfz]	Ммs,95 [Кfz]	Lx [m]	Q\$V
	1	2	K2	42	43	48	0,478	210	5,250	1,949	1847	×								38,228	
2	2	~	KZ	42	43	48	0,559	590	14,750	1,841	1955	-	27	1075	0,744	22,250	2,170	17,270	24,298	149,141	В
	3	5	K2	42	43	48	0,478	40	1,000	2,080	1731	-	7	289	0,138	33,071	0,089	0,942	2,583	16,660	В
3	1	4	K4	24	25	66	0,278	240	6,000	2,108	1708	-	8	335	0,716	52,235	1,712	7,323	11,900	82,681	D
	2	٤	K1	47	48	43	0,533	90	2,250	2,047	1759	-	7	281	0,320	36,924	0,270	2,262	4,806	30,508	С
4	1	-	K1	47	48	43	0,533	540	13,500	1,857	1939	-	26	1033	0,523	15,956	0,674	9,415	14,604	90,253	A
	1	4	K3	19	20	71	0,251	210	5,250	2,003	1,797	=	11	453	0,728	45,798	1,876	9,437	14,632	93,147	C
1	2	10	кз	19	20	71	0,222	120	3,000	1,983	1815	×								39,907	
	Knotenpu	unktssumi	тед:					2040						3466							
	Gewichte	te Mittelw	erte:												0,649	28,780					

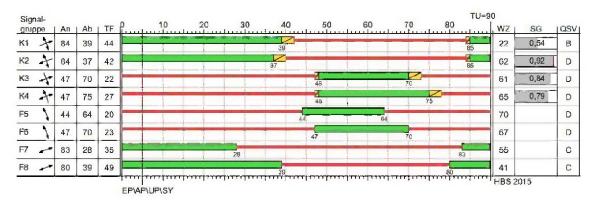
Entwicklungsstufe 2 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Estr.Nr.	Symbol	SGR	ts [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	N _M s [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	٢	K2	36	37	54	0,411	330	8,250	1,949	1847	x								64,311	
2	2	-	K2	36	37	54	0,501	690	17,250	1,800	2000	-	24	975	1,045	191,618	45,862	71,362	85,649	513,894	F
	3	1	K2	36	37	54	0,411	80	2,000	1,935	1860		б	256	0,313	38,616	0,261	2,063	4,492	26,952	C
3	1	4	K4	30	31	60	0,344	250	6,250	2,080	1731	-	9	363	0,689	47,503	1,479	7,252	11,806	76,715	С
	2	1	K1	41	42	49	0,467	90	2,250	1,935	1860	-	5	195	0,459	47,073	0,501	2,617	5,353	32,118	С
4	1	7	K1	41	42	49	0.467	520	13,000	1,857	1938	-	23	905	0,575	20,870	0,853	10,326	15,761	97,403	В
	1	4	K 3	25	26	65	0,318	330	8,250	1,936	1860	-	15	590	0,763	42,292	2,402	12,533	18,520	111,898	С
1	2	Lo	K3	25	26	65	0,289	120	3,000	1,958	1839	к								36,165	
	Knotenpa	unktssumi	men:					2410						3286							
<	Sewichte	te Mittelw	erte:												0,808	101,467					

16.4 Barnerstraße / Bahrenfelder Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Entwicklungsstufe 1 - Spitzenstunde spät

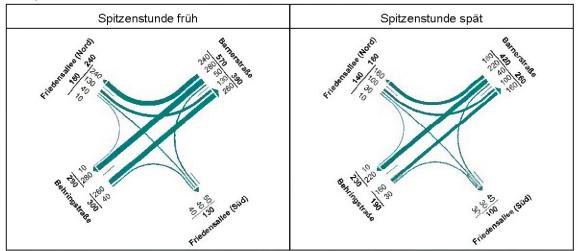

A-Signalgruppen ausgebiendet!

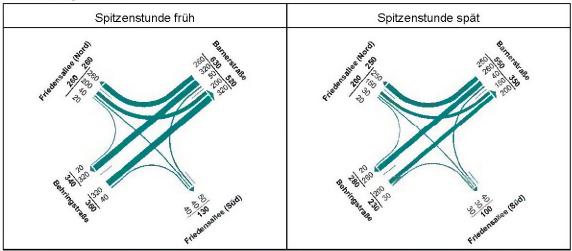
Zuf	Fstr.Nr.	Symbol	\$GR	tr [s]	îa [5]	15 [5]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS.95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _M s [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	2	K2	43	44	47	0,489	330	8,250	1,949	1847	х								56,922	
2	2	~	K2	43	44	47	0,581	690	17,250	1,800	2000	-	28	1132	0,901	52,760	11,377	33,799	43,631	261,786	D
	3	-	K2	43	44	47	0,489	80	2,000	1,935	1860	-	8	317	0,252	34,557	0,191	1,925	4,271	25,626	В
3	1	4	K4	26	27	64	0,300	240	6,000	2,085	1726	-	8	303	0,792	67,891	2,726	8,471	13,393	93,617	D
	2	•	К1	45	46	45	0,511	90	2,250	1,935	1860		б	225	0,400	42,761	0,389	2,467	5,123	30,738	c
4	1	1	K1	4 5	46	45	0,511	530	13,250	1,855	1941	_	25	991	0,535	17,392	0,711	9,628	14,876	91,844	Α
	1	4	КЗ	21	22	69	0,277	320	8,000	1,936	1859	-	13	514	0,856	66,470	5,088	15,513	22,174	133,975	D
1	2	Lo	КЗ	21	22	69	0,244	120	3,000	1,95B	1839	×								37,889	
	Knatenpu	unktssumi	men:					2400						3482							
	Gewichte	te Mittelw	erte:												0,761	47,994					

Barnerstraße / Bahrenfelder Straße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

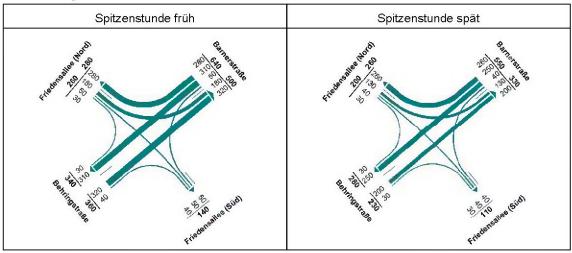
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

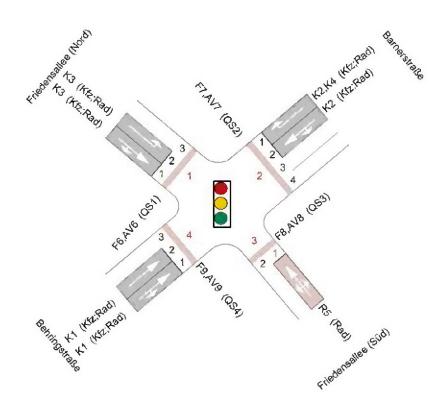

Zuf	Fstr.Nr.	Symbol	5GR	t: [s]	ta [s]	ts [s]	fA	q (Kfz/h)	m (Kfz/U)	ta [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,99 [Kfz]	L: [m]	QSV
	1	2	К2	42	43	48	0,478	330	8,250	1,949	1847	х								57,961	
2	2	~	K2	42	43	48	0,570	690	17,250	1,800	2000	-	28	1110	0,919	64,923	14,630	37,657	48,035	288,210	D
	3	5	K2	42	43	48	0.478	80	2,000	1,935	1860	-	8	312	0,256	34,800	0,195	1,934	4,286	25,716	В
3	1	+	K4	27	28	63	0,311	250	6,250	2,080	1731	-	8	318	0,786	64,872	2,636	8,598	13,557	88,093	D
	2	٠	K1	44	45	46	0,500	90	2,250	1,935	1860	-	5	219	0,411	43,498	0,408	2,494	5,165	30,990	С
4	1	-5	K1	44	45	46	0,500	520	13,000	1,857	1938	-	24	969	0,537	18,043	0,717	9,603	14,844	91,736	A
	1	7	КЗ	22	23	68	0,287	330	8,250	1,936	1860	-	13	533	0,844	61,150	4,584	15,169	21,756	131,450	D
1	2	10	К3	22	23	58	0,256	120	3,000	1,958	1839	х								37,640	
	Knotenpu	ınktssum	men:					2410						3461							
	Gewichte	te Mittelw	rerte:												0,768	52,298					


17 Barnerstraße / Friedensallee (LSA 617)

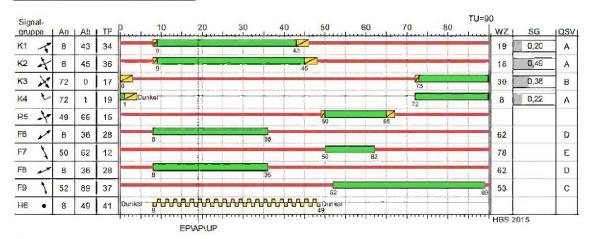
17.1 Barnerstraße / Friedensallee – Knotenstrombelastungen


Analyse (Stichprobe VZ 26.06.2018)

Entwicklungsstufe 1

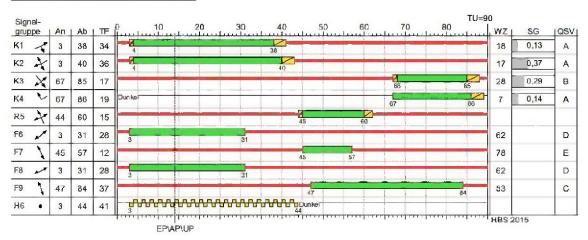


Entwicklungsstufe 2



17.2 Barnerstraße / Friedensallee – Knotenpunktgeometrie Bestand

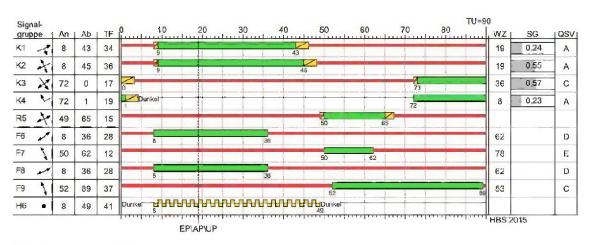
Analyse – Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	†F [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>17.K	n∈ [Kfz/U]	C [Kfz/h]	X	tw [5]	Nge [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	2	V	КЗ	17	18	73	0,200	130	3,250	2,003	1797	х								38,036	
1	1	×	К3	17	18	73	0,260	50	1,250	1,881	1913	-	12	475	0,379	30,034	0,356	4,050	7,454	46,424	В
	1	V	K2, K4	55	56	35	0,622	240	6,000	2,009	1792	-	28	1115	0,215	7,922	0,155	2,773	5,589	34,808	А
2	2	K	K2	36	37	54	0,411	330	8,250	1,887	1908	-	17	680	0,485	25,565	0,568	6,990	11,461	71,379	В
	2	1	K1	34	35	56	0,389	152	3,800	1,870	1925		19	750	0,203	18,931	0,144	2,665	5,426	33,825	Α
4	1	X	К1	34	35	56	0,389	148	3,700	1,902	1892	~	18	735	0,201	18,920	0,142	2,594	5,318	33,025	А
	Knoten	punktssui	mmen:					1050						3755							
	Gewich	tete Mitte	lwerte:												0,324	20,401					

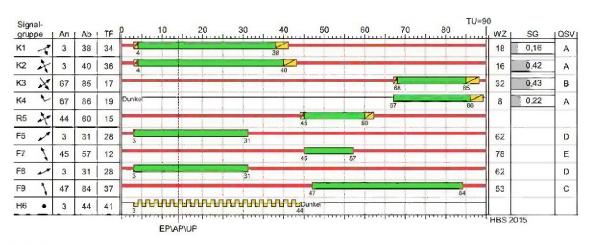
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95> лк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NM6,95 [Kfz]	L _x [m]	QSV
	2	V	КЗ	17	18	73	0,200	100	2,500	2,009	1792	х								30,679	
1	1	×	К3	17	18	73	0,261	40	1,000	1,868	1928	-	12	477	0,294	28,414	0,238	3,039	5,987	36,820	В
	1	V	K2, K4	55	56	35	0,622	160	4,000	2,009	1792	-	28	1115	0,143	7,358	0,093	1,753	3,992	24,862	Α
2	2	K	K2	36	37	54	0,411	260	6,500	1,890	1905	-	16	706	0,368	22,348	0,339	5,074	8,884	55,330	В
	2	1	KT	34	35	56	0,389	96	2,400	1,870	1925	-	19	750	0,128	18,074	0,082	1,625	3,781	23,571	Α
4	1	1	K1	34	35	56	0,389	94	2,350	1,901	1893	-	18	735	0,128	18,082	0,082	1,593	3,728	23,151	A
	Knoten	punktssur	mmen:					750						3783							
	Gewich	tete Mitte	werte:												0,245	19,201					

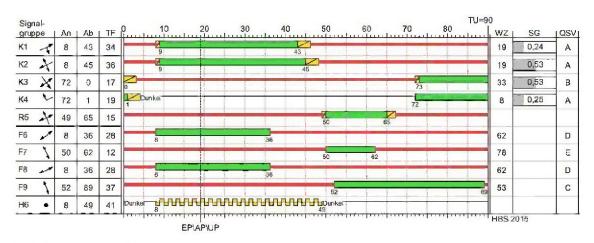
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	gs [Kfz/h]	Nмқэз>пк	πε (Kfz/U)	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L _x [m]	QSV
	2	V	К 3	17	18	73	0,200	200	5,000	2,001	1799	х								56,810	
1	1	>	K3	17	18	73	0,250	60	1,500	1,890	1904	-	11	455	0,571	36,095	0,830	6,517	10,834	67,474	С
	1	*	K2, K4	55	56	35	0,622	260	6,500	2,009	1792	-	28	1115	0,233	8,075	0,172	3,045	5,996	37,343	A
2	2	1	K2	36	37	54	0,411	370	9,250	1,885	1910		17	677	0,547	27,267	0,748	8,158	12,989	80,895	В
	2	1	K1	34	35	56	0,389	182	4,550	1,867	1928		19	750	0,243	19,427	0,182	3,252	6,302	39,211	А
4	1	1	K1	34	35	56	0,389	178	4,450	1,900	1895	-	1.8	737	0,242	19,429	0,181	3,183	6,200	38,614	Α
	Knoten	punktssui	mmen:					1250						3734							
	Gewich	tete Mitte	lwerte:												0,399	22,854					

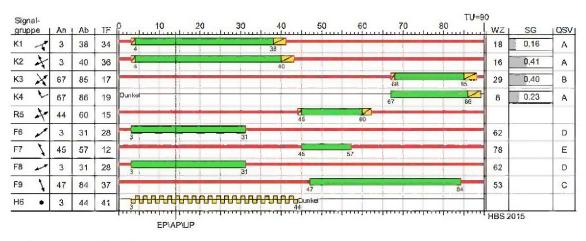
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	cps [Kfz/h]	Nмs.95>лк	nc [Kfz/U]	C [Kfz/h]	ĸ	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L _x [m]	QSV
	2	√ #	КЗ	17	18	73	0,200	150	3,750	2,003	1797	x								43,141	
1	1	>	КЗ	17	18	73	0,254	50	1,250	1,881	1914	-	12	463	0,432	31,629	0,450	4,640	8,283	50,940	В
	1	*	K2, K4	55	56	35	0,622	250	6,250	2,005	1796	-	28	1117	0,224	7,996	0,163	2,908	5,792	36,003	Α
2	2	1	K2	36	37	54	0,411	300	7,500	1,887	1908	-	18	707	0,424	23,342	0,435	6,033	10,187	63,445	В
	2	1	K1	34	35	56	0,389	116	2,900	1,870	1925	-	19	750	0,155	18,371	0,103	1,989	4,3/4	27,268	А
4	1	4	K1	34	35	56	0,389	114	2,850	1,896	1899	*	18	738	0,154	18,368	0,102	1,954	4,318	26,841	А
	Knoten	punktssui	nmen:					980						3775							
	Gewich	tete Mitte	lwerte:												0,311	19,951					

Entwicklungsstufe 2 - Spitzenstunde früh

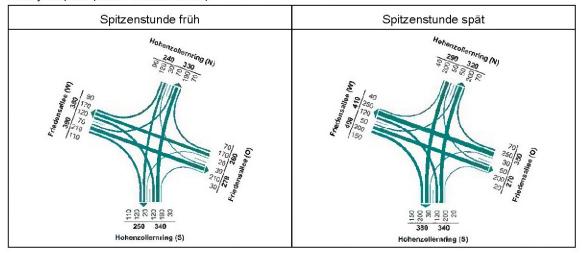


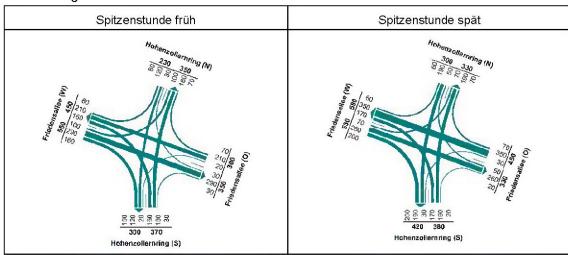
A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [5]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N=5.95>nk	nc [Kfz/U]	C [Kfz/h]	x	[s]	NGE [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	2	V	К3	17	18	73	0,200	180	4,500	1,999	1801	х								51,016	
1	1	×	КЗ	17	18	73	0,266	80	2,000	1,884	1910	-	12	489	0,532	33,371	0,697	6,254	10,483	64,785	В
	1	V	K2, K4	55	56	35	0,622	290	7,000	2,009	1792	-	28	1115	0,251	8,236	0,191	3,327	6,412	39,934	А
2	2	1	K2	36	37	54	0,411	360	9,000	1,883	1912	-	17	675	0,533	26,952	0,703	7,875	12,621	78,452	В
	2	10	K1	34	35	56	0,389	182	4,550	1,867	1928	-	19	750	0,243	19,427	0,182	3,252	6,302	39,211	Α
4	1	1	K1	34	35	56	0,389	178	4,450	1,900	1895	-	18	737	0,242	19,429	0,181	3,183	6,200	38,614	А
	Knoten	punktssu	mmen;					1260						3766							
	Gewich	tete Mitte	lwerte:												0,387	21,968					

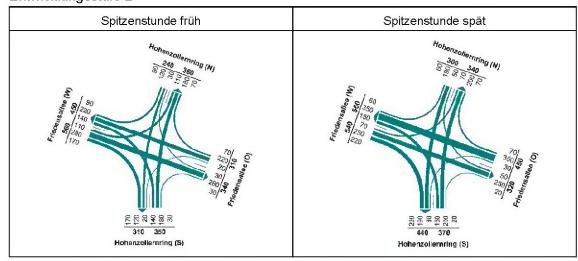
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

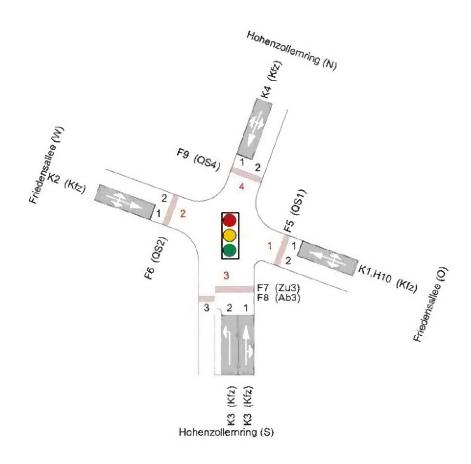

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	tB [s/Kfz]	qs [Kfz/h]	Ŋмs,95>дк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Nise [Kfz]	N _{MS} [Kfz]	NMS.95 [Kfz]	Lx [m]	Q5V
	2	V	КЗ	17	18	73	0,200	130	3,250	2,003	1797	к								38,036	
1	1	×	К3	17	18	73	0,274	70	1,750	1,877	1918	-	13	504	0,397	29,370	0,386	4,459	8,030	49,095	В
-	1	~	K2, K4	55	56	35	0,622	260	6,500	2,009	1792	-	28	1115	0,233	8,075	0,172	3,045	5,996	37,343	Α
2	2	1	K2	36	37	54	0,411	290	7,250	1,885	1910	-	18	705	0,411	23,219	0,411	5,804	9,878	61,402	В
	2	/	K1	34	35	56	0,389	116	2,900	1,870	1925	-	19	750	0,155	18,371	0,103	1,989	4,374	27,268	Α
4	1	X	K1	34	35	56	0,389	114	2,850	1,896	1899	-	18	738	0,154	18,368	0,102	1,954	4,318	26,841	Α
	Knoten	punktssur	nmen:					980						3812							
	Gewich	tete Mitte	lwerte;												0,301	19,318					


18 Friedensallee / Hohenzollernring (LSA 1004)

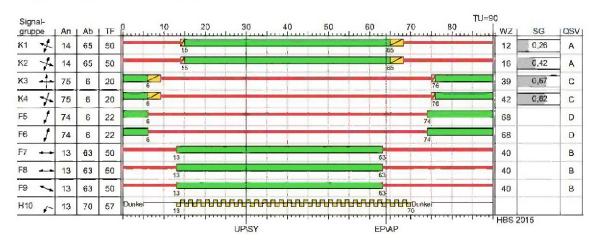
18.1 Friedensallee / Hohenzollernring – Knotenstrombelastungen

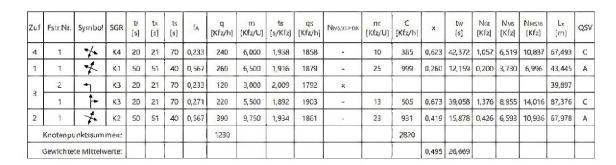

Analyse (Stichprobe VZ 03.07.2018)

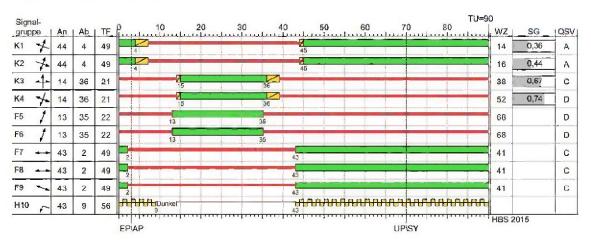
Entwicklungsstufe 1

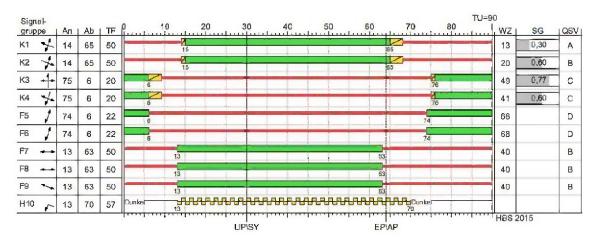


Entwicklungsstufe 2

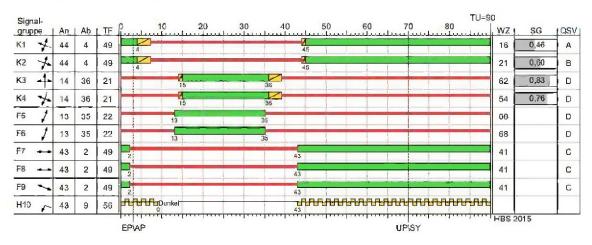



18.2 Friedensallee / Hohenzollernring – Knotenpunktgeometrie Bestand

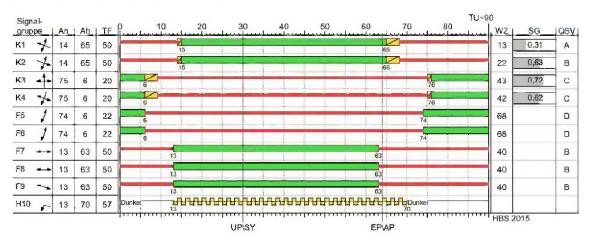

Analyse - Spitzenstunde früh


Analyse – Spitzenstunde spät

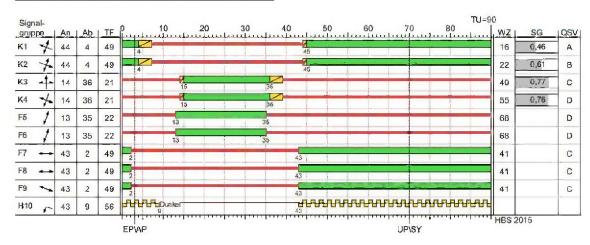
Zuf	Fstr.Nr.	Symbol	SGR	t _F	tu [5]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N M5,95 > ∏K	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Ngr [Kfz]	N _{MS} [Kfz]	NM5,95 [Kfz]	£x [m]	QSV
4	1	+	K4	21	22	69	0,244	290	7,250	1,914	1881	-	10	392	0,740	51,720	1,999	8,786	13,799	85,940	D
1	1	*	K1	49	50	41	0,556	350	8,750	1,906	1889	-	24	972	0,360	14,205	0,327	5,537	9,517	59,158	Α
	2	•	K3	21	22	69	0,244	120	3,000	2,009	1792	х								40,258	
3	1	1	К3	21	22	69	0,273	220	5,500	1,886	1909	-	13	510	0,667	38,488	1,333	8,888	13,930	87,007	С
2	1	4	K2	49	50	41	0,556	400	10,000	1,941	1854	-	23	920	0,435	16,364	0,457	6,884	11,321	70,507	Α
	Knotenpu	ınktssumi	men:					1380						2794							
	Gewichte	te Mittelw	erte:												0,537	28,697					


Entwicklungsstufe 1 – Spitzenstunde früh

Żuf	Fstr.Nr.	Symbol	SGR	tr [5]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	N MS,95 > n x	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _M s [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
4	1	4	K4	20	21	70	0,233	230	5,750	1,938	1857	-	10	385	0,597	41,022	0,934	6,137	10,327	64,317	C
1	1	*	K1	50	51	40	0,567	300	7,500	1,910	1885	-	25	987	0,304	13,044	0,251	4,497	8,083	50,244	A
	2	47	K3	20	21	70	0,233	160	4,000	2,009	1792	х								53,218	
3	1	+	КЗ	20	21	70	0,260	210	5,250	1,891	1903		12	482	0,768	49,059	2,446	10,999	16,608	103,435	C
2	1	4	K2	50	51	40	0,567	550	13,750	1,937	1858	-	23	912	0,603	20,407	0,974	10,916	16,504	102,589	В
	Knotenpu	ınktssumi	men:			ı		1450						2766							
	Gewichte	te Mittelw	verte:												0,582	29,465					

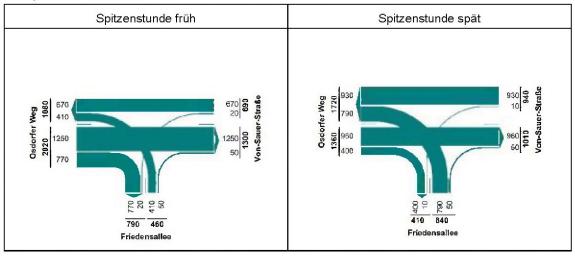

Entwicklungsstufe 1 - Spitzenstunde spät

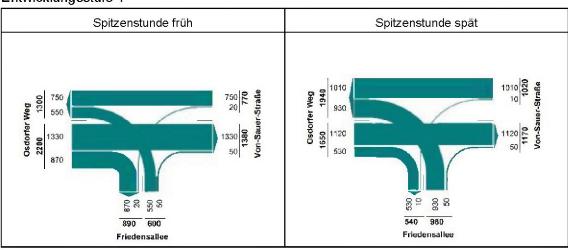
Zuf	Fstr,Nr,	Symbol	SGR	tr [s]	ta [5]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
4	1	*	K4	21	22	69	0,244	300	7,500	1,920	1875	-	10	396	0,758	53,747	2,244	9,288	14,442	89,771	D
1	1	1	K1	49	50	41	0,556	450	11,250	1,897	1898	-	24	972	0,463	15,912	0,517	7,702	12,396	77,054	Α
	2	•	КЗ	21	22	69	0,244	170	4,250	2,003	1797	A								60,877	
3	1	-	КЗ	21	22	69	0,247	210	5,250	1,883	1912	-	12	460	0,826	61,724	3,791	12,778	18,824	117,349	D
2	1	1	K2	49	50	41	0,556	530	13,250	1,943	1853		22	882	0,601	21,246	0,965	10,690	16,220	101,018	В
	Knotenpu	nktssum	men:					1660						2710							
	Gewichte	te Mittelw	verte:												0,643	34,940			-		


Entwicklungsstufe 2 - Spitzenstunde früh

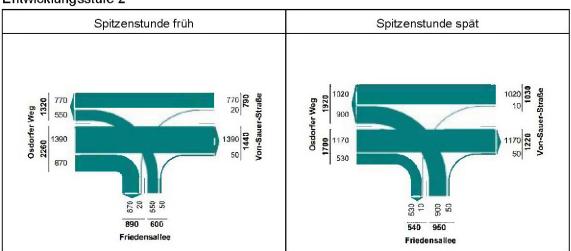
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NM5,95>nk	nc [Kfz/Ū]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [K[z]	Nм5,95 [Kfz]	Lı [m]	QSV
4	1	*	K4	20	21	70	0,233	240	5,000	1,938	1858	-	10	387	0,620	42,099	1,042	6,498	10,809	67,318	С
1	1	1	К1	50	51	40	0,567	310	7,750	1,906	1889	-	25	991	0,313	13,102	0,262	4,667	8,321	51,623	Α
	2	47	K.3	20	Z1	70	0.233	140	3,500	2,009	1792	x								46,473	
3	1	+	K3	20	21	70	0,263	210	5,250	1,891	1903	-	12	489	0,716	43,011	1,752	9,697	14,964	93, 196	C
2	1	4	K2	50	51	40	0,567	560	14,000	1,946	1850	-	22	895	0,626	21,578	1,091	11,455	17,179	106,991	В
	Knotenpi	inktssumi	men:					1460						2762							
	Gewichte	te Mittelw	erte:												0,580	28,290					

Entwicklungsstufe 2 - Spitzenstunde spät

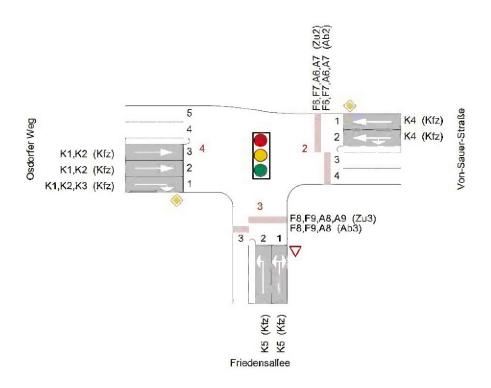

Zuf	Estr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	tB [s/Kfz]	qs [Kfz/h]	Nмs,95≻пк	nc [Kfz/U]	C [Kfz/h]	к	tvv [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS.95 [Kfz]	Lx [m]	QSV
4	1	+	K4	21	22	69	0,244	300	7,500	1,920	1875	-	10	393	0,763	54,677	2,318	9,374	14,552	90,455	D
1	1	*	К1	49	50	41	0,556	450	11,250	1,897	1898	-	24	969	0,464	16,033	0,519	7,730	12,432	77,277	A
	2	4	К3	21	22	69	0,244	150	3,750	2,003	1797	х								51,444	
3	1	+	КЗ	21	22	69	0,258	220	5,500	1,886	1909	-	12	481	0,769	49,341	2,463	11,025	16,641	103,940	С
2	1	-4.	KZ	49	50	41	0,556	540	13,500	1,946	1850	*	22	883	0,612	21,533	1,018	10,989	16,595	103, 155	В
	Knotenpu	ınktssumi	men:					1660						2726							
	Gewichte	te Mittelw	erte:												0,634	32,230					


19 Von-Sauer-Straße / Friedensallee (LSA 1212)

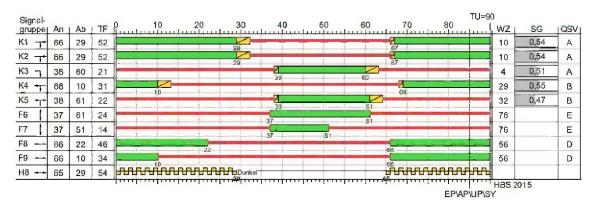
19.1 Von-Sauer-Straße / Friedensallee – Knotenstrombelastungen


Analyse (VZ 21.02.2018)

Entwicklungsstufe 1

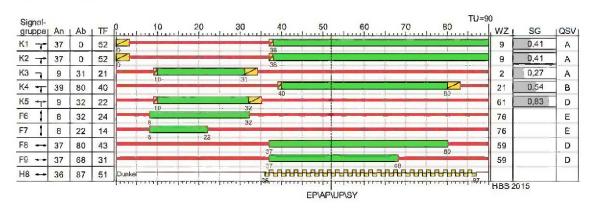


Entwicklungsstufe 2



19.2 Von-Sauer-Straße / Friedensallee – Knotenpunktgeometrie Bestand

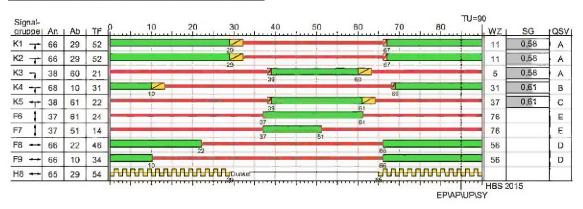
Analyse – Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr,Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fA	q [Kfz/ħ]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95> nк	nc [Kfz/U]	C [Kfz/h]	ж	tw [s]	Nee [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	-	K4	31	32	59	0,356	371	9,275	1,888	1907	-	17	680	0,546	27,110	0,745	8,159	12,990	81,759	В
2	2	4	K4	31	32	59	0,356	319	7,975	1,907	1888	-	15	584	0,546	30,433	0,744	7,373	11,965	75,236	В
	2	•	K5	22	23	68	0,256	231	5,775	1,858	1938	-	12	496	0,466	32,072	0,522	5,401	9,331	57,778	В
3	1	47*	K5	22	23	68	0,256	229	5,725	1,883	1911	-	12	490	0,467	32,141	0,524	5,362	9,278	57,561	В
	3	→	K1, K2	52	53	38	0,589	625	15,625	1,845	1951	-	29	1149	0,544	13,507	0,741	10,191	15,590	95,879	Α
4	2	-	K1, K2	52	53	38	0,589	625	15,625	1,845	1951	-	29	1149	0,544	13,507	0,741	10,191	15,590	95,879	Α
	1	7	K1, K2, K3	73	74	17	0,822	770	19,250	1,972	1826	(x)	38	1501	0,513	4,012	0,645	6,570	10,905	66,673	Α
	Kno	tenpunkt	ssummen:					3170						6049							
	Gev	vichtete Iv	Nittelwerte:												0,526	17, 195					

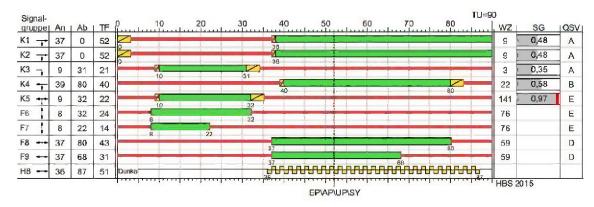
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nм595>nк	nc [Kfz/U]	C [Kfz/h]	×	tw [5]	NGE [Kfz]	N _{MS} [Kfz]	Nivisjas [Kfz]	L _x	QSV
	1	-	K4	40	43	50	0,456	483	12,075	1,820	1978	-	23	902	0,535	20,448	0,710	9,398	14,583	88,460	В
2	2	4	K4	40	41	50	0,456	457	11,425	1,831	1966	-	21	854	0,535	21,769	0,710	9,132	14,243	86,483	В
_	2	*	К5	22	23	60	0,256	422	10,550	1,022	1976	-	13	505	0,834	61,126	4,140	14,120	20,475	124,324	D
3	1	*	K5	22,	23	68	0,256	418	10,450	1,836	1961	-	13	502	0,833	61,042	4,097	13,979	20,302	123,274	D
	3	-	K1, K2	52	53	38	0,589	480	12,000	1,816	1982	-	29	1167	0,411	11,300	0,412	6,919	11.368	68,822	A
4	2	-	K1, K2	52	53	38	0,589	480	12,000	1,816	1982	-	29	1157	0,411	11,300	0,412	6,919	11,358	68,822	A
	1	7	K1, K2, K3	73	74	17	0,822	400	10,000	1,964	1833	-	38	1507	0,265	2,315	0,206	2,482	5,146	31,339	Α
	Kno	tenpunkt	ssummen:					3140						6605							
	Gev	vichtete M	littelwerte:												0,543	25,404					

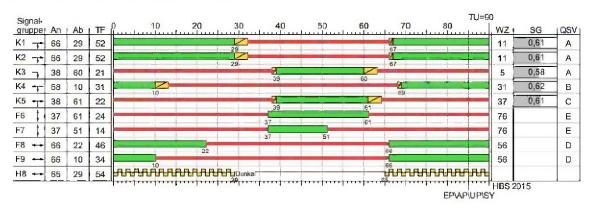
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t# [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nx	nc [Kŕz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{M5} [Kfz]	N _{MS,05} [Kfz]	Lx [m]	QSV
	1	-	K4	31	32	59	0,356	412	10,300	1,885	1910		17	680	0,606	29,012	0,985	9,443	14,640	91,968	8
2	2	*	K4	31	32	59	0,356	358	8,950	1,907	1888	-	15	590	0,607	32,305	0,988	8,584	13,539	85,214	8
-	2	+1	K5	22	23	68	0,256	301	7,525	1,858	1938	-	12	496	0,607	36,634	0,984	7,613	12,279	76,032	C
3	1	*	K5	22	23	68	0,256	299	7,475	1,877	1918	-	12	491	0,609	36,798	0,994	7,583	12,240	75,864	C
	3	-	K1, K2	52	53	38	0,589	665	16,625	1,845	1951	-	29	1149	0,579	14,264	0,871	11,240	16,910	103,996	A
4	2	-	K1, K2	52	53	38	0,589	665	16,625	1,845	1951		29	1149	0,579	14,264	0,871	11,240	16,910	103,996	A
	1	7	K1, K2, K3	73	74	17	0,822	870	21,750	1,974	1824	(x)	37	1499	0,580	4,829	0,876	8,275	13,140	80,417	Α
	Kno	tenpunkt	ssummen:					3570						6054							
	Gev	vichtete M	littelwerte:												0,590	19,249					

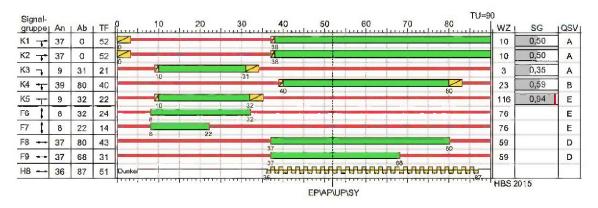
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tx [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N _{MS,95} > n _K	nc [Kfz/U]	C [Kfz/h]	×	(z)	Nee (Kfz)	N _{MS} [Kfz]	Nws.95 [Kfz]	L× [m]	QSV
	1	-	K4	40	41	50	0,456	525	13,125	1,820	1978	-	23	902	0,582	21,644	0,881	10,600	16,106	97,699	В
2	2	4	K4	40	41	50	0,456	495	12,375	1,828	1969	-	21	851	0,582	23,121	0,881	10,271	15,691	95,182	В
	2	•	K5	22	23	68	0,256	492	12,300	1,822	1976	-	13	506	0,972	141,915	15,286	27,469	36,333	220,614	E
3	1	4-	K5	22	23	68	0,256	488	12,200	1,834	1963	-	13	503	0,970	140,286	14,971	27,046	35,841	217,627	E
	3	-	K1, K2	52	53	38	0,589	560	14,000	1,816	1982	-	29	1167	0,480	12,316	0,557	8,579	13,533	81,929	Α
4	2	-	K1, K2	52	53	38	0,589	560	14,000	1,816	1982	-	29	1167	0,480	12,316	0,557	8,579	13,533	81,929	Α
	1	7	K1, K2, K3	73	74	17	0,822	530	13,250	1,966	1831	-	38	1505	0,352	2.762	0.316	3,635	6,859	41,812	A
	Kno	tenpunkt	ssummen:					3650						5601							
	Gev	richtete M	littelwerte:												0,622	48,314					

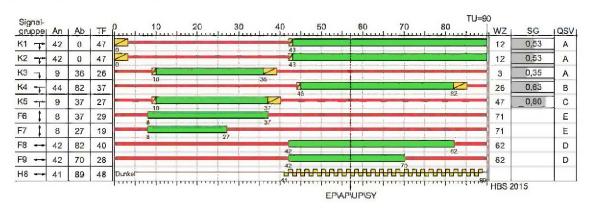
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [2]	tA [s]	ts [s]	fa.	q [Kfz/h]	m [Kf2/U]	te [s/Kfz]	qs [Kfz/h]	Naus, as > n x	nc [Kf2/U]	C [Kfz/h]	х	wt [a]	Ngε [Kf2]	N _{MS} [Kfz]	N MS,95 [Kfz]	£x [m]	QSV
1	1	-	K4	31	32	59	0,356	422	10,550	1,886	1909	-	17	680	0,621	29,572	1,060	9,783	15,073	94,779	В
2	2	+	K4	31	32	59	0,356	368	9,200	1,903	1891		15	592	0,622	32,831	1,062	8,910	13,958	87,684	В
_	2	+	K5	22,	23	68	0,256	301	7,525	1,858	1938	-	12	496	0,607	36,634	0,984	7,613	12,279	76,032	С
3	1	++	K5	22	23	68	0,256	299	7,475	1,877	1918	-	12	491	0,609	36,798	0,994	7,583	12,240	75,864	C
	3	-	K1, K2	52	53	38	0,589	695	17,375	1.847	1949		29	1149	0,605	14,899	0,986	12,081	17,959	110,556	A
4	2	+	K1, K2	52	53	38	0,589	695	17,375	1,847	1949	-	29	1149	0.605	14,899	0.986	12,081	17,959	110,556	A
	1	7	K1, K2, K3	73	74	17	0,822	870	21,750	1,974	1824	(x)	37	1499	0,580	4,829	0,876	8,275	13,140	80,417	A
	Kno	tenpunkt	ssummen:					3650						6056							
	Gew	richtete M	fittelwerte:												0,603	19,589					

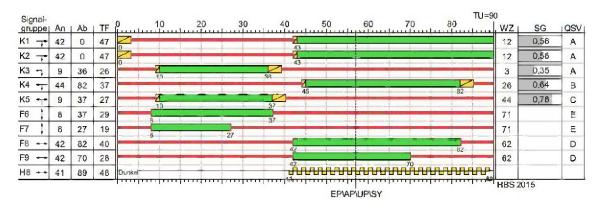
Entwicklungsstufe 2 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr. Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N _{MS,95} >n _K	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Nge (Kfz]	N _{MS} [Kfz]	Ми5,95 [Kfz]	Lx [m]	QSV
_	1	-	K4	40	41	50	0,456	530	13,250	1,820	1978	-	23	902	0,588	21,816	0,907	10,756	16,303	98,894	В
2	2	•	K4	40	41	50	0,456	500	12,500	1,828	1969	-	21	850	0,588	23,299	0,906	10,424	15,884	96,352	В
_	2	*1	K5	22	23	68	0,256	476	11,900	1,823	1975	-	13	506	0,941	115,785	11,662	23,325	31,493	191,414	E
3	1	*_	K5	22	23	68	0,256	474	11,850	1,834	1963	-	13	503	0,942	116,749	11,726	23,344	31,515	191,359	E
	3	-	K1, K2	52	53	38	0,589	585	14,625	1,818	1980	-	29	1156	0,502	12,689	0,614	9,148	14,253	86,434	Α
4	2	-	K1, K2	52	53	38	0,589	585	14,625	1,818	1980	-	29	1166	0,502	12,689	0,614	9,148	14,253	86,434	A
	1	7	K1, K2, K3	73	74	17	0,822	530	13,250	1,966	1831	-	38	1505	0,352	2,762	0,316	3,635	6,859	41,812	A
	Kno	tenpunkt	ssummen:					3680						6598							
	Gev	vichtete M	littelwerte:												0,618	40,754					

19.4 Von-Sauer-Straße / Friedensallee – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Entwicklungsstufe 1 - Spitzenstunde spät

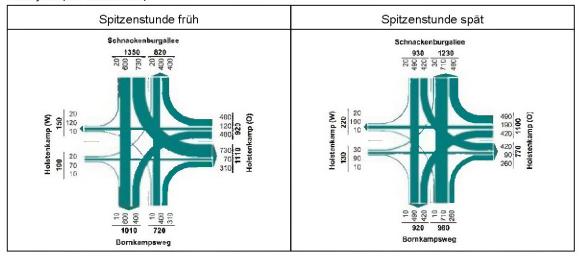

A-Signalgruppen ausgeblendet!

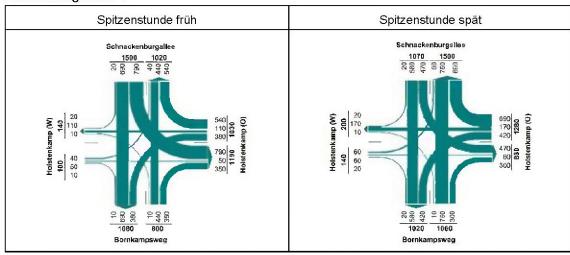
Zuf	Fstr,Nr.	Symbol	SGR	[s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	tı [s/Kfz]	œs {Kfz/h}	Nms,95> nk	nc [Kfz/U]	C {Kfz/h}	x	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS96 [Ktz]	Lx [m]	QSV
	1	-	K4	37	38	53	0,422	524	13,100	1,820	1978	-	21	835	0,628	25,202	1,101	11,403	17,114	103,814	В
2	2	-	K4	37	38	53	0,422	496	12,400	1,828	1969	-	20	790	0,628	26,594	1,100	11,028	16,644	100,963	В
,	2	4	K5	27	28	63	0,311	492	12,300	1,822	1976	-	15	615	0,800	47,117	3,191	14,473	20,907	126,947	C
3	1	*	K5	27	28	63	0,311	488	12,200	1,834	1963		15	611	0,799	47,062	3,163	14,348	20,754	126,018	C
	3	-	K1, K2	47	48	43	0,533	560	14,000	1,816	1982		26	1056	0,530	16,047	0,695	9,807	15,103	91,434	А
4	2	-	K1, K2	47	48	43	0,533	560	14,000	1,816	1982	-	26	1056	0,530	16,047	0,695	9,807	15,103	91,434	Α
	1	7	K1, K2, K3	73	74	17	0,822	530	13,250	1,966	1831	-	38	1505	0,352	2,762	0,316	3,635	6,859	41,812	Α
	Kno	tenpunkt	ssumment					3650						6468							
	Gew	vichtete M	tittelwerte:												0,604	25,200					

Von-Sauer-Straße / Friedensallee – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

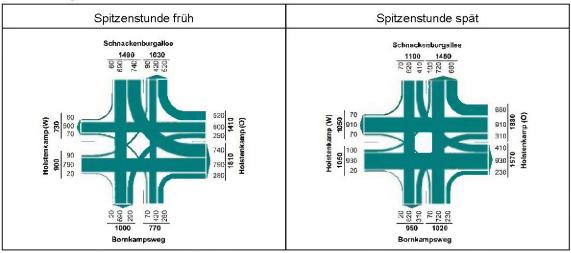
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

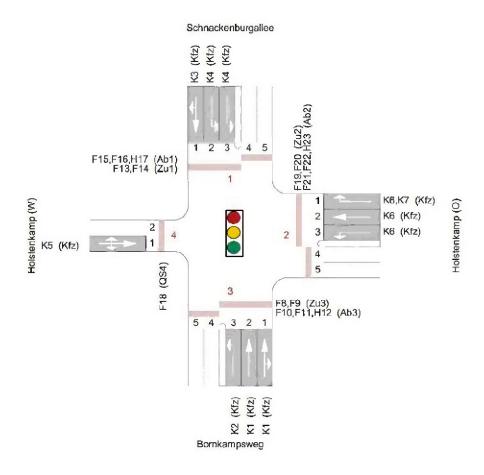

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kf ₂ /U]	ts [s/Kfz]	qs [Kfz/h]	Niws,95> nik	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS95 [Kfz]	L _x [m]	QSV
	1	-	K4	37	38	53	0,422	530	13,250	1,820	1978		21	835	0,635	25,456	1,141	11,603	17,364	105,330	В
2	2	-	K4	37	38	53	0,422	500	12,500	1,828	1969		20	789	0,634	26,824	1,134	11,174	16,827	102,073	В
_	2	4	K5	27	28	63	0,311	477	11,925	1,823	1975	-	15	615	0,776	43,653	2,647	13,477	19,686	119,652	C
3	1	414	K5	27	28	63	0,311	473	11,825	1,834	1963	^	15	611	0,774	43,495	2,607	13,337	19,513	118,483	С
	3		K1, K2	47	48	43	0,533	585	14,625	1,818	1980	-	26	1055	0,555	16,595	0.779	10,478	15,952	96,669	Α
4	2	-	K1, K2	47	48	43	0,533	585	14,625	1,818	1980	-	26	1055	0,555	16,595	0,779	10,478	15,952	96,669	А
	1		K1, K2, K3	73	74	17	0,822	530	13,250	1,966	1831		38	1505	0,352	2,762	0,316	3,635	6,859	41,812	Α
	Kno	otenpunkt	ssummen					3680						6465							
	Gev	vichtete N	fittelwerte:												0,605	24,234					


20 Bornkampsweg / Holstenkamp (LSA 1148)

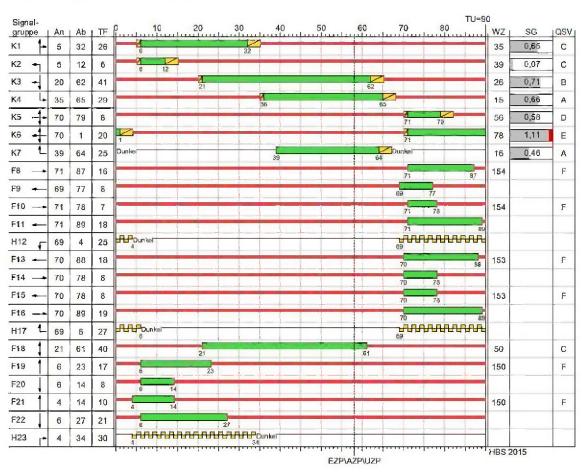
20.1 Bornkampsweg / Holstenkamp – Knotenstrombelastungen


Analyse (VZ 18.04.2013)

Entwicklungsstufe 1

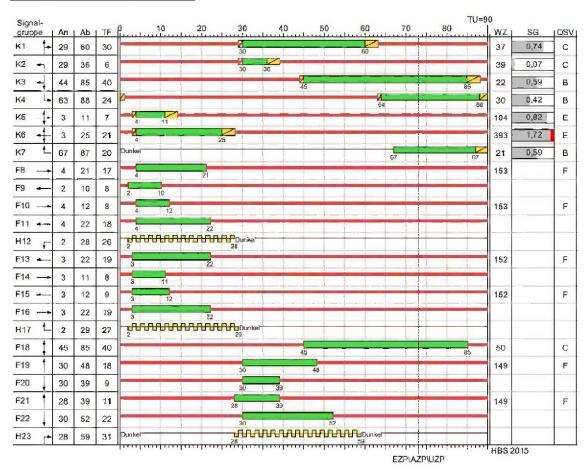


Entwicklungsstufe 2


20.2 Bornkampsweg / Holstenkamp – Knotenpunktgeometrie Bestand

20.3 Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Bestand

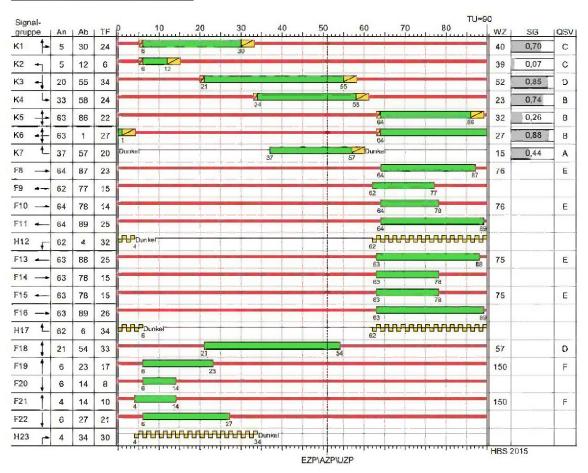
Analyse - Spitzenstunde früh



2uf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nus,85>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	N _{M5,95} [Kfz]	L _x [m]	QSV
	1	4	K3	41	42	49	0,467	620	15,500	1,930	1866	-	22	871	0,712	26,385	1,750	14,127	20,484	130,770	В
1	2	L,	K4	29	30	61	0,620	365	9,125	2,022	1780		28	1703	0,662	15,330	1,320	13,083	19,200	120,384	A
	3	L.	K4	29	30	61	0,333	365	9,125	2,022	1780	х								85,736	
	1	<u>+</u>	K6, K7	45	46	45	0,511	400	10,000	2,096	1718	-	22	878	0,456	16,084	0,501	6,877	11,312	73,505	A
2	2	-	K6	20	21	70	0,257	120	3,000	1,901	1894	_	12	469	1, 109	282,626	32,464	45,464	56,867	360,309	F
	3	F	K6	20	21	70	0,233	400	10,000	1,993	1806	×								279,256	
	3	•	K2	6	7	84	0,078	10	0,250	1,935	1860	-	4	145	0,069	39,479	0,041	0,273	1,157	6,942	С
3	2	1	K1	26	27	64	0,300	358	8,950	1,944	1852	-	14	556	0,644	35,003	1,185	8,950	14,010	90,785	С
	1	1+	Kī	26	27	64	0,300	352	8,800	1,980	1818	-	14	545	0,646	35,251	1,196	8,837	13,865	85,436	C
4	1	+	K5	8	9	82	0,100	100	2,500	1,966	1831	-	4	173	0,578	56,436	0,835	3,230	6,270	39,651	D
	Knoten	punktssui	nmen:					3090						4740							
	Gewich	tete Mitte	lwerte:												0,712	68,585					

Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Bestand

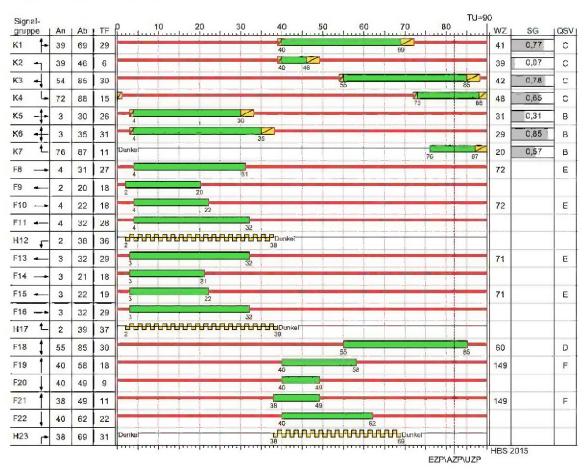
Analyse - Spitzenstunde spät



Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	[z]	[5]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95> nx	nc [Kfz/Ll]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nes [Kfz]	NMS.95 [Kfz]	Lx {m}	QSV
	1	-	КЗ	40	41	50	0,456	510	12,750	1,901	1894	-	22	854	0,590	22,032	0,915	10,404	15,859	99,341	В
1	2	L,	K4	24	25	66	0,278	210	5,250	1,991	1808	-	13	502	0,418	29,575	0,423	4,712	8,383	51,757	В
	3	L.	K4	24	25	56	0,278	210	5,250	1,991	1808	-	13	502	0,418	29,575	0,423	4,712	8,383	51,757	В
	1	Ł	K6, K7	41	42	49	0,467	490	12,250	2,007	1794	-	21	838	0,585	21,425	0,893	9,876	15,191	94,518	В
2	2	-	K6	21	22	69	0,188	190	4,750	1,850	1945	-	9	354	1,723	1349,950	129,152	144,402	164,725	1016,024	F
	3		K6	21	22	69	0,244	420	10,500	1,945	1851	×								702,628	
	3	*	K2	6	7	84	0,078	10	0,250	1,935	1860	-	4	145	0,069	39,479	0,041	0,273	1,157	6,942	С
3	2	1	K1	30	31	60	0,344	491	12,275	1,868	1927	-	17	663	0,741	37,295	2,082	12,889	18,951	118,089	С
	1	1+	К1	30	31	60	0,344	479	11,975	1,917	1878	-	16	646	0,741	37,576	2,079	12,622	18,631	113,127	С
4	1	1	К5	7	8	83	0,089	130	3,250	1,956	1840	-	4	159	0,818	103,766	2,797	5,992	10,132	65,385	Е
	Knoten	punktssur	nmen:					3140						4673							
	Gewich	tete Mitte	lwerte:												0,841	289,115					

20.4 Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

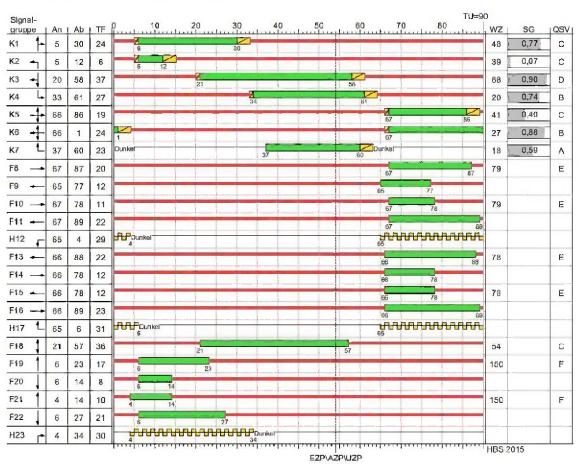
Analyse - Spitzenstunde früh



Zuf	Fstr.Nr.	Symbol	SGR	tr [\$]	ta [s]	ts [s]	f _A	q [Kf2/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NMS,95>DK	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kf ₂]	N _{MS.95} [Kfz]	L _K [m]	QSV
	1	+	КЗ	34	35	56	0,389	620	15,500	1,930	1866	-	18	726	0,854	52,107	5,435	19,617	27,108	173,057	D
1	2	4	K4	24	25	66	0,556	365	9,125	2,022	1780		25	990	0,737	22,532	2,063	15,792	22,513	141, 157	В
	3	Ļ	K4	24	25	66	0,278	365	9,125	2,022	1780	x								98,464	
	1	t_	K6, K7	47	48	43	0,533	400	10,000	2,096	1718	-	23	916	0,437	14,606	0,461	6,549	10,877	70,679	А
2	2	+	K6	27	28	63	0,324	120	3,000	1,901	1894	4-	15	591	0,880	69,998	6,769	19,062	26,446	167,562	D
	3	·-	K6	27	28	63	0,311	400	10,000	1,993	1806	к								135,880	
	3	*	K2	6	7	84	0,078	10	0,250	1,935	1860	-	4	145	0,069	39,479	0,041	0,273	1,157	6,942	С
3	2	1	K1	24	25	66	0,278	358	8,950	1,944	1852	-	13	515	0,695	39,938	1,554	9,563	14,793	95,859	С
	1	+	K1	24	25	66	0,278	352	8,800	1,980	1818	-	13	505	0,697	40,294	1,571	9,452	14,652	90,286	С
4	1	1	K5	22	23	68	0,256	100	2,500	1,966	1831	-	10	382	0,262	31,691	0,202	2,294	4,856	30,709	В
	Knoten	punktssu	mmen:					3090						4770							
	Gewich	tete Mitte	lwerte:												0,719	39,819					

Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

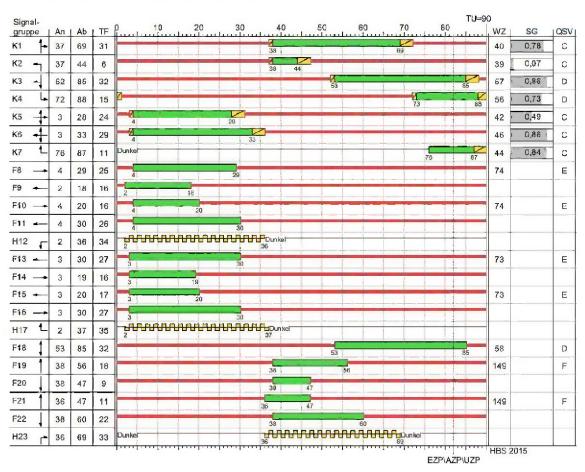
Analyse – Spitzenstunde spät



Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	[s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NMS96>TIK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nœ [Kfz]	Nas [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
П	1	+	K3	30	31	60	0,344	510	12,750	1,901	1894	-	16	651	0,783	42,016	2,805	14,252	20,637	129,270	C
1	2	L.	K4	15	16	75	0,178	210	5,250	1,991	1808	-	8	321	0,654	48,139	1,224	5,108	10,288	63,518	С
	3	L.	КЛ	15	16	75	0,178	210	5,250	1,991	1808	-	8	321	0,654	48,139	1,224	5,108	10,288	63,518	С
	1	Ł	K6, K7	42	43	48	0,478	490	12,250	2,007	1794	-	21	858	0,571	20,377	0,837	9,632	14,881	92,590	В
2	2	-	K6	31	32	59	0,381	190	4,750	1,850	1946	-	18	717	0,851	51,875	5,250	19,219	26,633	164,272	D
	3	₹	K6	31	32	59	0,356	420	10,500	1,945	1851	х								121,589	
	3	*1	K2	6	7	84	0,078	10	0,250	1,935	1850	-	4	145	0,069	39,479	0,041	0,273	1, 157	6,942	С
3	2	1	K1	29	30	61	0,333	492	12,300	1,868	1927	-	16	642	0,766	40,720	2,469	13,482	19,592	122,642	С
	1	1+	K1	29	30	61	0,333	478	11,950	1,917	1878	-	16	625	0,765	40,952	2,446	13,141	19,272	117,020	С
4	1	+	K5	26	27	64	0,300	130	3,250	1,956	1840	-	10	418	0,311	31,162	0,259	2,962	5,873	38,480	В
	Knoten	punktssur	mmen:					3140						4698							
	Gewich	tete Mitte	werte:												0,719	40,551					

Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

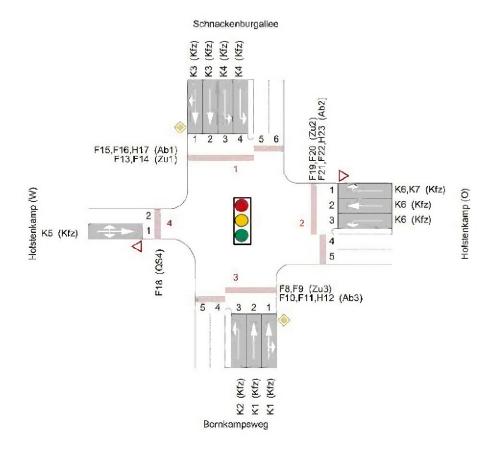
Entwicklungsstufe 1 – Spitzenstunde früh



Zuf	Fstr.Nr.	Symbol	SGR	t= [s]	ta [s]	ts (s)	fA	q [Ktz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Мм 5,95≻пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Not [Kfz]	N _M s [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	+	КЗ	37	38	53	0,422	710	17,750	1,928	1867	-	20	788	0,901	68,448	9,673	26,227	34,888	222,725	D
1	2	+	K4	27	28	63	0,598	395	9,875	2,024	1779	-	27	1063	0,743	20,382	2,154	16,442	23,300	145,231	В
	3	4	K4	27	28	63	0,311	395	9,875	2,624	1779	х								100, 196	
	1	Ł	K6, K7	47	48	43	0,533	540	13,500	2,094	1719		23	916	0,590	17,916	0,916	10,113	15,491	100,568	A
2	2	-	К6	24	25	66	0,306	110	2,750	1,899	1896		14	558	0,878	71,546	6,496	18,121	25,320	160,276	E
	3	Ţ.	K6	24	25	66	0,278	380	9,500	1,993	1806	ж								132,116	
	3	•	K2	6	7	84	0,078	10	0,250	1,935	1860	-	4	145	0,069	39,479	0,041	0,273	1,157	6,942	С
3	2	1	K1	24	25	66	0,278	399	9,975	1,942	1854	-	13	516	0,773	47,669	2,550	11,723	17,514	113,386	С
	1	+	K1	24	25	66	0,278	391	9,775	1,979	1819	-	13	505	0,774	48,160	2,563	11,555	17,304	106,523	С
4	1	+	K5	19	20	71	0,222	100	2,500	2,038	1767	-	6	249	0,402	40,882	0,393	2,670	5,433	34,554	С
	Knoten	punktssu	mmen:	i	i			3430						4740							
	Gewich	tete Mitte	lwerte:												0,766	44,247					

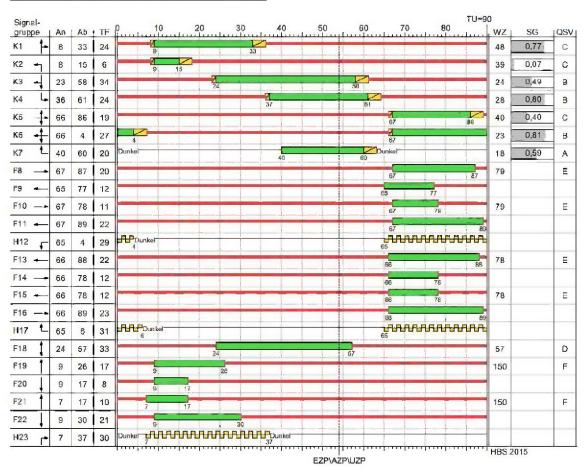
Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Entwicklungsstufe 1 – Spitzenstunde spät


Zuf	Fstr.Nr.	Symbol	SGR	[5]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/LJ]	ts [s/Kfz]	qs [Kfz/h]	Nмs95>пк	nc [Xfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	+	КЗ	32	33	58	0,367	600	15,000	1,898	1897	-	17	696	0,862	56,706	5,864	19,753	27,270	170,819	D
1	2	L.	K4	15	16	75	0,178	235	5,875	1,997	1803	-	8	321	0,732	55,967	1,873	7,426	12,035	74,521	D
	3	-	K4	15	16	75	0,178	235	5,875	1,997	1803	-	8	321	0,732	55,967	1,873	7,426	12,035	74,521	D
	1	1_	K6, K7	40	41	50	0,456	690	17,250	2,007	1794	-	20	818	0,844	43,685	5,007	20,262	27,875	173,438	С
2	2	-	K6	29	30	61	0,365	170	4,250	1,847	1949	^	17	685	0,861	56,817	5,776	19,435	26,891	165,541	D
	3		K6	29	30	61	0,333	420	10,500	1,945	1851	х								126,166	
	3	4	K2	6	7	84	0,078	10	0,250	1,935	1860	-	4	145	0,069	39,479	0,041	0,273	1,157	6,942	С
3	2	1	K1	31	32	59	0,356	532	13,300	1,868	1927	-	17	686	0,776	39,799	2,670	14,505	20,946	130,452	С
	1	1-	K1	31	32	59	0,356	518	12,950	1,920	1875	-	17	668	0,775	40,028	2,645	14,162	20,527	124,640	С
4	1		K5	24	25	66	0,278	140	3,500	1,945	1851	-	7	284	0,493	42,243	0,583	3,787	7,078	42,468	С
Knotenpunktssummen:								3550						4624							
Gewichtete Mittelwerte:															0,799	48,510					

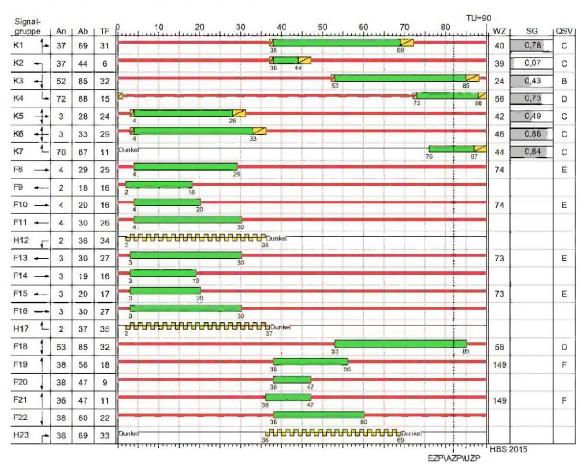
20.5 Bornkampsweg / Holstenkamp – Knotenpunktgeometrie Ausbaumaßnahmen für Entwicklungsstufe 1

Quelle: eigenes Ausbaukonzept


mit zusätzlichen Geradeausfahrstreifen in der Schnackenburgallee

20.6 Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Ausbaumaßnahmen für Entwicklungsstufe 1

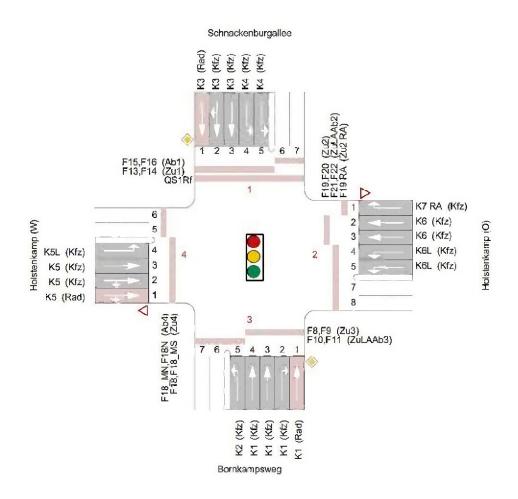
Entwicklungsstufe 1 - Spitzenstunde früh



Zuf	Fstr.Nr.	Symbol	SGR	t= [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	М м5,95>лк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE (Kfz)	Nws [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	-	КЗ	34	35	56	0,389	353	8,825	1,939	1857	-	18	721	0,490	23,657	0,581	7,243	11,795	75,229	В
	2	1	КЗ	34	35 l	56	0,389	357	8,925	1,917	1878	4	18	731	0,488	23,573	0,576	7,307	11,879	75,907	В
1	3	4	K4	24	25	66	0,556	395	9,875	2,024	17/9	1	25	990	0,798	27,888	3,284	19,047	26,428	165,852	В
	4	Ļ	K4	24	25	66	0,278	395	9,875	2,024	1779	×								113,796	
	1	+_	K6, K7	47	48	43	0,533	540	13,500	2,094	1719	-	23	916	0,590	17,916	0,916	10,113	15,491	100,558	A
2	2	-	K6	27	28	63	0,332	110	2,750	1,899	1896	-	15	605	0,810	48,060	3,461	14,654	21,128	133,740	С
	3	F	К6	27	28 1	53	0,311	380	9,500	1,993	1806	×								110,665	
	3	*	K2	6	7	84	0,078	10	0,250	1,935	1860	1	4	145	0,069	39,479	0,041	0,273	1,157	6,942	С
3	2	1	K1	24	25	56	0,278	399	9,975	1,942	1854	4	13	516	0,773	47,669	2,550	11,723	17,514	113,386	Ċ
	1	+	K1	24	25	66	0,278	391	9,775	1,979	1839	-	13	505	0,774	48, 160	2,563	11,555	17,304	106,523	С
4	1	+	K5	19	20	71	0,222	100	2,500	2,038	1767	~	6	253	0,395	40,450	0,381	2,652	5,406	34,382	С
	Knoten	punktssui	nmen:		i			3430						5382							
Gewichtete Mittelwerte:															0,683	33,327					

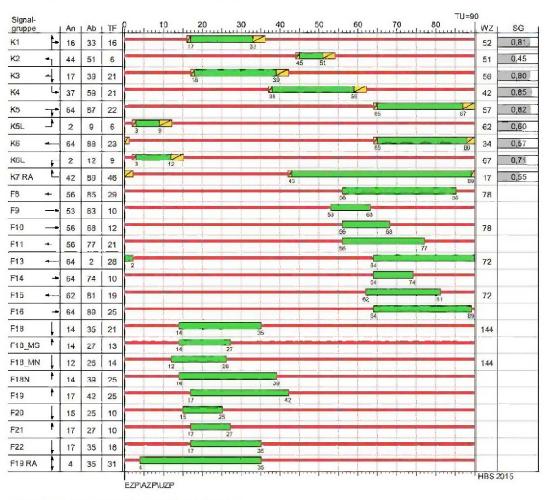
Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Ausbaumaßnahmen für Entwicklungsstufe 1

Entwicklungsstufe 1 – Spitzenstunde spät



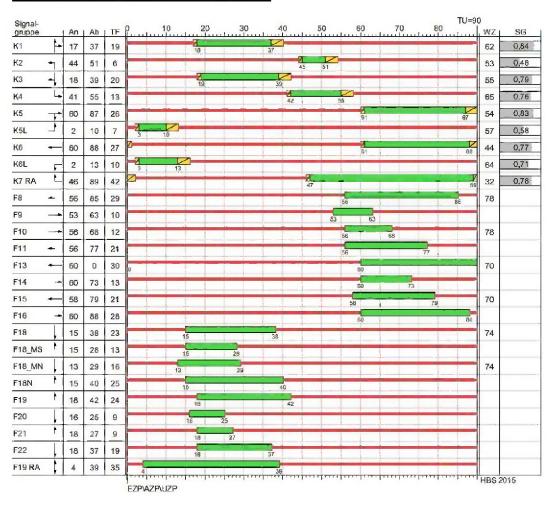
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм595>тк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	-	КЗ	32	33	58	0,367	297	7,425	1,915	1880	-	17	689	0,431	23,765	0,449	6,032	10,186	63,744	В
	2		КЗ	32	33	58	0,367	303	7,575	1,881	1914	-	18	703	0,431	23,718	0,449	6,145	10,337	64,813	В
1	3	-	K4	15	16	75	0,178	235	5,875	1,997	1803	-	8	321	0.732	55,967	1,873	7,426	12,035	74,521	0
	4	l.	K4	15	16	75	0,178	235	5,875	1,997	1803	-	8	321	0,732	55,967	1,873	7,426	12,035	74,521	D
	1	t_	K6, K7	40	41	50	0,456	690	17,250	2,007	1794	-	20	818	0,844	43,685	5,007	20,262	27,875	173,438	С
2	2	+	K6	29	30	61	0,365	170	4,250	1,847	1949	-	17	685	0,861	56,817	5,776	19,435	26,891	165,541	D
	3		K6	29	30	61	0,333	420	10,500	1,945	1851	×								126, 166	
	3	4	K2	6	7	84	0,078	10	0,250	1,935	1860	~	4	145	0,069	39,479	0,041	0,273	1,157	6,942	С
3	2	1	K1	31	32	59	0,356	532	13,300	1,868	1927	1	17	686	0,776	39,799	2,670	14,505	20,946	130,452	С
	1	+	K1	31	32	59	0,356	518	12,950	1,920	1875	*	17	668	0,775	40,028	2,645	14, 162	20,527	124,640	С
4	1	+	K5	24	25	66	0,278	140	3,500	1,945	1851	-	7	284	0,493	42,243	0,583	3,787	7,078	42,468	С
Knotenpunktssummen:								3550						5320							
	Gewich	tete Mitte	lwerte:												0,726	42,938					

20.7 Bornkampsweg / Holstenkamp – Knotenpunktgeometrie Ausbaumaßnahmen für Entwicklungsstufe 2


Quelle: eigenes Ausbaukonzept mit zusätzlichen Fahrstreifen in allen Zufahrten und einer Dreiecksinsel in der östlichen Zufahrt Holstenkamp

20.8 Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Ausbaumaßnahmen für Entwicklungsstufe 2

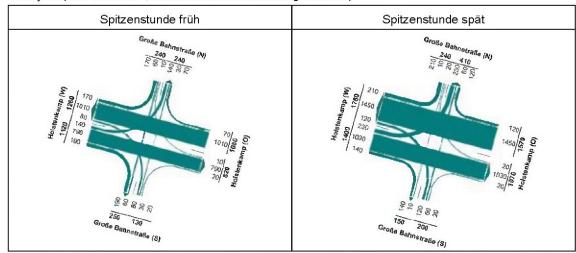
Entwicklungsstufe 2 - Spitzenstunde früh

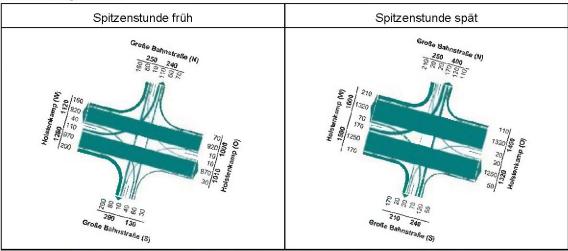

Keine voliständige progressive Signalisierung zw. F20/F22 !!!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/Uļ	ts [s/Kfz]	qs [Kfz/h]	Nмs,9s>пк	nc [Kfz/Li]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	Nws.ss [Kfz]	Lx [m]	QS/
	2	-	К3	21	22	69	0,244	373	9,325	1,891	1904	-	12	464	0,804	56,645	3,177	11,947	17,793	110,815	Đ
1	3		K3	21	22	69	0,244	377	9,425	1,868	1927	-	12	470	0,802	55,974	3,133	11,992	17,849	111,164	D
	4	4	K4	21	22	69	0,488	370	9, 250	2,005	1796	-	22	874	0,847	41,679	5,237	21,383	29,204	181,532	C
	5	+	K4	21	22	69	0,244	370	9, 250	2,005	1796	×								121,057	
	1	_	K7 RA	46	47	44	0,522	520	13,000	1,991	1808	-	24	944	0,551	17,347	0,764	9,487	14,696	90,733	Α
	2	-	К6	23	24	67	0,267	300	7,500	1,827	1970	-	13	527	0,569	34,145	0,825	7,307	11,879	72,343	В
Z	3	-	K6	23	24	67	0,267	300	7,500	1,827	1970	-	13	527	0.569	34,145	0,825	7,307	11,879	72,343	В
	Δ	-	K6L	9	10	81	0,111	145	3,625	1,966	1831	-	5	203	0,714	67,391	1,622	5,122	8,950	54,559	D
	5	Ţ.	K6L	9	10	81	0,111	145	3,625	1,966	1831	-	5	203	0,714	67,391	1,622	5,122	8,950	54,559	D
	5	+	K2	6	7	84	0,078	70	1,750	1,800	2000	-	4	156	0,449	50,673	0,478	2,150	4,630	27,780	D
2	4	•	KI	16	17	74	0,189	210	5,250	1,865	1930	-	9	364	0,577	41,627	0,850	5,629	9,642	59,935	С
3	3	à	K1	16	17	74	0,189	210	5,250	1,865	1930		9	364	0,577	41,627	0,850	5,629	9,642	59,935	С
	2	-	K1	16	17	74	0,189	280	7,000	1,966	1831	-	9	346	0,809	67,673	3,146	9,848	15,155	92,385	D
	4		K5L	6	7	84	0,078	90	2,250	1,859	1937	-	4	151	0,596	61,528	0,898	3,074	6,039	37,430	D
4	3	-	K5	22	23	68	0,256	405	10,125	1,854	1942	-	12	497	0,815	56,879	3,507	13,026	19,130	118,223	D
	2	→	K5	22	23	68	0,256	405	10,125	1,860	1935	-	12	496	0,817	57,365	3,564	13,089	19,208	118,821	U
	Knoten	punktssur	nmen:					4570						6586							
	Gewich	tete Mitte	lwerte.												0,717	46,807					

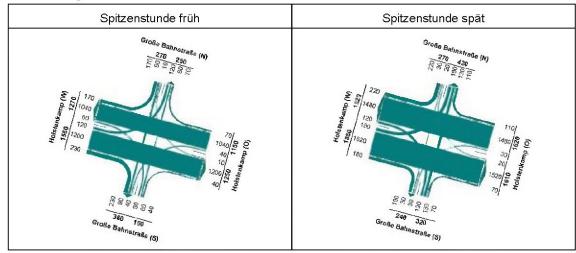
Bornkampsweg / Holstenkamp – Verkehrstechnische Bewertung Ausbaumaßnahmen für Entwicklungsstufe 2

Entwicklungsstufe 2 - Spitzenstunde spät

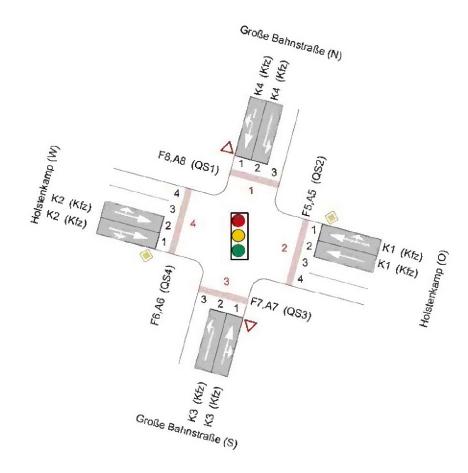

Zuf	Fstr. Nr.	Symbol	SGR	tr [s]	tA [5]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	NMS,95> NK	ης [Kfz/U]	C [Kfz/h]	х	tw [5]	NGE [Kfz]	NMS [Kfz]	Nws,es [Kfz]	Lz [m]	QSV
	2	•	К3	20	21	70	0,233	343	8,575	1,919	1876	-	11	437	0,785	54,905	2,732	10,781	16,334	103,100	D
	3		К3	20	21	70	0,233	347	8,675	1,894	1901	-	11	443	0,783	54,297	2,697	10,836	16,403	103,536	D
7	4	L.	K4	13	14	77	0,156	205	5,125	2,076	1734	-	7	270	0,759	65,240	2,166	7,072	11,570	74,488	D
	5	L _a	K4	13	14	77	0,156	205	5,125	2,076	1734	-	7	270	0,759	65,240	2,166	7,072	11,570	74,488	D
	1	€_	K7 RA	42	43	48	0,478	660	16,500	2.036	1768	-	21	845	0,781	31,576	2,819	16,563	23,446	147,991	В
	2	•	K6	27	28	63	0,311	455	11,375	1,904	1891	-	15	588	0,774	44,041	2,598	12,920	18,999	120,606	C
2	3	4-	К6	27	28	63	0,311	455	11,375	1,904	1891	-	15	588	0,774	44,041	2,598	12,920	18,999	120,606	(
	4	·-	K6L	10	11	80	0,122	155	3,875	2,010	1791	-	5	219	0,708	63,974	1,582	5,306	9,202	57,365	D
	5	-	K6L	10	11	80	0,122	155	3,875	2,010	1791	-	5	219	0,708	63,974	1,582	5,306	9,202	57,365	D
	5	•	K2	6	7	84	0,078	70	1,750	1,935	1860	-	4	145	0,483	53,431	0,551	2,228	4,752	30,650	D
	4	•	K1	19	20	71	0,222	360	9,000	1,868	1927	-	11	428	0,841	69,163	4,241	12,850	18,913	117,790	D
3	3	1	К1	19	20	71	0,222	360	9,000	1,868	1927		11	428	0,841	69,163	4,241	12,850	18,913	117,790	D
	2	-	К1	19	20	71	0,222	230	5,750	2,005	1796	-	10	399	0,576	38,882	0,848	5,977	10,112	62,856	C
	4	_•	K5L	7	8	83	0,089	100	2,500	1,868	1927	-	4	172	0,581	57,090	0,846	3,248	6,296	39,211	D
4	3	-	K5	26	27	64	0,300	477	11,925	1,868	1927	-	14	578	0,825	53,692	3,916	15,009	21,567	134,282	D
	2	+	K5	26	27	64	0,300	473	11,825	1,880	1915	-	14	573	0,825	53,874	3,911	14,911	21,442	133,283	D
	Knoten	punktssur	mmen:					5050						5602							
	Gewich	tete Mitte	lwerte.												0,773	52,367					


21 Holstenkamp / Große Bahnstraße (LSA 1043)

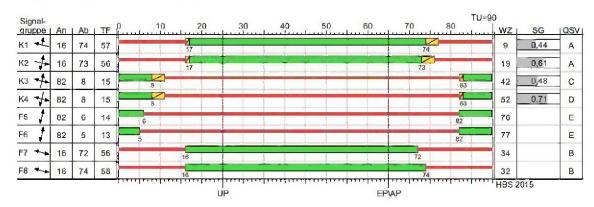
21.1 Holstenkamp / Große Bahnstraße – Knotenstrombelastungen


Analyse (VZ 22.06.2017; beeinflusst durch Umleitungsverkehr!)

Entwicklungsstufe 1

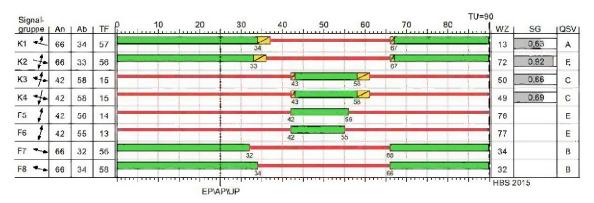


Entwicklungsstufe 2


21.2 Holstenkamp / Große Bahnstraße – Knotenpunktgeometrie Bestand

21.3 Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Bestand

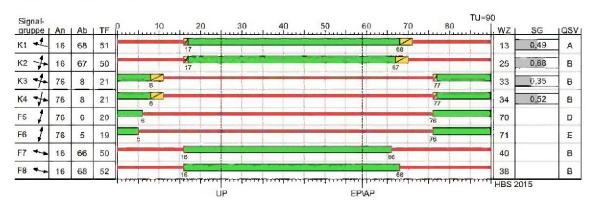
Analyse – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [3]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws.95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nivis [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
	1	4	K4	15	16	75	0,178	230	5,750	1,967	1830	-	8	326	0,706	52,610	1,615	7,021	11,502	70,530	D
1	2	4	K4	15	16	75	0,178	10	0,250	1,935	1860	-	7	293	0,034	32,309	0,019	0,231	1,044	6,264	В
_	1	-	K1	57	58	33	0,644	538	13,450	1,906	1889	-	30	1217	0,442	9,368	0,472	7,165	11,692	73,870	A
2	2	-	K1	57	58	33	0,644	542	13,550	1,895	1900	**	31	1224	0,443	9,374	0,474	7,223	11,768	74,350	Α
~	Z	77	КЗ	15	16	75	0,178	80	2,000	2,154	1671	×								33,791	
3	1	1	КЗ	15	16	75	0,158	50	1,250	2,020	1782	-	7	270	0,481	41,900	0,553	3,515	6,685	44,128	C
	2	4	K2	56	57	34	0,633	388	9,700	1,944	1851	-	16	634	0,612	30,393	1,013	9,085	14,183	90,204	В
4	1	7-	К2	56	57	34	0,633	732	18,300	1,904	1891	-	30	1197	0,612	12,965	1,021	11,984	17,839	113,456	А
	Knotenpi	ınktssum	men:					2570						5161							
	Gewichte	te Mittelw	rente												0,540	19,173					

Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Bestand

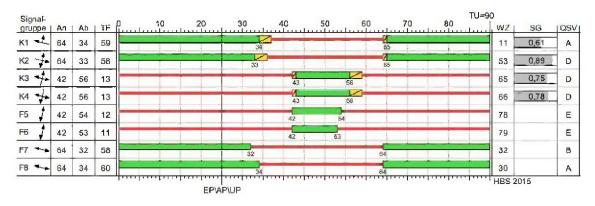
Analyse – Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,ss≻nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	Nws [Kfz]	N _{MS,95} [Kfz]	Lz [m]	QSV
	1	4	K4	15	16	75	0,178	220	5,500	1,995	1805	-	8	321	0,685	50,755	1,438	6,587	10,928	67,469	D
7	2	4	K4	15	16	75	0,178	20	0,500	1,935	1860	-	7	273	0,073	33,678	0,044	0,475	1,641	9,846	В
-	1	1	K1	57	58	33	0,644	779	19,475	1,878	1917		31	1234	0,631	12,883	1,123	12,802	18,853	116,285	A
2	2	-	К1	57	58	33	0,644	791	19,775	1,850	1945	-	31	1253	0,631	12,833	1,123	12,982	19,076	117,661	A
_	2	7	КЗ	15	16	75	0.178	120	3.000	1.995	1805	х								46.061	
3	1	1-	КЗ	15	16	75	0,165	80	2,000	1,885	1910		8	304	0,658	49,951	1,246	5,929	10,047	62,573	С
	2	1	K2	56	57	34	0,633	256	6,400	1,949	1847	-	7	279	0,918	125,398	6,800	13,108	19,231	117,232	E
4	1	7-	K2	56	57	34	0,633	1144	28,600	1,829	1968	w	31	1244	0,920	60,375	15,848	40,980	51,807	315,815	D
	Knotenpi	ınktssumi	men:					3410						4908							
	Gewichte	te Mittelw	erte:												0,751	41,990					

21.4 Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

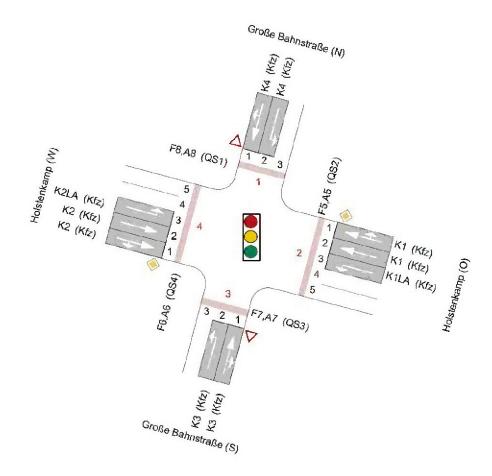
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nusses nx	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nims [Kfz]	N MS,95 [Kfz]	L× [m]	QSV
,	1	7	K4	21	22	69	0,244	230	5,750	1,967	1830	-	11	447	0,515	34,618	0,646	5,618	9,627	59,033	В
1	2	4	K4	21	22	69	0,244	10	0,250	1,935	1860	-	9	377	0,027	28,885	0,015	0,215	0,999	5,994	В
_	1	-1	K1	51	52	39	0,578	538	13,450	1,906	1889	-	27	1092	0,493	13, 152	0,590	8,528	13,467	85,085	А
2	2	-	K1	51	52	39	0,578	542	13,550	1,895	1900	-	27	1098	0,494	13,160	0,593	8,596	13,555	85,640	A
	2	7	КЗ	21	22	59	0,244	80	2,000	2,154	1671	×								30,378	
3	1	1	КЗ	21	22	69	0,218	50	1,250	2,020	1782	-	9	373	0,349	32,777	0,310	3,061	6,020	39,732	В
	2	1	K2	50	51	40	0,567	390	9,750	1,937	1858	-	14	573	0,681	36,279	1,443	9,976	15,318	96,871	С
4	1	7-	K2	50	51	40	0,567	730	18,250	1,904	1891	-	27	1072	0,681	18,664	1,465	14,338	20,742	131,919	Α
	Knotenpu	unktssum	men:					2570						5032							
	Gewichte	te Mittelw	erte:												0,568	21,204					

Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

Analyse – Spitzenstunde spät

A-Signalgruppen ausgeblendet!

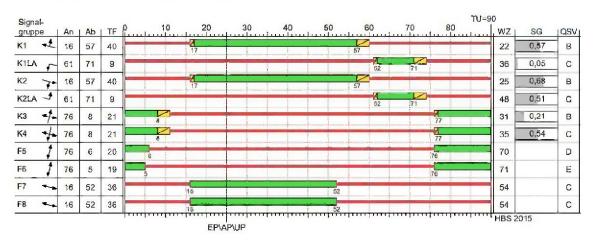
Zuf	Fstr.Nr.	Symbol	SGR	t⊧ [s]	ta [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	N _{MS} ,95≻nk	nc [Kfz/U]	C [Kfz/h]	к	tw [s]	N _{GE} [Kfz]	Nivis [Kfz]	N _{M5,95} [Kfz]	Lx [m]	QSV
	1	4	K4	13	14	77	0,156	220	5,500	1,995	1805	-	7	281	0,783	69,005	2,536	7,824	12,555	77,515	D
1	2	4	K4	13	14	77	0,156	20	0,500	1,935	1860	-	6	246	0,081	34,988	0,049	0,488	1,669	10,014	8
	1	1	K1	59	60	31	0,667	779	19,475	1,878	1917	-	32	1279	0,609	11,236	1.006	11,928	17,769	109,599	A
2	2	-	K1	59	60	31	0,667	791	19,775	1,850	1946	-	32	1298	0,609	11,197	1,007	12,097	17,979	110,894	A
	2	7	К3	13	14	77	0,156	120	3,000	1,995	1805	x								52,501	
3	1	1-	кз	13	14	77	0,144	80	2,000	1,885	1910		7	266	0,752	65,019	2,072	6,872	11,305	70,408	D
	2	1	К2	58	59	32	0,656	253	6,325	1,951	1845	-	7	285	0,888	106,317	5,467	11,665	17,441	106.320	E
4	1	7	K2	58	59	32	0,656	1147	28,675	1,829	1968	-	32	1290	0,889	40,705	10,008	33,674	43,488	265,103	C
	Knotenpu	inktssumi	men:					3410						4945							
	Gewichte	te Mittelw	rerte:												0,740	35,214					



21.5 Holstenkamp / Große Bahnstraße – Knotenpunktgeometrie Ausbaumaßnahmen

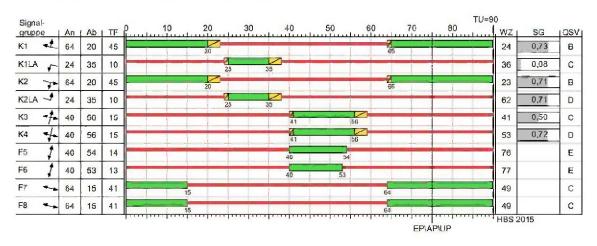
Quelle: eigenes Ausbaukonzept

mit zusätzlichen Linksabbiegefahrstreifen im Holstenkamp


einschließlich separater Signalisierung

21.6 Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Ausbaumaßnahmen

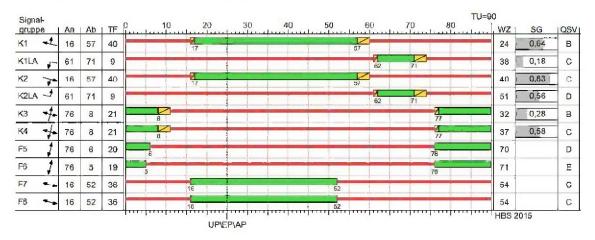
Entwicklungsstufe 1 - Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [5]	[5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws.95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nims [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	4	K4	21	22	69	0,244	240	6,000	1,965	1832	-	11	447	0,537	35,331	0,712	5,932	10,051	61,693	С
1	2	4	K4	21	22	69	0,244	10	0,250	1,935	1860	-	9	357	0,028	29,699	0,016	0,219	1,010	6,060	В
	1	1	K1	40	41	50	0,456	493	12,325	1,907	1888	-	22	861	0,573	21,560	0,845	9,921	15,248	96,337	В
2	2	-	K1	40	41	50	0,456	497	12,425	1,895	1900	-	22	866	0,574	21,568	0,849	10,005	15,354	97,007	В
	3	-	K1LA	9	10	81	0,111	10	0,250	1,800	2000	-	6	222	0,045	36,165	0,026	0,249	1,093	6,558	C
	2	7	К3	21	22	69	0.244	40	1,000	2,154	1671	-	5	230	0,174	36, 107	0,118	1.001	2,693	17,984	C
3	1	1-	K3	21	22	69	0,244	90	2,250	2,013	1788	-	11	436	0,206	28,286	0,146	1,937	4,291	28,321	В
	3	1	K2LA	9	10	81	0,111	110	2,750	1,861	1934	-	5	215	0,512	48,256	0,630	3,222	6,258	38,825	C
4	2	1	K2	40	41	50	0,456	585	14,625	1,906	1889		22	860	0,680	25,376	1,451	12,983	19,077	121,215	В
	1	7-	K2	40	41	50	0,456	585	14,625	1,904	7891	-	22	862	0,679	25,316	1,443	12,967	19,057	121,203	В
	Knotenp	unktssum	ımen:					2660						5356							
	Gewicht	ete Mittel	werte:												0,592	26,105					

Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Ausbaumaßnahmen

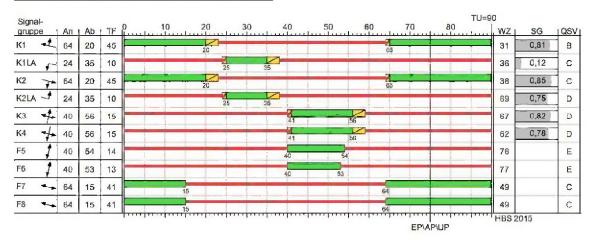
Entwicklungsstufe 1 – Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	[s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	Nм5,95 [Kfz]	[m]	QSV
	1	-/	K4	15	16	75	0,178	230	5,750	1,998	1802	-	8	321	0,717	54,110	1,717	7,135	11,653	71,946	D
1	2	4	K4	15	16	75	0,178	20	0,500	1,935	1860	~	6	223	0,090	36,116	0,055	0,500	1,696	10,176	C
	1	1	K1	45	46	45	0,511	710	17,750	1,879	1916	-	24	979	0,725	24,102	1,906	15,694	22,394	138,261	В
2	2	•	K1	45	46	45	0,511	720	18,000	1,850	1946	-	25	994	0,724	23,942	1,895	15,866	22,603	139,415	В
	3	5	K1LA	10	11	80	0,122	20	0,500	1,800	2000	-	6	244	0,082	35,778	0,050	0,493	1,680	10,080	c
	2	7	K3	15	16	75	0,178	70	1,750	1,997	1803	-	4	179	0,391	45,504	0,373	2,013	4,413	27,325	£
3	1	1	К3	15	16	75	0,178	170	4,250	1,888	1907	-	8	339	0,501	39,818	0,606	4,442	8,006	49,861	C
	3	1	K2ŁA	10	11	80	0,122	170	4,250	1,832	1965	-	6	240	0,708	61,894	1,595	5,679	9,709	59,303	D
4	2	-	K2	45	46	45	0,511	710	17,750	1,831	1966	-	25	1005	0,706	22,901	1,694	15,272	21,881	133,518	В
	1	7-	K2	45	46	45	0,511	7t0	17,750	1,831	7966	-	25	1005	0,706	22,901	1,694	15,272	21,881	133,518	В
	Knotenp	unktssum	men:					3530						5529							
	Gewicht	ete Mittel	werte:												0,691	28,677					

Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Ausbaumaßnahmen

Entwicklungsstufe 2 – Spitzenstunde früh

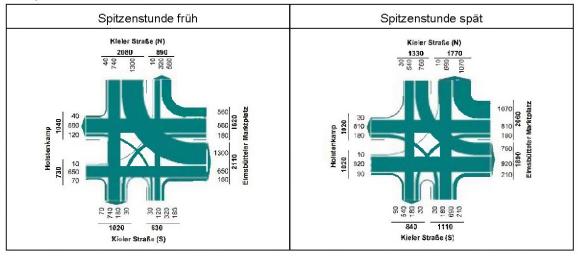

A-Signalgruppen ausgeblendet!

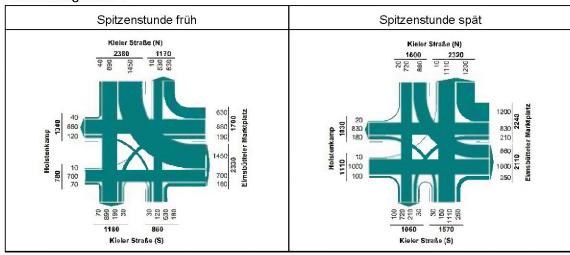
Zuf	Fstr.Nr.	Symbol	SGR	tr [\$]	ta [s]	ts [s]	£A	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws.95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Le [m]	QSV
	1	_/_	K4	21	22	69	0,244	260	6,500	1,963	1834	-	11	447	0,582	37,007	0,873	6,600	10,945	67,115	С
1	2	4	K4	21	22	69	0,244	10	0,250	1,935	1860	-	9	349	0,029	29,998	0,016	0,220	1,013	6,078	В
	1	4	K1	40	41	50	0,456	554	13,850	1,905	1890	-	22	861	0,643	23,813	1,189	11,849	17,671	111,645	В
2	2	-	K1	40	41	50	0,456	556	13,900	1,895	1900	-	22	866	0,642	23,747	1,183	11,875	17,703	111.848	В
	3	<i>f</i>	KILA	9	10	81	0,111	40	1,000	1,800	2000		6	222	0,180	38,285	0,123	1,030	2,746	16,476	С
•	2	7	К3	21	22	69	0,244	60	1,500	2,154	1671	-	5	218	0,275	38,890	0,216	1,569	3,687	24,622	С
3	7	1-	КЗ	21	22	69	0,244	100	2,500	2,020	1782		11	435	0,230	28,647	0,169	2,171	4,663	30,776	В
	3	7	K2LA	9	10	81	0,111	120	3,000	1,856	1940	-	5	215	0,558	50,806	0,770	3,613	6,828	42,238	D
4	2	1	K2	40	41	50	0,456	714	17,850	1,908	1887		22	861	0,829	39,495	4,325	19,937	27,489	174,830	C
	1	7	K2	40	41	50	0,456	716	17,900	1,902	1893	-	22	863	0,830	39,656	4,370	20,037	27,607	175,415	С
	Knotenp	unktssum	rmen:					3130						5337							
	Gewicht	ete Mittel	werte:												0,692	33,782					

Holstenkamp / Große Bahnstraße – Verkehrstechnische Bewertung Ausbaumaßnahmen

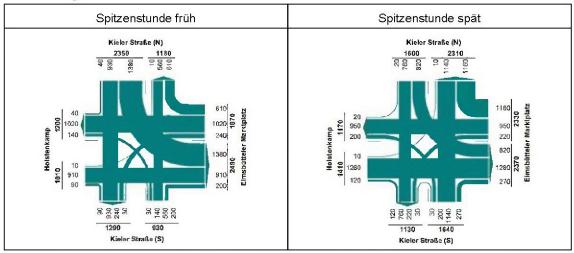
Entwicklungsstufe 2 – Spitzenstunde spät

A-Signalgruppen ausgeblendetl

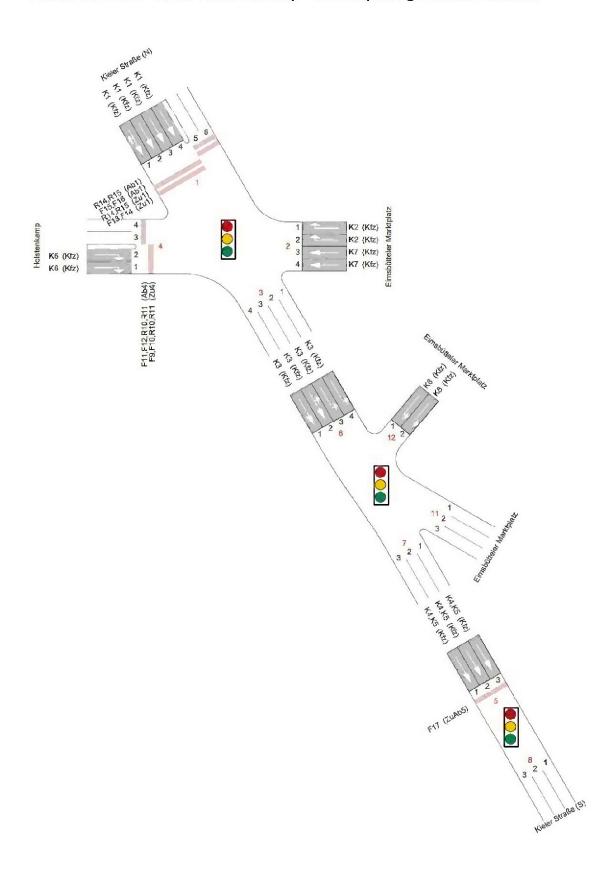

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws.95>nx	nc [Kf2/U]	C (Kfz/h)	×	tw [s]	Nge [Kfz]	N _{M5} [Kfz]	NMS,95 [Kfz]	L. [m]	QSV
,	1	4	K4	15	15	75	0,178	250	5,250	1,997	1803		8	321	0,779	63,540	2,518	8,483	13,409	82,626	D
1	2	L_	K4	15	16	75	0,178	20	0,500	1,935	1860	-	5	204	0,098	37,092	0,060	0,510	1,718	10,308	С
	ι	7	KI	45	46	45	0,511	790	19,750	1,877	1918	-	25	981	0,805	31,095	3,492	19,899	27,443	169,433	В
2	2	1	K1	45	45	45	0,511	800	20,000	1,850	1946	-	25	994	0,805	30,942	3,496	20,110	27,694	170,817	8
	3	F	K1LA	10	11	80	0,122	30	0,750	1,800	2000	-	6	244	0,123	36,369	0,078	0,747	2,209	13,254	С
-	2	7	К3	15	16	75	0,178	120	3,000	1,995	1805	х								50,719	
3	1	1-	K3	15	16	75	0,208	200	5,000	1,888	1907	-	n	389	0,823	67, 188	3,580	11,225	16,891	104,893	D
	3	7	K2LA	10	11	80	0,122	180	4,500	1,831	1966	-	5	240	0,750	68,514	2,022	6,371	10,640	64,925	D
4	2	1	K2	45	46	45	0,511	850	21,250	1,831	1966	-	25	1005	0,846	37,976	5,310	23,614	31,832	194,239	С
	1	7	K2	45	45	45	0,511	850	21,250	1,831	1966	-	25	1005	0,846	37,976	5,310	23,614	31,832	194,239	С
	Knotenp	unktssum	men:					4090						5383							
	Gewicht	ete Mittel	werte:												0,811	40,447					


22 Eimsbütteler Marktplatz (LSA 1601 und LSA 475)

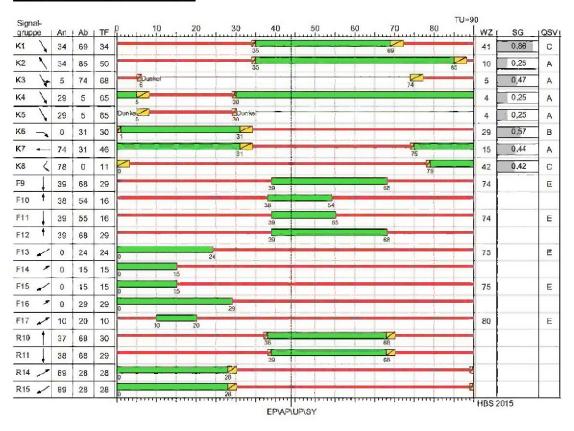
22.1 Gesamtknoten Eimsbütteler Marktplatz – Knotenstrombelastungen


Analyse (VZ 07.09.2010)

Entwicklungsstufe 1

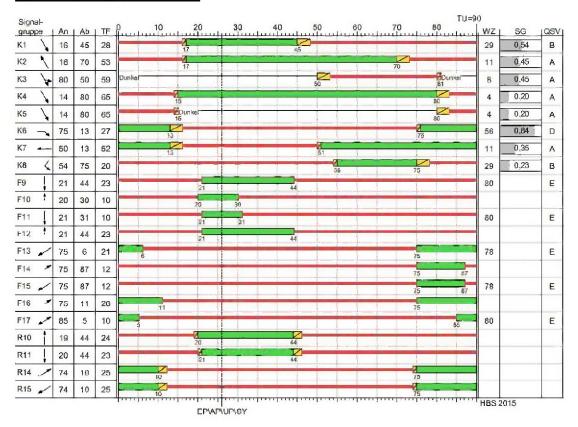


Entwicklungsstufe 2



22.2 Teilknoten Kieler Straße / Holstenkamp – Knotenpunktgeometrie Bestand

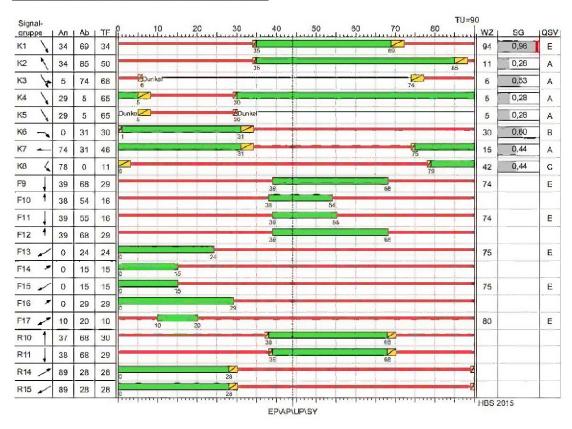
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	1A [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NM5,95>11K	nc (Kfz/U)	C [Kfz/h]	ж	tw [5]	NGE [Kfz]	Nvis [Kfz]	Nws,95 [Kfz]	[m]	QSV
	1	1	K2 .	50	51	40	0,567	280	7,000	1,800	5000		28	1134	0,247	10,403	0,186	3,711	6,969	41,814	А
	2	t_	K2	50	51	40	0,567	280	7,000	1,800	2000	-	28	1134	0,247	10,401	0,186	3,711	6,969	41,814	А
2	3	4—	K7	46	47	44	0,522	440	11,000	1,868	1927	-	25	1006	0,437	14,970	0,461	7,273	11,834	73,702	А
	4	-	K7 1	46	47	44	0,522	440	11,000	1,868	1927	-	25	1006	0,437	14,970	0,461	7,273	11,834	73,702	А
4	2	_7_	K6	30	31	60	0,344	365	9,125	1,919	1876	_	16	646	0,565	28,562	0,812	8, 242	13,097	83,768	В
4	1	7	K6 ,	30	31	60	0,344	365	9,125	1,919	1876	-	16	646	0,565	28,562	0,812	8,242	13,097	83,768	В
	1	7	K1	34	35	56	0,389	410	10,250	1,880	1915	-	19	745	0,550	25,040	0,759	8,726	13,722	85,708	В
,	2		K1	34	35	56	0,389	370	9,250	1,874	1921	-	19	747	0,495	23,669	0,594	7,594	12,255	76,545	В
1	3	1	K1	34	35	56	0,389	651	16,275	1,841	1955	u	19	760	0,857	52,083	5,675	20,592	28,267	173,503	D
	4	1	K1	3.4	35	56	0,389	649	16,225	1,840	1957	(x)	19	761	0,853	50,853	5,435	20,271	27,886	170,997	D
	1	1	K4, K5	65	66	25	0,733	340	8,500	1,903	1892	-	35	1386	0,245	4,388	0, 184	2,950	5,855	37, 132	А
5	2	\	K4, K5	65	66	25	0,733	340	8,500	1,903	1892	-	35	1386	0,245	4,388	0,184	2,950	5,855	37, 132	Α
	3	1	K4, K5	65	66	25	0,733	340	8,500	1,903	1892	-	35	1386	0,245	4,388	0,184	2,950	5,855	37, 132	Α
12	1	4	K8	11	12	79	0, 133	105	2,625	1,890	1905	-	6	253	0,415	41,721	0,416	2,825	5,668	35,708	C
12	2	4	КВ	11	12	79	0,133	105	2,625	1,890	1905	-	6	253	0,415	41,721	0,416	2,825	5,668	35,708	С
	1	1	К3	68	69	22	0,767	679	16,975	1,906	1889	-	36	1450	0,468	5,124	0,529	6,699	11,076	70,377	Α
_	2	1	К3	68	69	22	0,767	691	17,275	1,865	1930	-	37	1481	0,467	5,087	0,527	6,798	11,208	69,333	Α
6	3	*	K3	68	69	2.2.	0,767	695	17,375	1,856	1940	-	37	1488	0,467	5,081	0,527	6,835	11,257	69,636	Α
	4	/m	К3	68	69	22.	0,767	695	17,375	1,856	1940	-	37	1488	0,467	5,081	0,527	6,835	11,257	69,636	A
	Knoten	punktssui	nmen:					8240						19156							
	Gewich	tete Mitte	lwerte:												0,495	18,577					

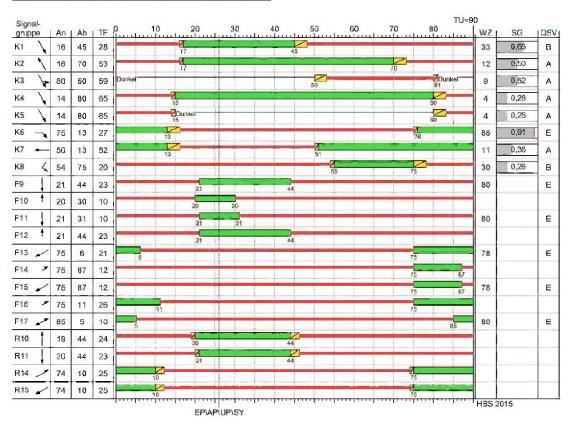
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [≤]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kf2/U]	ts [s/Kfz]	qs [Kfz/h]	Nыs,95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NŒ [Kfz]	NMS [Kfz]	Nivis,95 [Kfz]	[m]	QS
	1	<u>+</u>	KZ	53	54	37	0,600	535	13,375	1,800	2000	-	30	1200	0,446	11,271	0,480	7,785	12,504	75,024	А
	2	1_	K2	53	54	37	0,600	535	13,375	1,800	2000	-	30	1200	0,446	11,271	0,480	7,785	12,504	75,024	A
2	3	◄—	K7	52	53	38	0,589	405	10, 125	1,850	1946	-	29	1146	0,353	10,593	0,317	5,571	9,563	56,985	А
	4	-	K7	52	53	38	0,589	405	10,125	1,850	1946	-	29	1146	0,353	10,593	0,317	5,571	9,563	58,985	А
4	2	7	K6	27	28	63	0,311	510	12,750	1,843	1953	-	15	607	0,840	55,837	4,539	16,430	23,285	143,063	D
4	1	7	K6	27	28	63	0,311	510	12,750	1,843	1953	-	15	607	0,840	55,837	4,539	16,430	23,285	143,063	D
	1	A	K1	28	29	62	0,322	332	8,300	1,870	1926	-	16	620	0,535	29, 102	0,708	7,507	12,141	75,396	8
1	2	1	KI	28	29	62	0,322	332	8,300	T,865	1930	-	16	622	0,534	29,061	0,705	7,501	12,133	/5,419	В
1	3	1	K1	28	29	62	0,322	333	8,325	1,865	1930	-	16	622	0,535	29,089	0,708	7,527	12,167	75,630	8
	4	1	K1	28	29	62	0,322	333	8,325	1,865	1930	-	16	627	0,535	29,089	0,708	7,527	12,157	75,630	8
	1	1	K4, K5	65	66	25	0,733	280	7,000	1,906	1889	-	35	1386	0,202	4,137	0,143	2,337	4,922	31,274	А
5	2	1	K4, K5	65	66	25	0,733	280	7,000	1,906	1889	-	35	1386	0,202	4,137	0,143	2,337	4,922	31,274	Α
	3	1	K4, K5	65	66	25	0,733	280	7,000	1,906	1889	-	35	1386	0,202	4,137	0,143	2,337	4,922	31,274	A
12	1	4	K8	20	21	70	0,233	105	2,625	1,825	1973	-	11	458	0,229	29,286	0,168	2,295	4,857	29,550	В
16	2	<	K8	20	21	70	0,233	105	2,625	1,825	1973	-	11	458	0,229	29,286	0,168	2,295	4,857	29,550	В
	1	__	К3	59	60	31	0,667	562	14,050	1,908	1887	-	31	1259	0,446	8,476	0,480	7,140	11,659	74, 151	Α
б	2	1	К3	59	60	31	0,667	581	14,525	1,843	1953	-	3.3	1302	0,446	8,430	0,480	7,365	11,955	73,165	Α
ย	3	1.0	К3	59	60	31	0,667	583	14,575	1,838	1959	-	33	1308	0,446	8,424	0,480	7,389	11,986	73,426	А
	4	1.	K3	59	60	31	0,667	584	14,600	1,838	1959		33	1308	0,446	8,424	0,480	7,401	12,002	73,524	А
	Knoten	punktssur	mmen:					7590						18643							
	Gewich	tete Mitte	werte:												0,472	19,156					

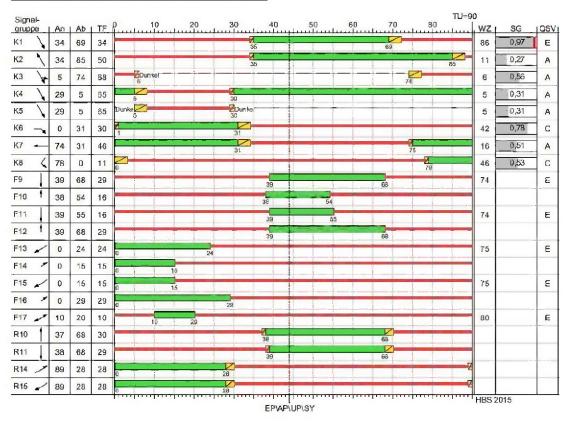
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendetf

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fд	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS85>NK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Not [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	L _x [m]	QSV
	1	t_	K2	50	51	40	0,567	315	7,875	1,800	2000	-	28	1134	0,278	10,714	0,220	4,268	7,762	46,572	A
2	2	t_ i	K2	50	51	40	0,567	315	7,875	1,800	2000		28	1134	0,278	10,714	0,220	4,268	7,762	46,572	Α
2	3	•	K7	46	47	44	0,522	440	11,000	1,865	1930	-	25	1007	0,437	14,968	0,461	7,273	11,834	73,560	Α
	4		K7	46	47	44	0,522	440	11,000	1,865	1930	-	25	1007	0,437	14,968	0,461	7,273	11,834	73,560	Α
4	2	٦.	K6	30	31	60	0,344	390	9,750	1,917	1878	-	16	647	0,603	29,830	0,970	9,040	14,125	90,259	В
	1	٦,	к6	30	31	60	0,344	390	9,750	1,917	187B	-	16	647	0,603	29,830	0,970	9,040	14,125	90,259	В
	1	4	К1	34	35	56	0,389	464	11,600	1,879	1916	-	19	745	0,623	27,353	1,072	10,427	15,868	99,236	В
1	2	1	K1	34	35	56	0,369	424	10,600	1,074	1923	-	19	747	0,568	25,535	0,824	9,137	14,249	60,999	0
	3	1	K1	34	35	56	0,389	747	18,675	1,841	1955	-	19	760	0,983	136,532	23,081	41,556	52,458	321,987	E
	4	1	K1	34	35	56	0,389	745	18,625	1,840	1957	(x)	19	761	0,979	132,625	22,300	40,679	51,466	315,590	E
	1	1	K4, K5	65	66	25	0,733	394	9,850	1,903	1892	-	35	1386	0,264	4,641	0,227	3,548	6,734	42,707	Α
5	2	1	K4, K5	65	66	25	0,733	394	9,850	1,903	1892	-	35	1386	0,284	4,641	0,227	3,548	6,734	42,707	Α
	3	1	K4, K5	65	66	25	0,733	394	9,850	1,903	1892	-	35	1386	0,284	4,641	0,227	3,548	6,734	42,707	A
12	1	4	K8	11	12	79	0,133	110	2,750	1,886	1909	-	6	253	0,435	42,349	0,453	2,964	5,905	37, 131	С
14	2	4	К8	11	12	79	0,133	110	2,750	1,886	1909	-	6	253	0,435	42,349	0,453	2,984	5,905	37, 131	С
	1		К3	68	69	22	0,767	763	19,075	1,906	1889	-	36	1449	0,527	5,807	0,687	8,147	12,974	82,437	Α
6	2	4	К3	68	69	22	0,767	779	19,475	1,868	1927		37	1478	0,527	5,773	0,687	8,303	13,176	81,507	A
U	3	10	КЗ	68	69	22	0,767	784	19,600	1,856	1940	-	37	1488	0,527	5,762	0,687	8,352	13,240	81,903	Α
_	4	\r	K3	68	69	22	0,767	784	19,600	1,856	1940	-	37	1488	0,527	5,762	0,687	8,352	13,240	81,903	Α
	Knoten	punktssui	mmen:					9182						19156							
	Gewich	tete Mitte	lwerte:												0,555	32,702					

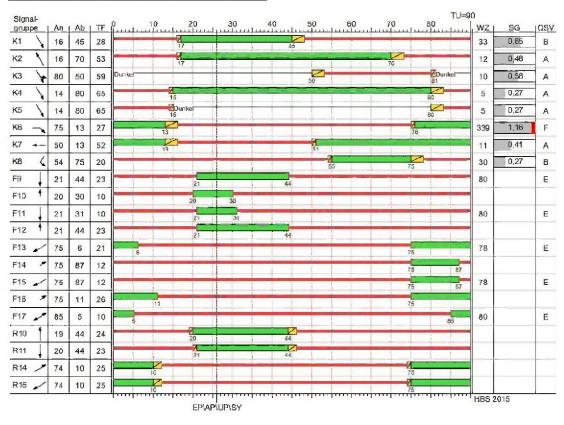
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [S]	t. [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs Kfz/h]	Nws95>nk	nc [Kfz/U]	C [Kfz/ħ]	x	wt [s]	Ng: [Kfz]	Nvs [Kfz]	N _{MS,95} [Kfz]	L _x	QSV
	1	t_	K2	53	54	37	0,600	600	15,000	1,800	2000	-	30	1200	0,500	12,113	0,609	9,180	14,304	85,824	A
7	2	1_	K2	53	54	37	0,600	600	15,000	1,800	2000	-	30	1200	0,500	12,113	0,609	9,180	14,304	85,824	А
2	3	-	K7	52	53	38	0,589	415	10,375	1,852	1944	-	29	1146	0,362	10,698	0,330	5,750	9,805	60,536	A
	4	+	K7	52	53	38	0,589	415	10,375	1,852	1944	-	29	1146	0,362	10,698	0,330	5,750	9,805	60,536	A
4	Z	٦,	K6	27	28	63	0,311	555	13,875	1,841	1955	-	15	508	0,913	87,836	9,796	23,147	31,284	192,021	E
4	1		K6	27	28	63	0,311	555	13,875	1,841	1955	-	15	608	0,913	87,836	9,796	23,147	31,284	192,021	E
	1	λ	K1	28	29	62	0,322	399	9,975	1,869	1927	-	16	620	0,644	32,996	1,188	9,720	14,993	93,196	В
1	2	1	K1	28	29	62	0,322	400	10,000	1,865	1930	-	16	621	0,644	32,985	1,188	9,742	15,021	93,371	В
1	3	\	K1	28	29	52	0,322	400	10,000	1,865	1930	-	16	621	0,644	32,985	1,188	9,742	15,021	93,371	В
	4	1	K1	28	29	62	0,322	401	10,025	1,865	1930	-	16	621	0,646	33,076	1,200	9,782	15,072	93,688	В
	1	1	K4, K5	65	66	25	0,733	354	8,850	1,903	1892	-	35	1386	0,255	4,451	0,195	3, 101	6,079	38,553	A
5	2	1	K4, K5	65	66	25	0,733	354	8,850	1,903	1892	-	35	1386	0,255	4,451	0,195	3, 101	6,079	38,553	A
	3	1	K4, KS	55	66	25	0,733	354	8,850	1,903	1892	-	35	1386	0,255	4,451	0,195	3, 101	6,079	38,553	А
45	1	4	K8	20	21	70	0,233	120	3,000	1,834	1963	-	11	457	0,263	29,800	0,203	2,654	5,409	33,071	В
12	2	4	K8	20	ZI	70	0,233	120	3,000	1,834	1963	-	11	457	0,263	29,800	0,203	2,654	5,409	33,071	В
	1	1	К3	59	60	31	0,667	654	16,350	1,908	1887	-	32	1260	0,519	9,523	0,662	8,989	14,060	89,422	A
	2	1	K3	59	60	31	0,667	671	16,775	1,852	1944	-	32	1296	0,518	9,457	0,660	9, 195	14,323	87,571	A
6	3	10	K3	59	60	31	0,667	677	16,925	1,836	1961	-	33	1308	0,518	9,441	0,660	9,271	14,421	88,257	A
	4	\.	K3	59	60	31	0,667	678	16,950	1,836	1961	-	33	1308	0,518	9,441	0,660	9,284	14,437	88,354	A
	Knoten	punktssui	nmen:					8722						18635							
	Gewich	tete Mitte	lwerte:												0,535	24,189					

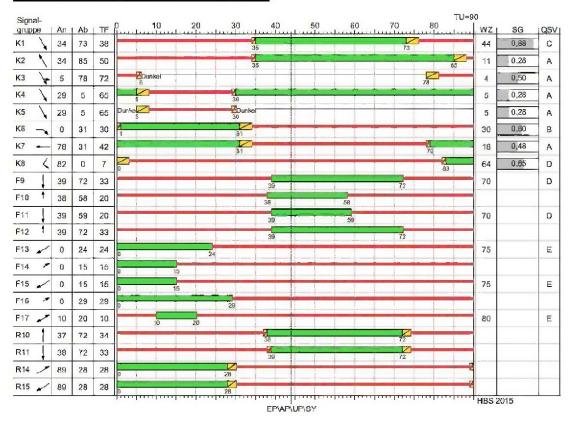
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nusasonk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	No: [Kfz]	N _{MS} [Kfz]	N _{MS,98} [Kfz]	L _*	QSV
	1	€_	K2	50	51	40	0,567	305	7,625	1,800	2000	-	28	1134	0,269	10,622	0,210	4,106	7,533	45,198	A
2	2	<u>+</u> _	K2	50	51	40	0,567	305	7,625	1,800	2000	-	28	1134	0,269	10,622	0,210	4,106	7,533	45,198	A
2	3	-	K7	46	47	44	0,522	510	12,750	1,863	1932	-	25	1007	0,506	16,206	0,625	8,907	13,954	86,654	A
	4	-	K7	46	47	44	0,522	510	12,750	1,863	1932		25	1007	0,506	16,206	0,625	8,907	13,954	86,654	A
4	2	7	К6	30	31	60	0,344	505	12,625	1,917	1878	-	16	646	0,782	41,990	2,781	14,111	20,464	130,765	С
4	1	7	К6	30	31	60	0,344	505	12,625	1,917	1878	-	16	646	0,782	41,990	2,781	14,111	20,464	130,765	C
	1	Y	K1	34	35	56	0,389	459	11,475	1,879	1916	·	19	745	0,616	27,095	1,035	10,256	15,672	97,887	В
1	2	1	K1	34	35	56	0,389	419	10,475	1,874	1921	-	19	747	0,561	25,335	0,798	8,985	14,054	67,781	В
	3	1	K1	34	35	56	0,389	736	18,400	1,840	1957	-	19	761	0,967	121,272	19,943	37,964	48,385	296,697	E
	4	1	K1	34	35	56	0,389	736	18,400	1,840	1957	(x)	19	761	0,967	121,272	19,943	37,964	48,385	296,697	E
	1	1	K 4, K5	65	66	25	0,733	430	10,750	1,904	1891	-	35	1386	0,310	4,821	0,258	3,972	7,343	46,613	A
5	2	1	K4, K5	65	66	25	0,733	430	10,750	1,904	1891	-	35	1386	0,310	4,821	0,258	3,972	7,343	46,613	A
	3	1	K4, K5	65	66	25	0,733	430	10,750	1,904	1891	-	35	1386	0,310	4,821	0,258	3,972	7,343	46,613	A
12	1	4	K8	11	12	79	0,133	135	3,375	1,890	1905	-	6	253	0,534	46,316	0,696	3,846	7,163	45,127	С
12.	2	4	K8	11	12	79	0,133	135	3,375	1,890	1905	-	6	253	0,534	46,316	0,696	3,846	7,163	45,127	С
	1	1	КЗ	68	69	22	0,767	812	20,300	1,906	1889	-	36	1449	0,560	6,265	0,798	9,089	14,188	90,151	A
6	2	1	К3	68	69	22	0,767	828	20,700	1,868	1927	-	37	1478	0,560	6,226	0,798	9,252	14,396	89,054	A
v	3	1.0	К3	68	69	55	0,767	835	20,875	1,856	1940	-	37	1488	0,561	6,228	0,802	9,339	14,507	89,740	A
	4	1.0	К3	68	69	22	0,767	835	20,875	1,856	1940	-	37	1488	0,561	6,228	0,802	9,339	14,507	89,740	A
	Knoten	punktssu	mmen:					9860						19155							
	Gewich	tete Mitte	iwerte:												0,589	31,070					

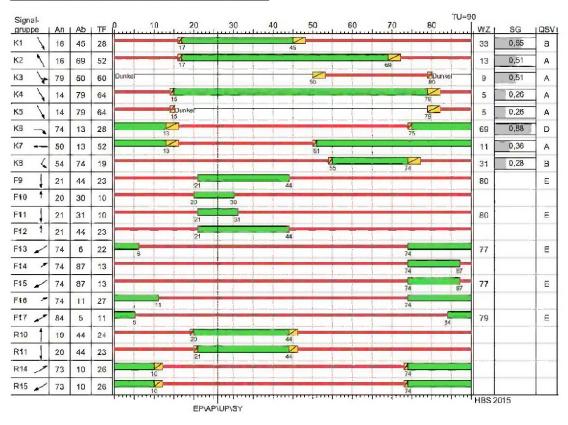
Entwicklungsstufe 2 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	к	tw [s]	NG: [Kfz]	N _{MS} [Kfz]	Nms.95 [Kfz]	[m]	QSV
	1	t	K2	53	54	37	0,600	580	14,500	1,800	2000	-	30	1200	0,483	11,833	0,565	8,732	13,730	82,380	А
7	2	Ł	K2	53	54	37	0,600	580	14,500	1,800	2000	-	30	1200	0,483	11.833	0,565	8,732	13,730	82,380	Α
2	3	-	K7	52	53	38	0,589	475	11,875	1,850	1946	-	29	1146	0,414	11,363	0,417	6,872	11,305	69,729	Α
	4	-	K7	52	53	38	0,589	475	11,875	1,850	1946	-	29	1146	0,414	11,363	0,417	6,872	11,305	69,729	А
4	2	7	K6	27	28	63	0,311	705	17,525	1,841	1955		15	608	1,160	339,071	52,029	69,654	83,769	514,174	F
	1	7	К6	27	28	63	0,311	705	17,625	1,841	1955	-	15	608	1,160	339,071	52,029	69,654	83,769	514,174	F
	1	7	K1	28	29	62	0,322	399	9,975	1,869	1927		16	621	0,643	32,939	1,182	9,711	14,981	93,122	В
1	2	1	K1	28	20	62	0,322	400	10,000	1,865	1930	-	16	622	0,643	32,928	1,182	9,732	15,008	93,200	В
,	3	1	K1	28	29	62	0,322	400	10,000	1,865	1930		16	622	0,643	32,928	1,182	9,732	15,008	93,290	В
	4	1	K1	28	29	62	0,322	401	10,025	1,865	1930	-	16	622	0,645	33,019	1,194	9,773	15,060	93,613	В
	1	1	K4, K5	65	66	25	0,733	377	9,425	1,904	1897	-	35	1386	0,272	4,560	0,213	3,356	6,454	40,970	Α
5	2	1	K4, K5	65	66	25	0,733	377	9,425	1,904	1891	-	35	1386	0,272	4,560	0,213	3,356	6,454	40,970	Α
	3	1	K4, K5	65	66	25	0,733	377	9,425	1,904	1891	-	35	1386	0,272	4,560	0,213	3,356	6,454	40,970	A
12	1	4	K8	20	21	70	0,233	125	3,125	1,832	1965	-	11	458	0,273	29,953	0,214	2,774	5,591	34,150	В
12	2	<	К8	20	21	70	0,233	125	3,125	1,832	1965	-	11	458	0,273	29,953	0,214	2,774	5,591	34,150	В
	1	1	K3	59	60	31	0,667	726	18,150	1,908	1887	-	31	1259	0,577	10,580	0,863	10,688	16,217	103,140	Α
_	2	4	K3	59	60	31	0,667	747	18,675	1,850	1946	-	32	1298	0,576	10,485	0,859	10,958	16,556	101,323	A
6	3	/*	K3	59	60	31	0,667	753	18,825	1,836	1961		33	1308	0,576	10,467	0,859	11,039	16,658	101,947	Α
	4	*	K3	59	60	31	0,667	754	18,850	1,836	1961	-	33	1308	0,576	10,467	0,859	11,052	16,674	102,045	Α
	Knoten	punktssu	mmen:					9481						18642							
	Gewich	tete Mitte	elwerte:												0,602	63,207					

22.4 Teilknoten Kieler Straße / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

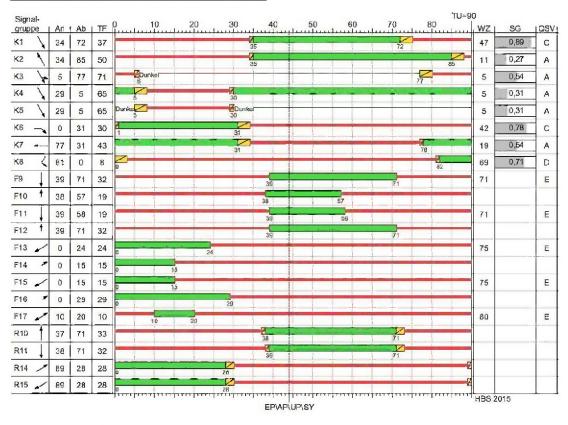
Entwicklungsstufe 1 – Spitzenstunde früh


A-Signalgruppen ausgebiendet!

Zuf	Fstr.Nr.	Symbol	SGR	t⊧ [s]	ta [s]	ts [5]	fa	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws96>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	N⊲ (Kfz]	NMS [Kfz]	Nassas [Kfz]	Lx [m]	QSV
	1	Ł.	K2	50	51	40	0,567	315	7,875	1,800	2000	-	28	1134	0,278	10,714	0,220	4,268	7,762	46,572	А
	2	Ł	K2	50	51	40	0,567	315	7,875	1,800	2000	-	28	1134	0,278	10,714	0,220	4,268	7,762	46,572	A
2	3	-	K7	42	43	48	0,478	440	11,000	1,865	1930	-	23	923	0,477	18,028	0,550	7,988	12,768	79,366	Α
	4	+-	K7	42	43	48	0,478	440	11,000	1,865	1930	-	23	92.3	0,477	18,028	0,550	7,988	12,768	79,366	А
1	2	7	Кб	30	31	50	0,344	390	9,750	1,917	1878	-	16	547	0,603	29,830	0,970	9,040	14, 125	90,259	В
1	1	7	K6	30	31	60	0,344	390	9,750	1,917	1878	-	16	647	0,603	29,830	0,970	9,040	14,125	90,259	В
	1	7	K1	38	39	52	0,433	464	11,600	1,879	1916	-	21	830	0,559	22,522	0,792	9,470	14,674	91,654	В
1	2	1	K1	38	39	52	0,433	424	10,600	1,874	1921		21	832	0,510	21,315	0,635	8,349	13,236	82,672	В
	3	1	K1	38	39	52	0.433	747	18,675	1,843	1955	-	21	B47	0,882	56,784	7,853	24,984	33,437	205,236	D
	4	1	K1	38	39	52	0,433	745	18,625	1,840	1957	(x)	21	847	0,880	55,930	7,660	24,721	33,130	203, 153	D
	1	1	K4, K5	65	56	25	0,733	394	9,850	1,903	1892	-	35	1386	0,284	4,641	0,227	3,548	6,734	42,707	A
5	2	\	K4, K5	65	66	25	0,733	394	9,850	1,903	1892	-	35	1386	0,284	4,641	0,227	3,548	6,734	42,707	Α
	3	1	K4, K5	65	66	25	0,733	394	9,850	1,903	1892		35	1386	0,284	4,641	0,227	3,548	6,734	42,707	A
12	1	4	K8	7	8	83	0,089	110	2,750	1,886	1909	-	4	169	0,651	64,438	1,164	3,823	7,130	44,833	D
12	2	4	K8	7	8	83	0,089	110	2,750	1,886	1909	-	4	169	0,651	64,438	1,164	3,823	7,130	44,833	D
	1	1	К3	72	73	18	0,811	763	19,075	1,906	1889	-	38	1532	0,498	4,116	0,604	6,652	11,014	69,983	A
6	5	1	К3	72	73	18	0,871	780	19,500	1,868	1927	-	30	1562	0,499	4,099	0,607	6,798	11,208	69,333	A
O.	3	1.	K3	72	73	18	0,811	783	19,575	1,856	1940	-	39	1573	0,498	4,079	0,604	6,810	11,223	69,425	A
	4	100	K3	72	73	18	0,811	784	19,600	1,856	1940	-	39	1573	0,498	4,079	0,604	6,818	11,234	69,494	A
	Knoten	punktssu	mmers:					9182						19500							
	Gewich	tete Mitte	lwerte:												0,532	19,805					

Teilknoten Kieler Straße / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

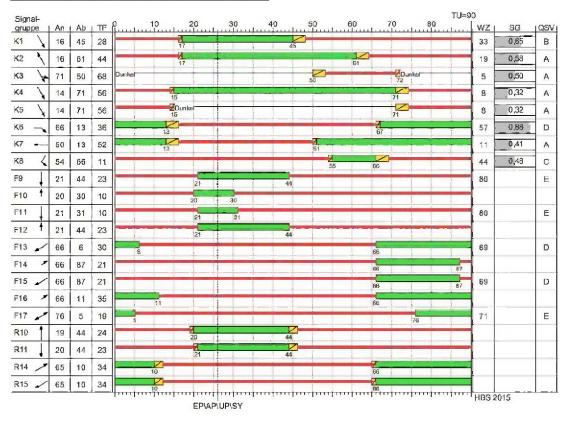
Entwicklungsstufe 1 - Spitzenstunde spät


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NNS,95>TK	nc [Kfz/U]	C [Kfz/h]	x	tw [5]	Nos [Kfz]	Nvis [Kfz]	NMS,95 [Kfz]	L _x [m]	QSV
	1	t_	К2	52	53	30	0,589	600	15,000	1,800	2000	-	29	1170	0,509	12,790	0,603	9,430	14,634	87,804	A
	2	Ł	К2	52	53	38	0,589	600	15,000	1,800	2000	re*	29	1178	0,509	12,790	0,633	9,438	14,634	87,804	Α
2	3	-	K7	52	53	38	0,589	415	10,375	1,852	1944	-	29	1146	0,362	10,698	0,330	5,750	9,805	60,536	А
	4	-	K7	52	53	38	0,589	415	10,375	1,852	1944	þr.	29	1146	0,362	10,698	0,330	5,750	9,805	60,536	А
4	2	7	K6	28	29	62	0,322	555	13,875	1,841	1955	-	16	630	0,881	68,878	7,000	20,133	27,722	170,158	D
4	1	7	K6	28	29	62	0,322	555	13,875	1,841	1955	-	16	630	0,881	68,878	7,000	20,133	27,722	170,158	D
	1	λ	K1	28	29	62	0,322	399	9,975	1,869	1927	-	16	620	0,644	32,996	1,188	9,720	14,993	93,196	В
	2	1	K1	28	29	62	0,322	400	10,000	1,865	1930	-	16	621	0,644	32,985	1,188	9,742	15,021	93,371	В
1	3	1	K1	28	29	62	0,322	400	10,000	1,865	1930		16	621	0,644	32,985	1,188	9,742	15,021	93,371	В
	4	1	K1	28	29	62	0,322	401	10,025	1,865	1930	-	16	621	0,646	33,076	1,200	9,782	15,072	93,688	В
	1	1	K4, K5	64	65	26	0,722	354	8,850	1,903	1892	-	34	1365	0,259	4,803	0,199	3,225	6,262	39,714	А
5	2	1	K4, K5	64	65	26	0,722	354	8,850	1,903	1892	-	34	1365	0,259	4,803	0,199	3,225	6,262	39,714	A
	3	1	K4, K5	64	65	26	0,722	354	8,850	1,903	1892	-	34	1365	0,259	4,803	0,199	3,225	6,262	39,714	Α
40	1	4	K8	19	20	71	0,222	120	3,000	1,834	1963		11	436	0,275	30,792	0,216	2,702	5,482	33,517	В
12	2	4	K8	19	20	71	0,222	120	3,000	1,834	1963		11	436	0,275	30,792	0,216	2,702	5,482	33,517	В
	1	1	К3	60	61	30	0,578	652	16,300	1,908	1887	-	32	1281	0,509	8,906	0,634	8,648	13,621	86,630	Α
_	2	1/2	К3	60	61	30	0,678	671	16.775	1,852	1944	-	33	1317	0,509	8,857	0,634	8.882	13.922	85,119	A
6	3	10	K3	60	61	30	0,578	678	16,950	1,836	1961	-	33	1330	0,510	8,856	0,637	8,980	14.048	85,974	А
	4	100	К3	60	61	30	0,678	679	16,975	1,836	1961	-	33	1330	0,511	8,869	0,639	9,003	14,078	86,157	Α
	Knoten	punktssu	nmen:					8722						18616							
	Gewich	tete Mitte	lwerte:												0,531	21,757					

Teilknoten Kieler Straße / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

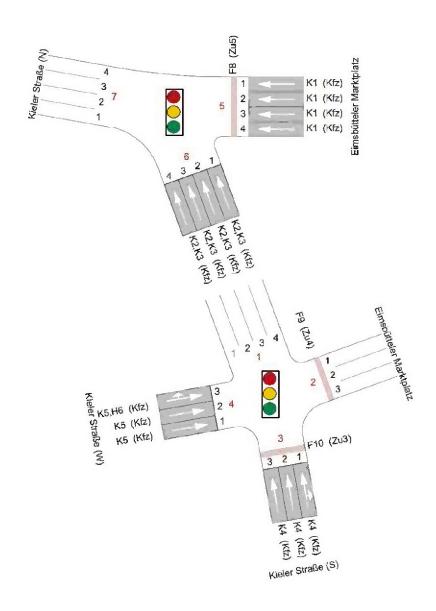
Entwicklungsstufe 2 – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t: [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te (s/Kfz]	qs [Kfz/h]	Nмs,96>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Ns∈ [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	Ł	K2	50	51	40	0,567	305	7,625	1,800	2000	-	28	1134	0,269	10,622	0,210	4,106	7,533	45, 198	A
•	2	t_	K2	50	51	40	0,567	305	7,625	1,800	2000	-	28	1134	0,269	10,622	0,210	4,106	7,533	45, 198	Α
2	3	4	K7	43	44	47	0.489	510	12.750	1.863	1932		24	944	0.540	18.739	0.727	9,580	14.815	92.001	A
	4	-	K7	43	44	47	0,489	510	12,750	1,863	1932	-	24	944	0,540	18,739	0,727	9,580	14,815	92,001	А
4	2	¬	К6	30	31	60	0,344	505	12,625	1,917	1878	1	16	646	0,782	41,990	2,781	14,111	20,464	130,765	С
4	1	7	K6	30	31	60	0,344	505	12,525	1,917	1878		16	646	0,782	41,990	2.781	14.111	20,464	130,765	C
	1	Y	K3	37	38	53	0,422	459	11,475	1,879	1916	-	20	809	0,567	23,415	0,821	9,540	14,764	92,216	В
1	2	1	К1	37	38	53	0,422	419	10,475	1,874	1921	-	20	811	0,517	22,137	0,655	8,399	13,300	83,072	В
1	3	1	K1	37	38	53	0,422	736	18,400	1,840	1957		21	826	0.891	62,054	8,710	25.754	34,337	210,554	D
	4	__	k1	37	38	53	0,422	736	18,400	1,840	1957	(x)	21	826	0.891	62,054	8,710	25,754	34, 337	210,554	ם
	1	1	K4, K5	65	66	25	0,733	430	10,750	1,904	1891	-	35	1386	0,310	4,821	0,258	3,972	7,343	46,613	Α
5	2	1	K4, K5	65	65	25	0,733	430	10,750	1,904	1891	-	35	1386	0,310	4,821	0,258	3,972	7,343	46,613	A
	3	1	K4, K5	65	66	25	0,733	430	10,750	1,904	1891	-	35	1386	0,310	4,821	0,258	3,972	7,343	46,613	Α
13	1	4	K8	8	9	82	0,100	135	3,375	1,890	1905	-	5	190	0,711	69,272	1,585	4,855	8,581	54,060	D
12	2	<	K8	8	9	82	0,100	135	3,375	1,890	1905	-	5	190	0,711	69,272	1,585	4,855	8,581	54,060	D
	1	1	K3	71	72	19	0,800	812	20,300	1,906	1889	-	38	1511	0,537	4,869	0,719	7,837	12,572	79,882	А
	2	4	K3	71	72	19	0,800	828	20,700	1,868	1927	-	39	1542	0,537	4,835	0,719	7,977	12,754	78,896	٨
6	3	1	K3	71	72	19	0,800	835	20,875	1,856	1940	-	39	1552	0,538	4,835	0,722	8,052	12,851	79,496	Α
	4	100	КЗ	71	72	19	0,800	835	20,875	1,856	1940	-	39	1552	0,538	4,835	0,722	8,052	12,851	79,496	Α
	Knoten	punktssur	mmen:					9860						19415							
	Gewich	tete Mitte	lwerte:												0,574	22,345					

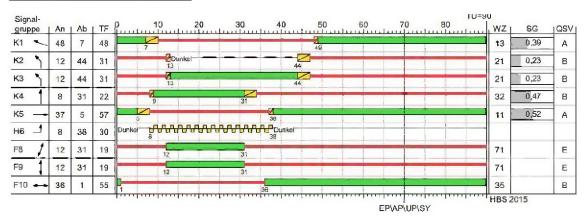
Teilknoten Kieler Straße / Holstenkamp – Verkehrstechnische Bewertung Bestand mit optimierter Signalisierung

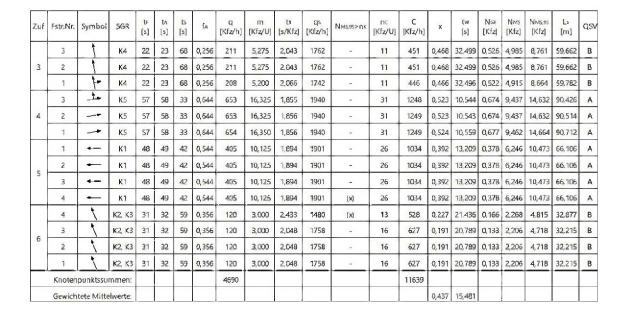
Entwicklungsstufe 2 – Spitzenstunde spät

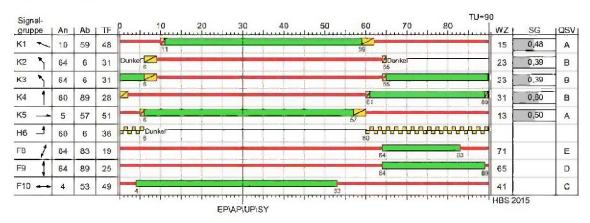


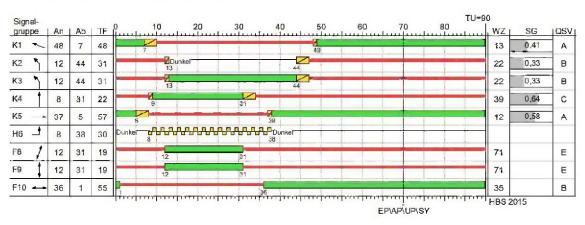
A-Signalgruppen ausgebiendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	tu [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NM5.96>nK	nc {Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nas [Kfz]	NMS,98 [Kfz]	L _x [m]	QSV
	1	t	K2	44	45	46	0,500	560	14,500	1,800	2006	ш.	25	1000	0,580	18,991	0,874	11,085	16,716	100,296	Α
	2	1_	K2	44	45	46	0,500	580	14,500	1,800	2000	-	25	1000	0,580	18,991	0,874	11,085	16,716	100,296	A
2	3	+	K7	52	53	38	0,589	475	11,875	1,850	1946	-	29	1146	0,414	11,363	0,417	6,872	11,305	69,729	A
	4	+	K7	52	53	38	0,589	475	11,875	1,850	1946	1	29	1146	0,414	11,363	0,417	6,872	11,305	69,729	Α
4	2	7	K6	36	37	54	0,411	705	17,625	1,841	1955	~	20	804	0,877	56,917	7,260	23,492	31,689	194,507	D
4	1	7	K6	36	37	54	0,411	705	17,625	1,841	1955	-	20	804	0,877	56,917	7,260	23,492	31,689	194,507	D
	1	λ	K1	28	29	52	0,322	399	9,975	1,869	1927		16	621	0,643	32,939	1,182	9,711	14,981	93,122	В
1	2	\ .	K1 _	28	29	62	0,322	400	10,000	1,865	1930	-	16	622	0,643	32,928	1, 182	9,732	15,008	93,290	В
'	3	1	K1	28	29	62	0,322	400	10,000	1,865	1930	-	16	622	0,643	32,926	1,182	9,732	15,008	93,290	В
	4	1	K1	28	29	62	0,322	401	10,025	1,865	1930	-	16	622	0,645	33,019	1,194	9,773	15,060	93,613	В
	1	1	K4, K5	56	57	34	0,633	377	9,425	1,904	1891	-	30	1197	0,315	8,368	0,265	4,585	8,206	52,092	Α
5	2	\	K4, K5	56	57	34	0,633	377	9,425	1,904	1891	-	30	1197	0,315	8,368	0,265	4,585	8,206	52,092	Α
	3	\ \	K4, K5	56	57	34	0,633	377	9,425	1,904	1891		30	1397	0,315	8,368	0,265	4,585	8,206	52,092	А
12	1	4	K8	11	12	79	0,133	125	3,125	1,832	1965	-	7	261	0,479	43,687	0,548	3,442	6,580	40,191	C
14	2	4	K8	11	12	79	0,133	125	3, 125	1,832	1965	-	7	261	0,479	43,587	0,548	3,442	6,580	40,191	C
	1	1	K3	68	69	22	0,767	726	18, 150	1,908	1887	-	36	1447	0,502	5,503	0,615	7,492	12,121	77,090	Α
б	2	1	К3	68	69	22	0,767	747	18,675	1,850	1946	-	37	1492	0,501	5,445	0,612	7,679	12,366	75,680	А
ט	3	\ -	К3	68	69	22	0,767	753	18,825	1,836	1961	-	38	1504	0,501	5,433	0,612	7,736	12,440	76,133	А
	4	\ <u>-</u>	К3	68	69	22	0,767	754	18,850	1,836	1961	-	38	1504	0,501	5,433	0,612	7,745	12,452	76,206	Α
	Knoten	punktssu	mment					9481						18447							
	Gewich	tete Mitte	werte:												0.559	21,352					

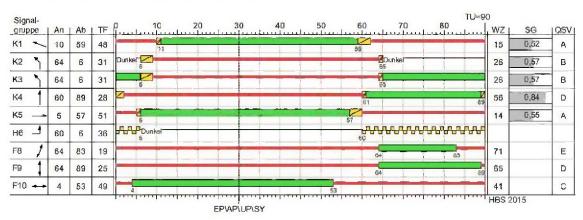



22.5 Teilknoten Kieler Straße / Eimsbütteler Marktplatz – Knotenpunktgeometrie Bestand

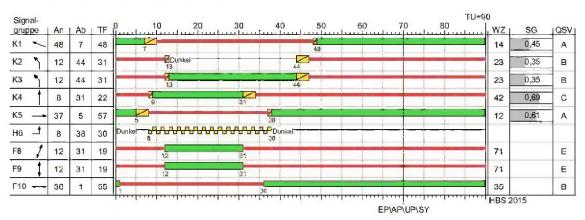

Analyse - Spitzenstunde früh


Analyse – Spitzenstunde spät

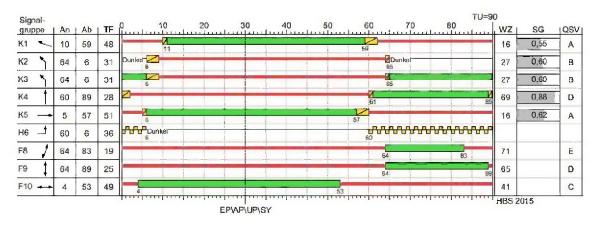
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NMS,95> nK	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
	3	1	K4	28	29	62	0,322	372	9,300	1,858	1938		16	624	0,596	31,010	0,938	8,741	13,741	85,084	В
3	2	1	K4	28	29	62	0,322	373	9,325	1,858	1938	-	15	624	0,598	31,082	0,947	8,777	13,787	85,369	В
	1	+	K4	28	29	62	0,322	365	9,125	1.892	1903	-	25	613	0,595	31,067	0,933	8,586	13,542	86,452	В
	3	1	K5	51	52	39	0,578	563	14,075	1,838	1959	-	28	1132	0,497	13,155	0,601	8,935	13,990	85,519	А
4	2		K5	51	52	39	0,578	563	14,075	1,836	1961	-	28	1133	0,497	13,154	0,601	8,935	13,990	85,619	А
	1		K5	51	52	39	0,578	564	14,100	1,836	1961		28	1133	0,498	13,169	0,603	8,958	14,020	85,802	A
	1	-	K1	48	49	42	0,544	515	12,875	1,834	1963	-	27	1068	0,482	14,577	0,562	8,520	13,457	82,276	A
_	2	-	K 1	48	49	42	0,544	515	12,875	1,834	1963		27	1068	0,482	14,577	0,562	8,520	13,457	82,276	А
5	3	-	Kt	48	49	42	0,544	515	12,875	1,834	1963	-	27	1068	0,482	14,577	0,562	8,520	13,457	82,276	A
	4	-	K1	48	49	42	0,544	515	12,875	1,834	1963	(x)	27	1068	0,482	14,577	0,562	8,520	13,457	82,276	Α
	4	1	K2, K3	31	32	59	0,356	228	5,700	2,209	1630	(x)	15	581	0,392	24,032	0,378	4,644	8,289	51,375	В
_	3	1	K2, K3	31	32	59	0,356	228	5,700	1,859	1937		17	690	0,330	22,630	0,284	4,443	8,008	49,634	В
6	2	1	K2, K3	31	32	59	0,356	228	5,700	1,859	1937	-	17	690	0,330	22,630	0,284	4,443	8,008	49,634	В
	1	1	K2, K3	31	32	59	0,356	228	5,700	1,859	1937	-	37	690	0,330	22,530	0,284	4,443	8,008	49,634	В
	Knoten	punktssu	mmen:					5772						12182							
	Gewich	tete Mitte	lwerte:												0,487	18,658					


Entwicklungsstufe 1 - Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws.95≻nk	nc [Kfz/U]	C [Kfz/h]	к	tw [s]	NGE [Kfz]	N _{NS} [Kfz]	NMS,95 [Kfz]	<u>ا</u> د [m]	QSV
	3	1	K4	22	23	68	0,256	287	7,175	2,045	1760	-	11	451	0,636	38,789	1,132	7,508	12,142	82,760	С
3	2	1	K4	22	23	68	0,256	288	7,200	2,043	1762	-	11	451	0,639	38,953	1,149	7,553	12,201	83,089	С
	. 1	+	K4	22	23	68	0.256	285	7,125	2,061	1747	-	11	447	0,638	38,977	1,143	7,479	12,104	83,518	С
	3	1	K5	57	58	33	0,644	720	18,000	1,857	1939	-	31	1248	0,577	11,564	0,863	11,060	16,684	103,207	А
4	2		K5	57	58	33	0,644	720	18,000	1,854	1942	-	31	1249	0,576	11,542	0,859	11,046	16,667	103,002	A
	1	-	K5	57	58	33	0,644	720	18,000	1,854	1942	•	31	1249	0,576	11,542	0,859	11,046	16,667	103,002	А
	. 1	+	K1	4R	49	47.	0,544	425	10,625	1,895	1900		56	1034	0,411	13,486	0,412	6,652	11,014	69,586	А
5	. 2	-	K1	48	49	42	0,544	425	10,625	1,895	1900	-	26	1034	0,411	13,486	0,412	6,652	11,014	69,586	Α
0	. 3	4—	K1	48	49	42	0,544	425	10,625	1,895	1900	-	26	1034	0,411	13,486	0,412	6,652	11,014	69,586	Α
	4		Κ1	48	49	42	0,544	425	10,625	1,895	1900	(x)	26	1034	0,411	13,486	0,412	6,652	11,014	69,586	Α
	4	1	K2, K3	31	32.	59	0,356	173	4,325	2,425	1485	(x)	13	528	0,328	23,046	0,281	3,435	6,569	44,695	В
-	3	1	K2, K3	31	32	59	0,356	173	4,325	2,041	1764	-	16	627	0,276	21,949	0,218	3,307	6,383	43,430	В
6	2	1	K2, K3	31	32	59	0,356	173	4,325	2,041	1764	-	16	627	0,276	21,949	0,218	3,307	6,383	43,430	В
	1	1	K2, K3	31	32	59	0,356	173	4,325	2,041	1764	*	16	627	0,276	21,949	0,218	3,307	6,383	43,430	В
	Knoten	punktssui	mmen:					5412						11640							
	Gewich	tete Mitte	lwerte:												0,497	17,870					

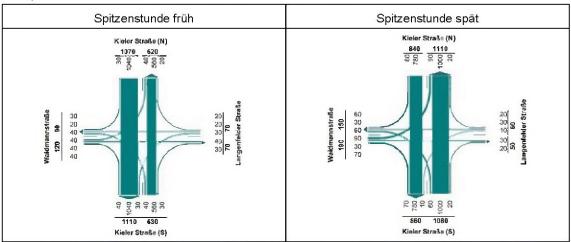

Entwicklungsstufe 1 - Spitzenstunde spät

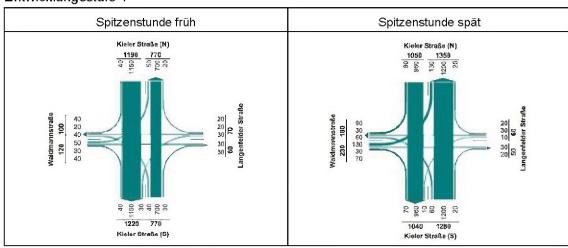
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m. [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	N M5,95 [Kfz]	[m]	QSV
	3	1	K4	28	29	62	0,322	525	13,125	1,859	1937	-	16	624	0,841	54,958	4,609	16,812	23,746	147,178	D
3	2	1	K4	28	29	62	0,322	526	13,150	1,859	1937	-	16	624	0,843	55,508	4,699	16,937	23,897	148,114	D
	1	+	K4	28	29	62	0,322	519	12,975	1,885	1910		15	615	0,844	56,099	4,731	16,811	23,745	147,172	D
	3	1	K5	51	52	39	0,578	623	15,575	1,838	1959	~	28	1132	0,550	14,169	0,761	10,397	15,850	97,002	A
4	2		K5	51	52	39	0,578	623	15,575	1,834	1963	-	28	1133	0,550	14,167	0,761	10,397	15,850	96,907	A
	1		K5	51	52	39	0,578	624	15,600	1,834	1963	-	28	1133	0,551	14, 190	0,765	10,425	15,886	97,127	A
	1	-	K1	48	49	47	0,544	560	14,000	1,834	1963	_	27	1068	0,524	15,370	0,677	9,605	14,848	90,781	A
_	2	-	K1	48	49	42	0,544	560	14,000	1,834	1963		27	1058	0,524	15,370	0,677	9,606	14,848	90,781	A
5	3	+	K1	48	49	42	0,544	560	14,000	1,834	1963	-	27	1068	0,524	15,370	0,677	9,606	14,948	90,781	A
	4	-	K1	48	49	42	0,544	560	14,000	1,834	1963	(x)	27	1058	0,524	15,370	0,677	9,606	14,848	90,781	Α
	4	1	K2, K3	31	32	59	0,356	330	8,250	2,207	1631	(x)	15	581	0,568	28,486	0,822	7,482	12,108	74,973	В
,	3	1	K2, K3	31	32	59	0,356	330	8,250	1,858	1938	-	17	690	0,478	25,365	0,551	6,954	11,414	70,675	В
6	2	1	K2, K3	31	32	59	0,356	330	8,250	1,858	1938	~	17	690	0,478	25,365	0,551	6,954	11,414	70,675	В
	1	1	K2, K3	31	32	59	0,356	330	8,250	1,858	1938	-	17	690	0,478	25,365	0,551	6,954	11,414	70,675	В
	Knoten	punktssui	mmen:					7000						12184							
	Gewich	tete Mitte	lwerte:												0,598	26,087					


Entwicklungsstufe 2 - Spitzenstunde früh

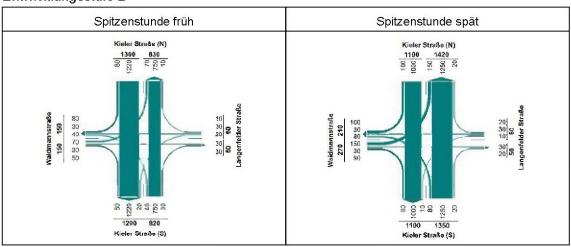
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	[s]	f∧	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	3	1	K4	22	23	68	0,256	311	7,775	2,043	1762	-	11	451	0,690	42,250	1,503	8,529	13,468	91,717	С
3	2	1	K4	22	23	68	0,256	311	7,775	2,043	1762	-	11	451	0,690	42,250	1,503	8,529	13,468	91,717	С
	1	-	K4	22	23	68	D,256	308	7,700	2,063	1745	-	11	447	0,689	42,276	1,494	8,450	13,366	92,225	C
	3	1	K5	57	58	33	0,644	766	19,350	1,857	1939	-	31	1248	0,614	12,407	1,031	12,307	18,240	112,833	А
4	2		K5	57	58	33	0,644	767	19,175	1,854	1942	-	31	1249	0,614	12,405	1,031	12,322	18,259	112,841	Α
	1		K5	57	58	33	0,644	767	19,175	1,854	1942	-	31	1249	0,614	12,405	1,031	12,322	18,259	112,841	A
	1	+	K1	48	49	42	0,544	468	11,760	1,892	1903	-	26	1034	0,453	14,140	0,495	7,575	12,230	77,122	А
-	2	-	K1	48	49	42	0,544	468	11,700	1,892	1903	-	26	1034	0,453	14,140	0,495	7,575	12,230	77,122	Α
5	3	-	K1	48	49	42	0,544	468	11,700	1,892	1903	-	26	1034	0,453	14,140	0,495	7,575	12,230	77,122	Α
	4	-	K1	48	49	42	0,544	468	11,700	1,892	1903	(x)	25	1034	0,453	14,140	0,495	7,575	12,230	77,122	A
	4	_1_	K2, K3	31	32	59	0,356	185	4,625	2,433	1480	(x)	13	528	0,350	23,447	0,312	3,714	6,973	47,612	В
_	3	1	K2, K3	31	35	59	0,356	185	4,625	2,048	1758	-	16	627	0,295	22,231	0,240	3,568	6,763	46,178	В
6	2	1	K2, K3	31	32	59	0,356	185	4,625	2,048	1758	-	16	627	0,295	22,231	0,240	3,568	6,763	46,178	В
	1	1	K2, K3	31	32	59	0,356	185	4,625	2,048	1758	-	16	627	0,295	22,231	0,240	3,568	6,763	46,178	В
	Knoten	punktssu	mmen:					5842						11640							
	Gewich	tete Mitte	lwerte:												0,536	16,997					

Entwicklungsstufe 2 - Spitzenstunde spät

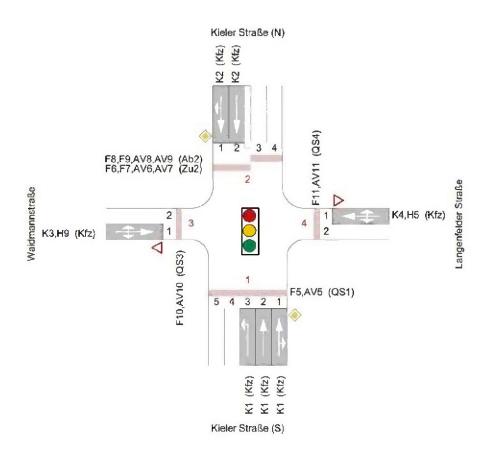

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	М м <u>s</u> в»-пк	n< [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS.95 [Kfz]	L _x	QSV
	3	1	K4	28	29	62	0,322	549	13,725	1,859	1937		16	624	0,980	68,678	6,901	19,886	27,428	169,999	D
3	2	1	K4	28	29	62	0,322	550	13,750	1,659	1937	*	16	624	0,881	69, 130	5,977	19,991	27,553	170,773	D
	1	+	K4	28	29	62	0,322	541	13,525	1,887	1908		15	614	0,881	69,545	6,936	19,738	27,252	168,908	D
	3	-1-	K5	51	52	39	0,578	703	17,575	1,835	1961	-	28	1132	0,521	15,894	1,067	12,636	18,648	114,014	A
4	2		K5	51	52	39	0,578	703	17,575	1,834	1963	12	28	1133	0,620	15,864	1,062	12,621	18,629	113,898	A
	1		K5	51	52	39	0,578	704	17,600	1,834	1963	-	28	1133	0,621	15,891	1,067	12,653	18,669	114, 142	A
	1		K1	48	49	42	0,544	583	14,575	1,832	1965	v	27	1068	0,546	15,829	0,747	10,201	15,603	95,303	А
5	2	+-	K1	48	49	42	0,544	583	14,575	1,832	1965	-	27	1068	0,546	15,829	0,747	10,201	15,603	95,303	A
2	3	4-	K1	48	49	42	0,544	583	14,575	1,832	1965	-	27	1068	0,546	15,829	0,747	10,201	15,603	95,303	Α
	4	-	K1	48	49	42	0,544	583	14,575	1,832	1965	(x)	27	1068	0,546	15,829	0,747	10,201	15,603	95,303	Α
	4	1	K2, K3	31	32	59	0,356	345	8,625	2,209	1630	(x)	15	580	0,595	29,464	0,932	7,979	12,756	79,062	В
	3	1	K2, K3	31	32	59	0,356	345	8,625	1,859	1937	-	17	690	0,500	25,872	0,607	7,364	11,953	74,085	В
6	2	1	K2, K3	31	32	59	0,356	345	8,625	1,859	1937	*	17	690	0,500	25,872	0,607	7,364	11,953	74,085	В
	1	1	K2, K3	31	32	59	0,356	345	8,625	1.859	1937	*	17	690	0,500	25,872	0,607	7,364	11,953	74,085	В
	Knoten					7462						12182									
	Gewich	tete Mitte	lwerte:												0,637	29,579					


23 Kieler Straße / Waidmannstraße (LSA 1332)

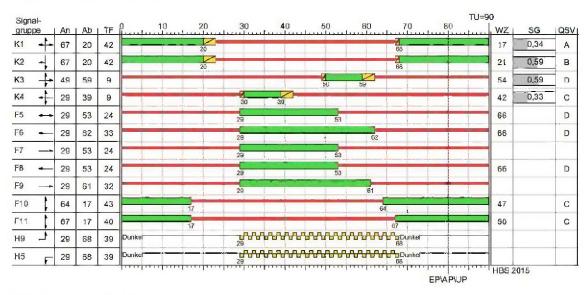
23.1 Kieler Straße / Waidmannstraße – Knotenstrombelastungen


Analyse (VZ 02.03.2010)

Entwicklungsstufe 1



Entwicklungsstufe 2


23.2 Kieler Straße / Waidmannstraße – Knotenpunktgeometrie Bestand

23.3 Kieler Straße / Waidmannstraße – Verkehrstechnische Bewertung Bestand

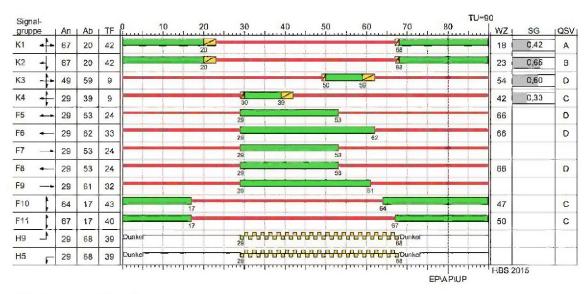
Analyse – Spitzenstunde früh


A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q {Kfz/h]	m [Kfz/U]	te [5/Kfz]	qs [Kfz/h]	NMS,95 > 11K	nc [Kfz/U]	C [Kfz/h]	x	tw [5]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	£x [m]	QSV
	1		K2	42	43	48	0,478	534	13,350	1,891	1903	-	23	910	0,587	20,616	0,903	10,590	16,094	101,199	В
2	2		K2	42	43	48	0,478	536	13,400	1,886	1909	-	23	913	0,587	20,605	0,903	10,626	16, 139	101,482	В
4	1	+	K4	9	10	81	0,111	70	1,750	1,896	1898	-	5	210	0,333	41,849	0,287	1,902	4,234	25,404	С
	3	•	K1	42	43	48	0,478	40	1,000	2,009	1792	-	5	211	0,190	38,061	D; 132	1,034	2,754	17,152	С
1	2	1	K1	42	43	48	0,478	295	7,375	1,975	1823	-	22	871	0,339	15,861	0,297	4,891	8,631	56,809	А
	1	+	K1	42	43	48	0,478	295	7,375	1,982	1816	-	22	869	0,339	15,863	0,297	4,891	8,631	56,913	A
3	1	-	К3	9	10	81	0,111	120	3,000	1,974	1823	-	5	203	0,591	53,844	0,890	3,744	7,016	45,253	D
	Knotenpu	unktssum	men:					1890						4187							
	Gewichte	te Mittelw	erte:												0,492	22,394					

Kieler Straße / Waidmannstraße – Verkehrstechnische Bewertung Bestand

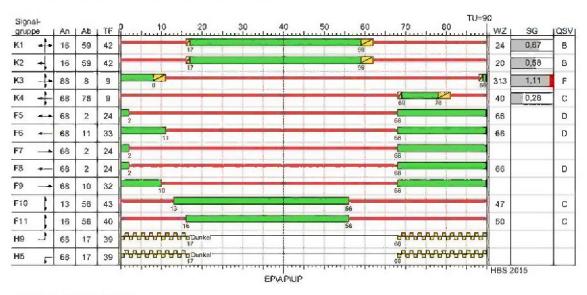
Analyse - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr. Nr.	Symbol	SGR	t= [s]	ta [s]	ts (s)	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nivis,95>nic	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NŒ [Kfz]	N _{MS} [Kfz]	NM5,95 [KFz]	[m]	QSV
2	1	+	K2	42	43	48	0,478	419	10,475	1,906	1889	-	23	902	0,465	17,845	0,521	7,552	12,200	77,299	A
2	2	+	K2	42	43	48	0,478	421	10,525	1,903	1892		23	904	0,466	17,863	0,524	7,593	12,253	77,709	A
4	1	+	K4	9	10	81	0,111	60	1,500	1,868	1928		5	214	0,280	40,423	0,221	1,597	3,734	22,404	С
	3	•	K1	42	43	48	0,478	60	1,500	1,983	1815	-	7	269	0,223	35,949	0,162	1,484	3,544	21,796	C
1	2	1	K1	42	43	48	0,478	511	12,775	1,872	1923		23	919	0,556	19,759	0.781	9,863	15,174	94,686	A
	1	1-	К1	42	43	48	0,478	509	12,725	1,878	1917	-	23	916	0,556	19,769	0,781	9,828	15,130	94,411	A
3	1		КЗ	9	10	81	0,111	190	4,750	1,929	1866	-	5	207	0,918	140,591	5,807	10,509	15,992	95,952	E
	Knotenpi	ınktssumi	men:					2170						4331							
	Gewichte	te Mittelw	/erte:												0,536	30,623					

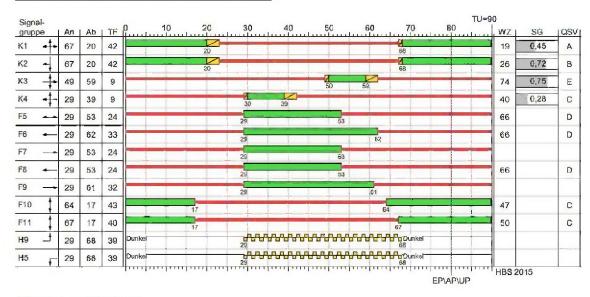
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nмs,95>лк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
_	1	*	K2	42	43	48	0,478	594	14,850	1,891	1904	-	23	910	0,653	22,787	1,254	12,523	18,508	116,267	В
2	2		K2	42	43	48	0,478	596	14,900	1,886	1909	-	23	913	0,653	22,771	1,254	12,561	18,555	116,674	В
4	1	+	K4	9	10	81	0,111	70	1,750	1,896	1898	-	5	210	0,333	41,849	0,287	1,902	4,234	25,404	С
	3	4 7	K1	42	43	48	0,478	40	1,000	2,009	1792	-	5	188	0,213	39,782	0,152	1,067	2,814	17,526	C
1	2	1	K1	42	43	48	0,478	366	9,150	1,976	1822	-	22	871	0,420	17,111	0,428	6,404	10,684	70,386	Α
	1	+	K1	42	43	48	0,478	364	9,100	1,978	1820	-	22	870	0,418	17,077	0,424	6,360	10,625	69,934	A
3	1	+	КЗ	9	10	81	0,111	120	3,000	1,985	1814		5	201	0,597	54,476	0,915	3,771	7,055	43,600	D
	Knotenpu	ınktssumi	nen:					2150						4163							
,	Gewichte	te Mittelw	erte:	- 1											0,552	23,555					

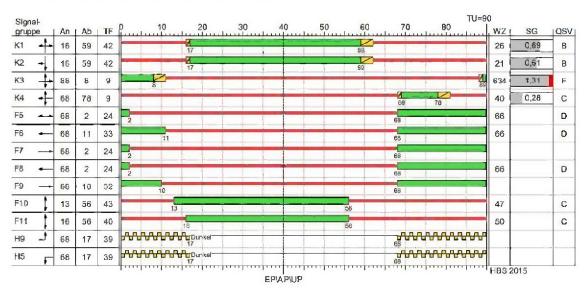
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuſ	Estr.Nr.	Symbol	5GR	(\$)	[6]	ES [&]	Éa	q [Kiz/h]	m {Kfz/U]	is [s/Kfz]	qs [Kfz/h]	Nws.as>nx	nc [Kitz/U]	C [Kfz/h]	Ж.	live [S]	Note [Kfg]	Nus [Kfz]	Nexs.95 [Kf2]	Lx [na]	QSV
	1	+	K2	42	43	48	0,478	524	13,200	1,908	1886		23	902	0,581	20,476	0,877	10,344	15,783	100,096	В
2	.2	4	K2	42	43	48	0,478	526	13,150	1,901	1894	_	23	905	0,581	20,465	0,877	10,381	15,830	100,299	В
4	1	-	K4	9	10	81.	0,111	60	1,500	1,868	1928		5	214	0,280	40,423	0,221	1,597	3,734	22,404	τ
	3	7	K1	42	43	48	0,478	60	1,500	1,983	1815		5	217	0,276	39,642	0,217	1,582	3,709	22,810	C
1	2	1	K1	42	43	48	0,478	610	15,250	1,874	1921	-	23	919	0,664	23,173	1,330	12,992	19,088	119,224	В
	1	+	K1	42	43	48	0,478	610	15,250	1,875	1920	-	23	917	0,665	23,225	1,337	13,007	19,106	119,107	8
3	1	+	кз	9	10	81	0,111	230	5,750	1.930	1865	-	5	207	1,111	312,579	15,673	21,423	29.251	175,506	F
	Knotenpi	inktssumi	men:					2620						4283							
(Gewichte	te Mittelw	erte:												0,653	48,280					

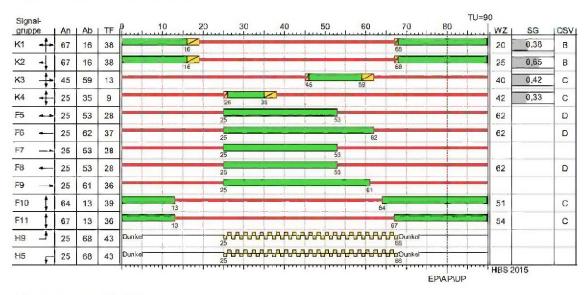
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr (s)	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NM5,95>nk	nc [Kfz/U]	€ [Kfz/h]	х	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	[131] [7x	QSV
	1	+	K2	42	43	48	0,478	647	16,175	1,899	1896	-	23	907	0,713	25,599	1,763	14,572	21,028	132,224	В
2	2		K2	42	43	48	0,478	653	16,325	1,885	1910	-	23	913	0,715	25,670	1,786	14,732	21,223	133,323	В
4	1	+	K4	9	10	81	0,111	60	1,500	1,868	1928	-	5	214	0,280	40,423	0,221	1,597	3,734	22,404	С
	3	*	K1	42	43	48	0,478	40	1,000	2,009	1792		4	170	0,235	41,362	0,173	1,099	2,872	17,887	С
1	2	1	Κl	42	43	48	0,478	390	9,750	1,976	1822	-	22	871	0,448	17,603	0,484	6,960	11,422	75,248	Α
	1	1+	K1	42	43	48	0,478	390	9,750	1,979	1819	-	22	870	0,448	17,606	0,484	6,960	11,422	75,248	Α
3	1	‡ -	кз	9	10	81	0,111	150	3,750	1,994	1805	~	5	200	0,750	74, 308	1,973	5,609	9,614	59,530	Е
:	Knotenpu	unktssumi	men:					2330						4145							
(Gewichte	te Mittelw	erte:												0,608	26,731					

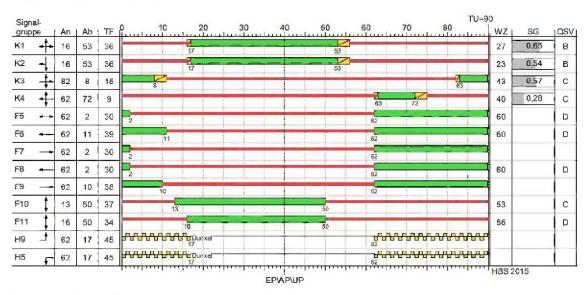
Entwicklungsstufe 2 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws.ss>ns	nc [Kfz/U]	C [Kf2/h]	ж	tw [s]	Nee [Kfz]	Nws [Kfz]	Nws.95 [Kfz]	L× [m]	QSV
•	1	+	K2	42	43	48	0,478	549	13,725	1,909	1886	-	23	901	0,609	21,305	1,003	11,109	16,746	106,203	8
2	2	1	K2	42	43	48	0,478	551	13,775	1,903	1892	-	23	904	0,610	21,323	1,008	11.158	16,807	106,590	8
4	1	+	K4	9	10	81	0,111	60	1,500	1,868	1928	-	5	214	0,280	40,423	0,221	1,597	3,734	22,404	С
	3	+	K1	42	43	48	0,478	80	2,000	1,972	1826	-	5	207	0,386	43,367	0,365	2,220	4,740	28,980	C
1	2	+	K1	42	43	48	0,478	636	15,900	1,872	1923	-	23	919	0,692	24,417	1,556	13,958	20,277	126,528	8
	1	+	KI	42	43	48	0,478	634	15,850	1,875	1920	-	23	917	0,691	24,382	1,547	13,901	20,207	125,970	В
3	1	+	КЗ	9	10	81	0,111	270	6,750	1,936	1860		5	206	1,311	634,494	34,018	40,768	51,567	309,402	F
	Knotenpu	nktssum	men:					2780						4268							
(Gewichte	te Mittelw	erte:												0,702	83,324					

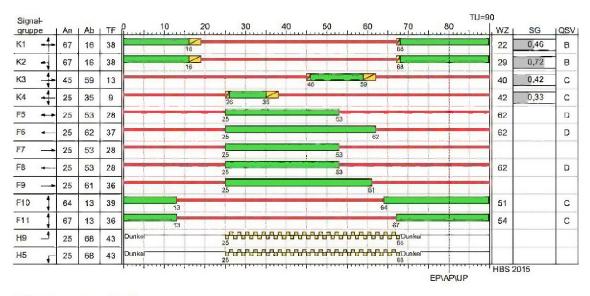
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N мs.95 > nк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
2	1	+	К2	38	39	52	0,433	534	13,350	1,891	1903	-	21	825	0,647	25,337	1,213	11,719	17,509	110,097	В
2	2	.	K2	38	39	52	0,433	536	13,400	1,886	1909	1	21	827	0,648	25,415	1,219	11,780	17,585	170,574	В
4	1	+	K4	9	10	81	0,111	70	1,750	1,896	1898	(=	5	210	0,333	41,849	0,287	1,902	4,234	25,404	C
	3	+	K1	38	39	52	0,433	40	1,000	2,009	1792	14	5	188	0,213	39,782	0,152	1,067	2,814	17,526	C
1	2	1	K1	38	39	52	0,433	296	7,400	1,978	1820	_	20	789	0,375	18,868	0,350	5,359	9,274	61,153	А
	1	1+	K1	38	39	52	0,433	294	7,350	1,979	1819	-	20	787	0,374	18,859	0,349	5,322	9,224	60,712	Α
3	1	+	КЗ	13	14	77	0,156	120	3,000	1,974	1823	-	7	285	0,421	39,702	0,427	3,137	6, 132	39,551	С
	Knotenpu	ınktssumi	men:					1890						3911							
(Gewichte	te Mittelv	erte:												Q 527	25,168					

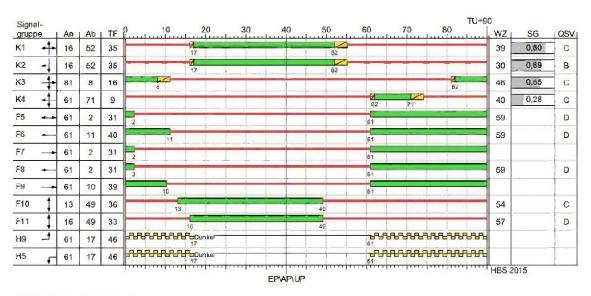
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	<u>د</u> [s]	ts [s]	fa.	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	№5,95> л қ	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nes [Kfz]	NMS,95 [Kfz]	L: [m]	QSV
	1	+	K2	36	37	54	0,411	420	10,500	1,906	1889		19	776	0,541	23,457	0,729	8,682	13,665	86,581	В
2	2		KZ	36	37	54	0,411	420	10,500	1,903	1892	_	19	778	0,540	23,424	0,726	8,675	13,656	86,606	В
4	1	+	K4	9	10	81	0,111	60	1,500	1,868	1928	-	5	214	0,280	40,423	0,221	1,597	3,734	22,404	С
	3	* 1	K1	36	37	54	0,411	50	1,500	1,983	1815	-	6	227	0,264	38,864	0,204	1,561	3,674	22,595	C
1	2	1	K1	36	37	54	0,411	510	12,750	1,872	1923	-	20	790	0,646	26,753	1,206	11,430	17,148	107,004	В
	1	-	K1	36	37	54	0,411	510	12,750	1,878	1917	-	20	788	0,647	26,804	1,212	11,442	17,163	107,097	В
3	1	+	КЗ	15	16	75	0,170	190	4,750	1,929	1066	-	0	332	0,572	42,042	0,629	5,176	9,024	54,144	С
	Knotenpu	ınktssumi	men:					2170						3905							
	Gewichte	te Mittelw	rerte:												0,578	27,604					

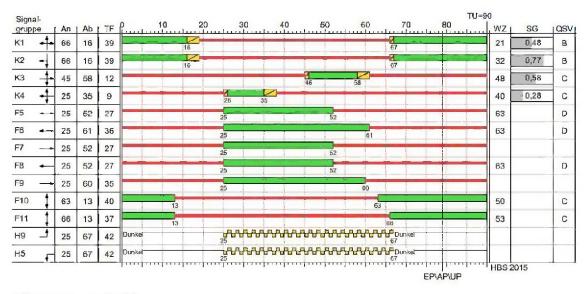
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t: [5]	ta [S]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nwsas>nk	nc [Kfz/U]	C [Kfz/h]	ж	tw [5]	NGE [Kfz]	Nws [Kfz]	Nws.95 [Kfz]	Lx [m]	QSV
2	1	+	K2	38	39	52	0,433	594	14,850	1,891	1904	-	21	824	0,721	29,108	1,848	14,090	20,438	128,392	В
2	2		K2	38	39	52	0,433	596	14,900	1,886	1909	-	21	827	0,721	29,078	1,848	14,131	20,489	128,835	В
4	1	+	K4	9	10	81	0,111	70	1,750	1,896	1898	-	5	210	0,333	41,849	0,287	1,902	4,234	25,404	С
	3	4	K1	38	39	52	0,433	40	1,000	2,009	1792	-	4	167	0,240	41,701	0,178	1,106	2,885	17,968	C
1	2	1	K1	38	39	52	0,433	365	9,125	1,975	1823	-	20	789	0,463	20,454	0,517	6,988	11,459	75,423	В
	1	+	K1	38	39	52	0,433	365	9,125	1,981	1817	_	20	788	0,463	20,457	0,517	6,988	11,459	75,561	В
3	1	1-	КЗ	13	14	77	0,156	120	3,000	1,985	1814	-	7	283	0,424	39,834	0,433	3,144	6,143	37,964	С
	Knotenpu	ınktssumı	men:					2150						3888							
	Sewichte	te Mittelw	erte:												0,595	27,410					

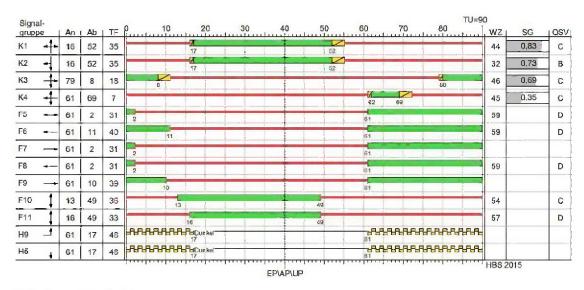
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	№5,95>пк	nc [Kfz/U]	C (Kfz/h)	×	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	<u>L</u> x [m]	QSV
	1	+	К2	35	36	55	0,400	524	13,100	1,908	1886	-	19	756	0,693	29,827	1,557	12,431	18,394	116,655	В
2	2		K2	35	36	55	0,400	526	13,150	1,901	1894	-	19	758	0,694	29,862	1,566	12,488	18,465	116,994	В
4	1	+!	K4	9	10	81	0,111	60	1,500	1,868	1928	-	5	214	0,280	40,423	0,221	1,597	3,734	22,404	С
	3	+	K1	35	36	55	0,400	60	2,500	1,983	1815	-	4	176	0,341	44,024	0,297	1,698	3,902	23,997	С
1	2	1	К1	35	36	55	0,400	611	15,275	1,874	1921	•	19	769	0,795	38,421	3,133	16,571	23,456	146,506	С
	1	1+ 1	К1	35	36	55	0,400	609	15,225	1,875	1920	14	19	767	0,794	38,323	3,107	16,494	23,363	145,645	C
3	1	+1	КЗ	16	17	74	0,189	230	5,750	1,930	1865	-	9	353	0,652	46,168	1,217	6,536	10,860	65,160	С
	Knotenpu	ınktssumi	men:					2620						3793							
(Gewichte	te Mittelw	erte:												0,719	35,815					

Entwicklungsstufe 2 - Spitzenstunde früh

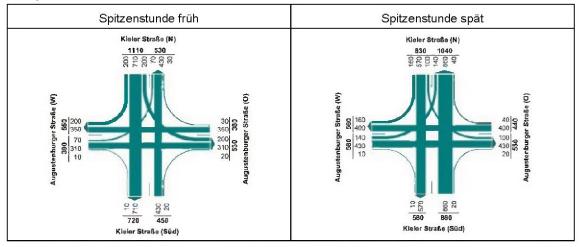


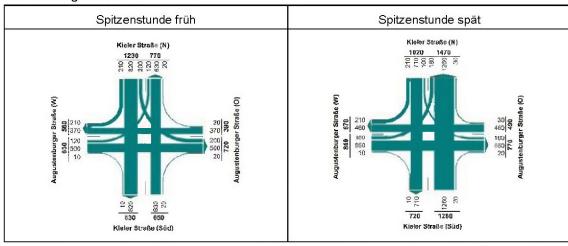
A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t# [5]	ta [5]	ts [5]	fe	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Ŋм≲э5>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
-	1	+	К2	39	40	51	0,444	648	16,200	1,899	1896	-	21	842	0,770	32,207	2,589	16,275	23,098	145,240	В
2	2		К2	39	40	51	0,444	652	16,300	1,885	1910	-	21	848	0,769	32,033	2,570	16,331	23,166	145,529	В
4	1	+	K4	9	10	81	0,111	60	1,500	1,868	1928	-	5	214	0,280	40,423	0,221	1,597	3,734	22,404	С
	3	4	K1	39	40	51	0,444	40	1,000	2,009	1792	-	4	155	0,258	43,021	0,197	1,132	2,931	18,254	С
1	2		K1.	39	40	51	0,444	391	9,775	1,976	1822	-	20	809	0,483	20,219	0,564	7,483	12,109	79,774	В
	1	+	K1	39	40	51	0,444	389	9,725	1,979	1819	-	20	808	0,481	20,180	0,559	7,434	12,045	79,352	В
3	1	+	К3	12	13	78	0,144	150	3,750	1,994	1805	-	7	260	0,577	47,633	0,843	4,344	7,869	48,725	¢
	Knotenpi	ınktssumi	men:					2330						3936							
(Gewichte	te Mittelw	erte:												0,639	29,529					

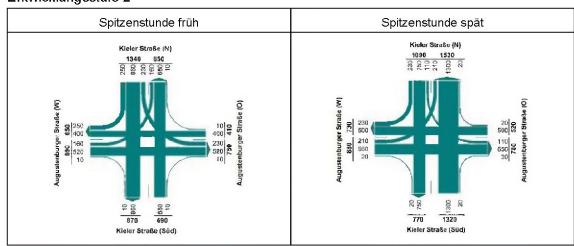
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

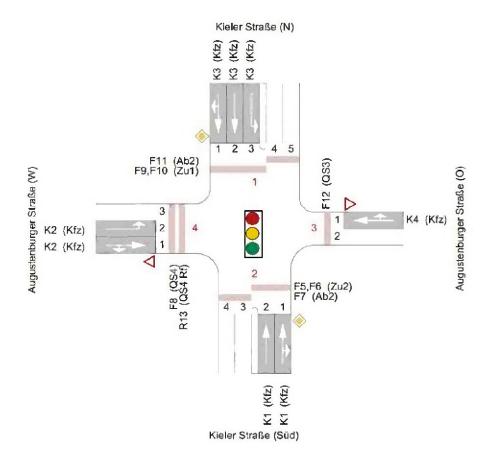

Zuf	Estr.Nr.	Symbol	SGR	ts [s]	[s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N=15,55 > n ik	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	NMs [Kfz]	NMS,95 [Kfz]	[x [m]	QSV
-	1	+	К2	35	36	55	0,400	549	13,725	1,909	1886		19	755	0,727	31,965	1,913	13,525	19,745	125,223	В
2	2		К2	35	36	55	0,400	551	13,775	1,903	1892	-	19	757	0,728	32,011	1,925	13,586	19,820	125,698	В
4	1	+	K4	7	8	83	0,089	60	1,500	1,868	1928	-	4	172	0,349	44,991	0,308	1,718	3,935	23,610	C
	3	•	K1	35	36	55	0,400	80	2,000	1,972	1826		4	168	0,476	50,307	0,537	2,436	5,076	31,035	D
1	2	1	K1	35	36	55	0,400	636	15,900	1,872	1923	-	19	769	0,827	43,744	4,173	18,429	25,689	160,299	c
	1	+	K1	35	36	55	0,400	634	15,850	1,875	1920	•	19	767	0,827	43,785	4,171	18,382	25,633	159,796	C
3	1	+	К3	18	19	72	0,211	270	6,750	1,936	1860	-	10	302	0,689	46,417	1,485	7,717	12,415	74,490	С
	Knotenpi	ınktssumi	men:					2780						3780							
	Gewichte	te Mittelw	erte:												0,754	39,577					


24 Kieler Straße / Augustenburger Straße (LSA 621)

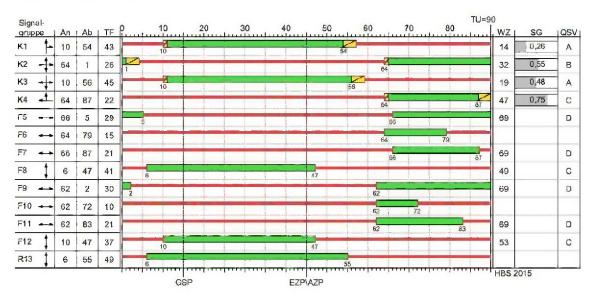
24.1 Kieler Straße / Augustenburger Straße – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

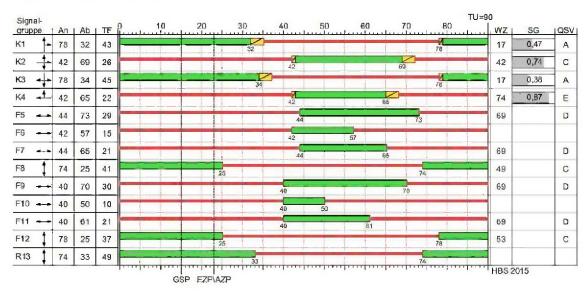
Entwicklungsstufe 1



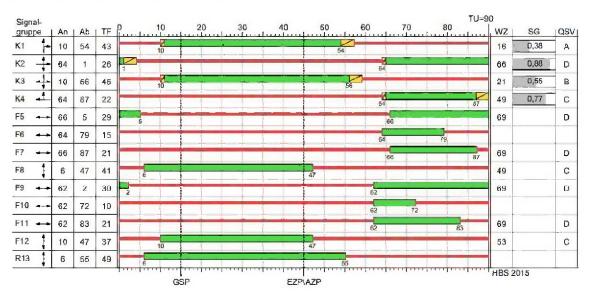
Entwicklungsstufe 2



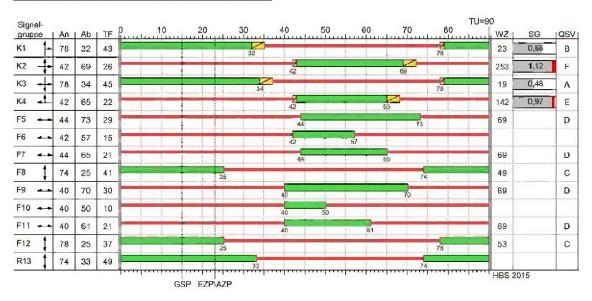
24.2 Kieler Straße / Augustenburger Straße – Knotenpunktgeometrie Bestand


Analyse – Spitzenstunde früh

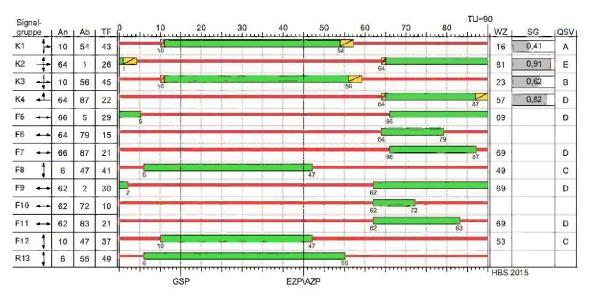
Zuf	Fstr.Nr,	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N MS,95 > NK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{M5} [Kfz]	Nws.95 [Kfz]	Ек [m]	QSV
	1	+	КЗ	45	46	45	0,511	453	11,325	1,965	1832	-	23	936	0,484	16,477	0,567	7,925	12,686	82,434	Α
1	2		КЗ	45	46	45	0,511	457	11,425	1,951	1845	1-	24	944	0,484	16,458	0,567	7,990	12,771	83,063	Α
	3	L.	К3	45	46	45	0,511	200	5,000	1,827	1970	1=	12	479	0,418	31,882	0,423	4,636	8,277	50,407	В
3	1	+	K4	22	23	68	0,256	360	9,500	1,829	1969	-	13	504	0,754	46,803	2,231	10,990	16,597	101,275	C
	2	1	К1	43	44	47	0,489	225	5,625	2,065	1743	-	21	852	0,264	14,354	0,204	3,504	6,670	45,903	Α
2	1	-	K1	43	44	47	0,489	225	5,625	2,065	1744	-	21	851	0,264	14,355	0,204	3,504	6,670	45,863	Α
	2		K2	26	27	64	0.300	70	1.750	2.080	1731	-	7	270	0.259	36.045	0.198	1.737	3.966	25.581	С
4	1	→	K2	26	27	64	0,300	320	8,000	1,863	1932	-	14	579	0,553	31,211	0,768	7,482	12,108	75,118	В
	Knotenpu	ınktssumi	men:					2330						5415							
	Gewichte	te Mittelw	erte:												0,483	24,943					


Analyse - Spitzenstunde spät

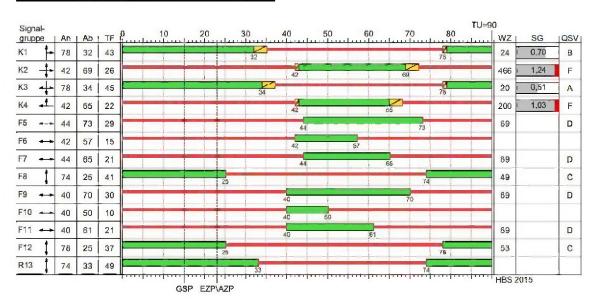
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95>nx	n∈ [Kfz/IJ]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	+	КЗ	45	46	45	0,511	362	9,050	1,912	1882	-	24	962	0,376	14,637	0,352	5,830	9,914	62,161	A
1	2	1	K 3	45	46	45	0,511	368	9,200	1,881	1914	-	24	978	0,376	14,616	0,352	5,921	10,036	62,926	Α
	3	L,	К3	45	46	45	0,511	100	2,500	1,827	1970	-	8	318	0,314	36,340	0,263	2,472	5, 131	31,248	С
3	1	4	K4	22	23	68	0,256	440	11,000	1,825	1973	-	13	505	0,871	73,774	5,852	16,384	23,230	141,471	E
	2	1	K1	43	44	47	0,489	441	11,025	1,867	1928	-	24	942	0,468	17,256	0,528	7,834	12,568	78, 198	A
2	1	+	K1	43	44	47	0,489	439	10,975	1,871	1924	-	24	940	0,467	17,242	0,526	7,794	12,516	77,950	Α
	2	_	K2	26	27	64	0,300	140	3,500	1,945	1851	-	6	255	0,549	45,667	0,743	4,007	7,392	44,574	С
4	1	→	K2	26	27	64	0,300	440	11,000	1,825	1973	-	15	592	0,743	41,127	2,097	12,006	17,866	108,482	С
	Knotenpu	nktssumi	men:					2730						5492							
(Gewichte	te Mittelw	erte:												0,551	31,714					


Entwicklungsstufe 1 – Spitzenstunde früh

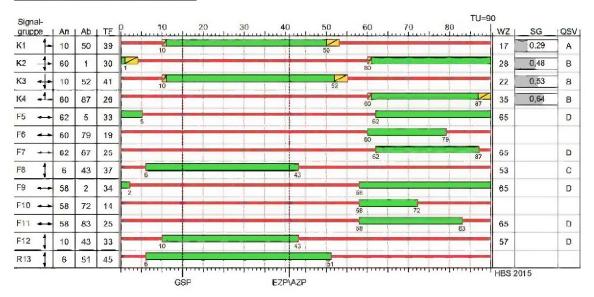
Zuf	Fstr.Nr.	Symbol	SGR	t= [s]	t^ [5]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Ktz/h]	N _M 5,95>n _K	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nмs [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	+	КЗ	45	46	45	0,511	513	12,825	1,964	1833	-	23	937	0,547	17,817	0,750	9,454	14,654	95,310	A
1	2	ļ.	КЗ	45	46	45	0,511	517	12,925	1,949	1847	-	24	944	0,548	17,821	0,754	9,533	14,755	95,878	A
	3	L,	K3	45	46	45	0,511	200	5,000	1,827	1970	-	10	388	0,515	38,278	0,645	5,113	8,937	54,426	С
3	1	<u>+</u>	K4	22	23	68	0,256	390	9,750	1,828	1970	-	13	504	0,774	49,364	2,562	11,609	17,371	105,894	С
	2	1	K1	43	44	47	0.489	325	8,125	2,061	1747	-	21	853	0,381	15,960	0,360	5,463	9,416	64,688	Α
2	1	1	K1	43	44	47	0,489	325	8,125	2,067	1742	-	21	853	0,381	15,960	0,360	5,463	9,416	64,857	A
	2	_±	К2	26	27	64	0,300	120	3,000	2,080	1731	-	7	265	0,453	41,345	0,490	3,220	6,255	40,345	С
4	1	7*	K2	26	27	64	0,300	510	12,750	1,864	1931	-	15	580	0,879	71,248	6,654	18,775	26, 103	162,100	E
	Knotenpu	ınktssumi	men:					2900						5324							
-	Gewichte	te Mittelw	erte:												0,593	33,425					


Entwicklungsstufe 1 - Spitzenstunde spät

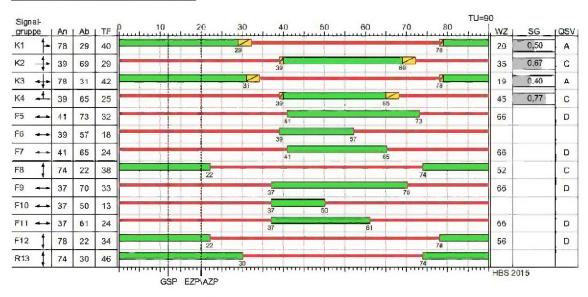
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	[s]	fA	q [Kfz/h]	m [Kfz/U]	tв [s/Kfz]	ışs [Kfz/h]	Nws,95>nk	n⊂ [Kfz/IJ]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	-	кз	45	46	45	0,511	455	11,375	1,913	1881	r	24	961	0,473	16,213	0,540	7,875	12,621	78,982	A
1	2		КЗ	45	46	45	0,511	465	11,625	1,881	1914	-	24	979	0,475	16,213	0,545	8,052	12,851	80,576	Α
	3	4	КЗ	45	46	45	0,511	100	2,500	1,827	1970		6	229	0,437	44,221	U,457	2,785	5,607	34,147	C
3	1	→	K4	22	23	68	0,256	490	12,250	1,825	1972		13	504	0,972	142,025	15,241	27,374	36,223	220,598	Е
	2	1	К1	43	44	47	0,489	640	16,000	1,868	1927	-	24	942	0,679	23,113	1,445	13,685	19,941	124,193	В
2	1	+	К1	43	44	47	0,489	640	16,000	1,870	1925	-	24	941	0,680	23,163	1,453	13,702	19,962	124,323	В
	2		K2	26	27	64	0,300	180	4,500	1,943	1853	-	5	199	0,905	134,364	5,231	9,680	14,947	90,011	E
4	1	7	К2	26	27	64	0,300	660	16,500	1,825	1973	-	15	591	1,117	285,638	41,721	58,221	71,126	432,304	F
	Knotenpu	ınktssumr	nen:					3630						5346							
	Gewichte	te Mittelw	erte:												0,751	91,255					


Entwicklungsstufe 2 - Spitzenstunde früh

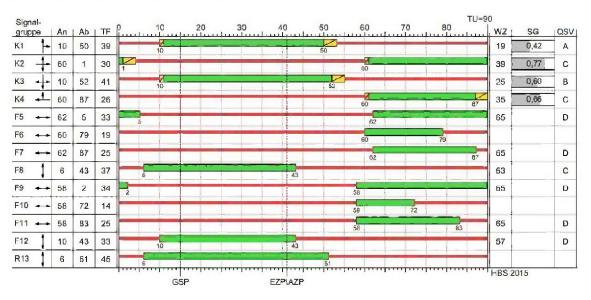
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _M s [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	+	КЗ	45	46	45	0,511	553	13,825	1,963	1834	-	23	937	0,590	18,924	0,916	10,594	16,099	104,515	A
1	2		КЗ	45	46	45	0,511	557	13,925	1,949	1847	-	24	944	0,590	18,898	0,916	10,664	16,187	105,183	Α
	3	4	КЗ	45	46	45	0,511	230	5,750	1,829	1968	(x)	9	372	0,618	43,489	1,031	6,311	10,560	64,374	С
ы	1	<u>.</u> t.	K4	22	23	68	0,256	410	10,250	1,830	1967	-	13	503	0,815	56,619	3,513	13,150	19,283	117,665	D
	2	1	К1	43	44	47	0,489	345	8,625	2,063	1745	-	21	852	0,405	16,346	0,401	5,897	10,004	68,788	A
2	1	+	К1	43	44	47	0,489	345	8,625	2,066	1742	-	21	852	0,405	16,346	0,401	5,897	10,004	68,908	A
	2	_1	К2	26	27	54	0,300	160	4,000	2,080	1731	-	6	254	0,630	51,349	1,077	4,837	8,557	55,193	D
4	1	7-	К2	26	27	64	0,300	530	13,250	1,864	1931	-	15	580	0,91.4	90,345	9,661	22,440	30,452	189,107	E.
	Knotenpu	ınktssumi	men:					3130						5294							
	Gewichte	te Mittelw	erte:												0,638	38,845					


Entwicklungsstufe 2 - Spitzenstunde spät

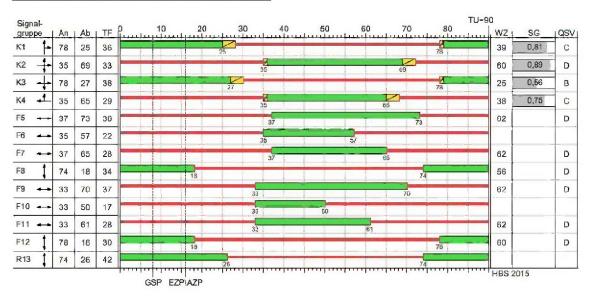
Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [5]	ts [s]	f.	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/ħ]	Nasas>nk	nc [Kfz/U]	ር [Kfz/ክ]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	۱. [m]	QSV
	1	-	К3	45	46	45	0,511	485	12,125	1,915	1880	-	24	961	0,505	16,833	0,622	8,613	13,576	85,040	Α
1	2		КЗ	45	46	45	0,511	495	12,375	1,879	1916		24	979	0,505	16,811	0,625	8,787	13,800	86,443	Α
	3	L.	K 3	45	46	45	0,511	110	2,750	1,825	1973	-	6	222	0,495	47,005	0,586	3,170	6,181	37,605	С
3	1	+	K4	22	23	68	0,256	520	13,000	1,826	1972	-	13	504	1,032	200,044	23,319	36,319	46,511	283,252	F
_	2	1	X1	43	44	47	0,489	660	16,500	1,868	1927	-	24	942	0,701	24,150	1,641	14,470	20,903	130,184	В
2	1	-	K1	43	44	47	0,489	660	16,500	1,870	1925	-	24	941	0,701	24,157	1,641	14,470	20,903	130,184	В
	2		K2	26	27	64	0,300	210	5,250	1,943	1853	x								146,540	
4	1		K2	26	27	64	0,367	670	16,750	1,826	1971	-	18	712	1,235	466,138	86,558	108,558	126,179	766,915	F
	Knotenpe	unktssumi	men:					3810						5261							
-	Gewichte	te Mittelw	erte:												0,814	149,019					


Analyse - Spitzenstunde früh

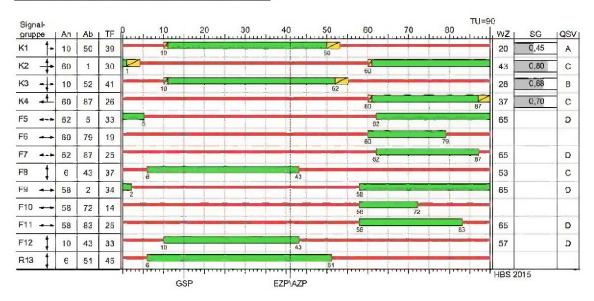
Zuf	Fstr.Nr,	Symbol	\$GR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,ss>nx	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	NMS,55 [Kfz]	L _x	QSV
	1	*	К3	41	42	49	0,467	453	11,325	1,965	1832		21	856	0,529	19,884	0,691	8,708	13,699	89,016	A
1	2		К3	41	42	49	0,467	457	11,425	1,951	1845	-	22	863	0,530	19,884	0,694	8,786	13,799	89,749	A
	3	4	К3	41	42	49	0,467	200	5,000	1,827	1970	-	11	440	0,455	34,302	0,497	4,821	8,534	51,972	В
3	1	+	K4	26	27	64	0,300	380	9,500	1,829	1969	-	15	591	0,643	34,508	1,180	9,419	14,609	89,144	8
_	2	1	K1	39	40	51	0,444	225	5,625	2,065	1743	-	19	774	0,291	17,068	0,235	3,827	7,136	49,110	A
2	1	1-	K1	39	40	51	0,444	225	5,625	2,065	1744	-	19	774	0,291	17,068	0,235	3,827	7,136	49,067	A
	2		K2	30	31	60	0,344	70	1,750	2,080	1731	-	8	313	0,224	33,335	0,163	1,657	3,834	24,729	В
4	1	-	K2 -	30	31	60	0,344	320	8,000	1,863	1932	-	17	654	0,482	26,256	0,561	6,852	11,279	69,975	8
	Knotenpu	nktssæmi	nen:					2330						5275							
	Gewichter	te Mittelw	erte:												0,480	24,242					


Analyse – Spitzenstunde spät

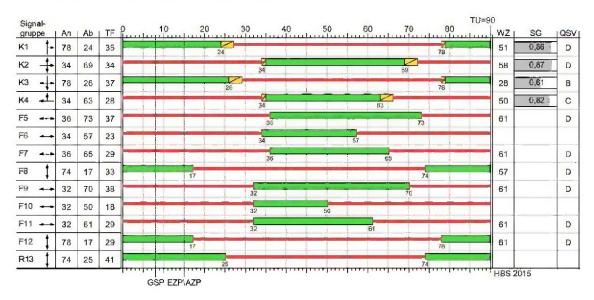
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	t^ [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Ммs,эs>пх	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nse [Kfz]	NMs [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	+	КЗ	42	43	48	0,478	362	9,050	1,912	1882	-	23	900	0,402	16,758	0,395	6,243	10,469	65,641	Α
1	2	•	КЗ	42	43	48	0,478	368	9,200	1,881	1914	-	23	915	0,402	16,732	0,395	6,340	10,598	66,449	Α
	3	4	КЗ	42	43	48	D,478	100	2,500	1,827	1970	-	7	298	0,336	37,698	0,292	2,528	5,217	31,772	C
3	1	*	K4	25	26	65	D,289	440	11,000	1,825	1973	-	14	570	0,772	45,412	2,554	12,621	18,629	113,451	C
	2	1	K1	40	41	50	0,456	440	11,000	1,868	1927	-	22	879	0,501	19,762	0,611	8,367	13,259	82,577	Α
2	1	+	K1	40	41	50	0,456	440	11,000	1.871	1924	-	22	878	0.501	19,765	0,611	8,367	13,259	82,577	Α
	2	1	K2	29	30	61	0,333	140	3,500	1,945	1851	-	7	288	0,486	41,760	0,566	3,762	7,042	42,463	С
4	1	→	K2	29	30	61	0,333	440	11,000	1,825	1973	-	16	657	0,670	33,243	1,364	10,808	16,368	99,386	В
	Knotenpi	ınktssum	men:	_		•		2730						5385							
	Gewichte	te Mittelw	erte:												0,539	27,048					


Entwicklungsstufe 1 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	t⊧ [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	NMS,85> nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Noe [Kfz]	Nivis [Kfz]	Nм5,95 [Kfz]	Lx [m]	QSV
	1	4	КЗ	41	42	49	0,467	513	12,825	1,964	1833		21	857	0,599	21,761	0,955	10,446	15,912	103,492	В
1	2	\downarrow	КЗ	41	42	49	0,467	517	12,925	1,949	1847	-	22	863	0,599	21,733	0,955	10,520	16,005	104,000	В
	3	L.	КЗ	41	42	49	0,467	200	5,000	1,827	1970	-	9	355	0,563	41,752	0,797	5,359	9,274	56,479	C
3	1	<u>+</u>	K4	26	27	64	0,300	390	9,750	1,828	1970	-	15	591	0,660	35,346	1,289	9,799	15,093	92,007	С
_	2	1	K1	39	40	51	0,444	325	8,125	2,061	1747	-	19	775	0,419	19,070	0,426	5,976	10,110	69,456	Α
2	1	1-	K1	39	40	51	0,444	325	8, 125	2,067	1742	+	19	775	0,419	19,070	0,426	5.976	10,110	69,638	Α
	2	4	K2	30	31	60	0,344	120	3,000	2,080	1731	-	8	308	0,390	37,034	0,373	3,023	5,964	38,468	C
4	1	→ *	K2	30	31.	60	0,344	510	12,750	1,864	1931	-	17	664	0,768	39,932	2,511	13,878	20,178	125,305	С
	Knotenpe	ınktssum	men:					2900						5188							
1	Gewichte	te Mittelw	erte:												0,585	28,186					

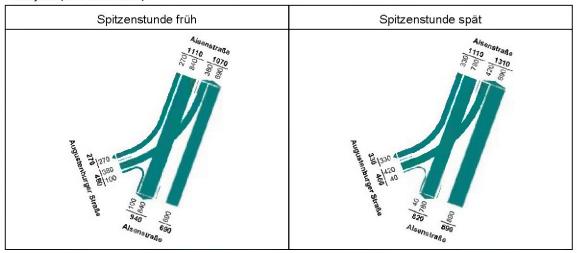

Entwicklungsstufe 1 - Spitzenstunde spät

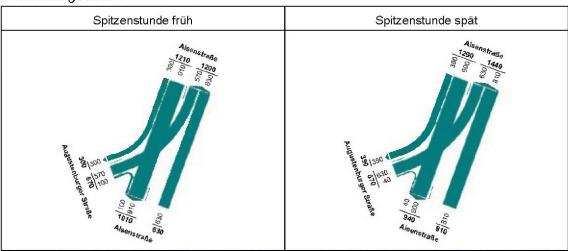
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kf2/h]	Nws.es>nx	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	+	КЗ	38	39	52	0,433	455	11,375	1,913	1881		20	814	0,559	22,585	0,791	9,300	14,458	90,478	В
1	2	. ↓	К3	38	39	52	0,433	465	11,625	1,881	1914		21	830	0,560	22,546	0,795	9,496	14,708	92,219	В
	w	L	К3	38	39	52	0,433	100	2,500	1,827	1970		5	194	0,515	50,379	0,637	3,012	5,947	36,217	D
3	1	<u>+</u>	K4	29	30	61	0,333	490	12,250	1,825	1972	-	16	657	0,746	38,429	2,152	13,023	19,126	116,477	С
	2	1	K1	36	37	54	0,411	640	16,000	1,868	1927	-	20	792	0,808	39,342	3,513	17,623	24,723	153,975	С
2	1	+	K1	36	37	54	0,411	640	16,000	1,870	1925	-	20	791	0,809	39,517	3,544	17,662	24,770	154,268	С
	2	Ė	K2	33	34	57	0,378	180	4,500	1,943	1853	-	8	304	0,592	45,573	0,907	5,074	8,884	53,517	C
4	1	+	K2	33	34	57	0,378	660	16,500	1,825	1973	-	19	746	0,885	63,745	7,788	23,210	31,358	190,594	D
	Knotenpu	inktssumi	men:					3630						5128							
	Gewichte	te Mittelw	erte:												0,732	40,048					


Entwicklungsstufe 2 – Spitzenstunde früh

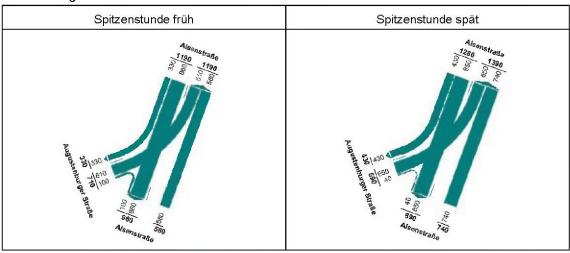
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nws.95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	Nм5,95 [Kfz]	[m]	QSV
	1	-	КЗ	41	42	49	0,467	553	13,825	1,963	1834	•	21	857	0,645	23,288	1,201	11,736	17,530	113,805	В
1	2	1	КЗ	41	42	49	0,467	557	13,925	1,949	1847	•	22	863	0,645	23,305	1,201	11,822	17,637	114,605	В
	3	L,	КЗ	41	42	49	0,467	230	5,750	1,829	1968	(x)	9	340	0,676	49,412	1,375	6,760	11,157	68,013	С
3	1	_1_	K4	26	27	64	0,300	410	10,250	1,830	1967	-	15	590	0,695	37,395	1,563	10,628	15,142	98,498	C
	2		К1	39	40	51	0,444	345	8,625	2,063	1745	-	19	774	0,446	19,579	0,480	6,460	10,759	73,979	Α
2	L	-	К1	39	40	51	0,444	345	8,625	2,066	1742	-	19	774	0,446	19,579	0,480	6,460	10,759	74,108	Α
	2	_+	K2	30	31	60	0,344	160	4,000	2,080	1731	-	7	296	0,541	42,835	0,720	4,374	7,911	51,026	C
4	1		K2	30	31	60	0,344	530	13,250	1.864	1931	-	17	665	0,797	43,678	3,140	15,115	21,690	134,695	Ç
	Knotenpi	ınktssum	men;					3130						5159							
	Gewichte	te Mittelw	erte:												0,630	30,693					

Entwicklungsstufe 2 - Spitzenstunde spät

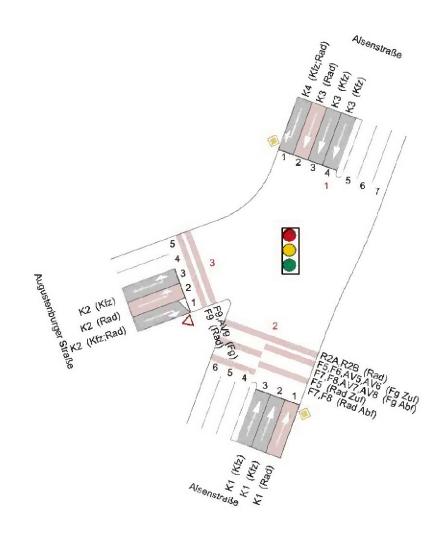

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	tı [s/Kfz]	qs [Kfz/h]	NM5,95>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	ն [m]	QSV
	1	-	КЗ	37	38	53	0,422	486	12,150	1,914	1880	-	20	794	0,612	24,875	1,016	10,484	15,960	99,973	В
1	2		КЗ	37	38	53	0,422	494	12,350	1,879	1916	-	20	809	0,611	24,760	1,012	10,630	16,144	101,126	В
	3	4	КЗ	37	38	53	0,422	110	2,750	1,825	1973	-	5	184	0,598	57,101	0,915	3,556	6,745	41,037	D
3	1	<u>+</u>	K4	28	29	62	0,322	520	13,000	1,826	1972	-	16	634	0,820	49,684	3,800	15,776	22,493	136,982	С
,	2	1	KI	35	db	55	0,400	660	16,500	1,868	1927	-	19	//1	0,856	50,932	5,632	20,687	28,379	1/6,/44	D
2	1	+	К1	35	36	55	0,400	660	16,500	1,870	1,925	-	19	770	0,857	51,267	5,693	20,757	28,462	177,261	D
,	2	_	K2	34	35	56	0,389	210	5,250	1,943	1853	-	7	292	0,719	57,234	1,723	6,710	11,091	66,812	D
4	1	→	К2	34	35	56	0,389	670	16,750	1,826	1971	1-	19	767	0,874	57,853	6,903	22,409	30,415	184,862	D
	Knotenpu	ınktssumi	men:					3810						5021							
(Gewichte	te Mittelw	erte:												0,777	45,845					


25 Alsenstraße / Augustenburger Straße (LSA 942)

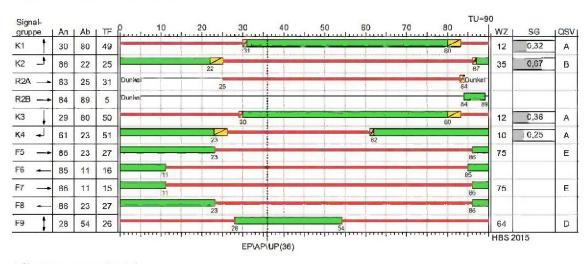
25.1 Alsenstraße / Augustenburger Straße – Knotenstrombelastungen


Analyse (VZ 23.08.2012)

Entwicklungsstufe 1



Entwicklungsstufe 2



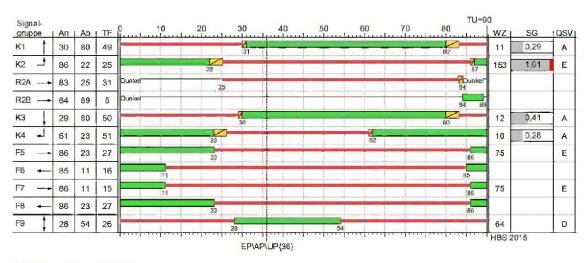
25.2 Alsenstraße / Augustenburger Straße – Knotenpunktgeometrie Bestand

Analyse – Spitzenstunde früh

A-Signalgruppen ausgeblendet!

Zuf	Fstr. Nr.	Symbol	SGR	t F [s]	ta [s]	ts [s]	fA	g [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nivis [Kfz]	N145,95 [K\$z]	L _x [m]	QSV
	1	4 ./	K4	51	52	39	0,578	270	6,750	1,956	1840	-	27	1064	0,254	10,049	0,194	3,533	6,712	40,715	А
1	3	1	КЗ	50	51	40	0,567	420	10,500	1,838	1959	-	28	1110	0,378	11,890	0,355	6,142	10,333	63,300	A
	4	1	КЗ	50	51	40	0,567	420	10,500	1,838	1959	-	28	1110	0,378	11,890	0,355	6,142	10,333	63,300	Α
	3	1	К1	49	50	41	0,556	345	8,625	1,863	1932	-	27	1073	0,322	11,725	0,274	4,939	8,698	54,015	A
2	2	1	К1	49	50	41	0,556	345	8,625	1,863	1932	-	27	1073	0,322	11,725	0,274	4,939	8,698	54,015	A
	3	1	K2	25	26	65	0,289	380	9,500	1,843	1953	-	14	564	0,674	37,111	1,388	9,776	15,064	92,553	С
3	1	~	K2	25	26	65	0,289	100	2,500	2,038	1766	-	13	510	0,196	25,081	0,137	2,021	4,425	27,957	В
	Knotenp	unktssumi	men:					2280						6504							
	Gewichte	te Mittelw	erte:												0,388	16,404					

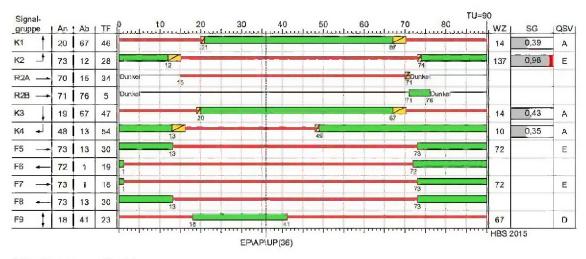
Analyse – Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta (s)	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95 > пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _M s [Kfz]	NMS,95 [Kfz]	Lx (m)	QSV
	1	L.	K4	54	55	36	0,611	330	8,250	1,956	1840	-	28	1124	0,294	9,065	0,239	4,151	7,597	46,083	А
ī	3	1	К3	47	48	43	0,533	390	9,750	1,841	1955	-	26	1041	0,375	13,476	0,350	6,041	10,398	62,595	А
	4	1	К3	47	48	43	0,533	390	9,750	1,841	1955	-	26	1041	0,375	13,476	0,350	6,041	10,198	62,595	Α
	3	1	K1	46	47	44	0,522	445	11,125	1,823	1975	-	26	1031	0,432	14,850	0,451	7,317	11,892	72,280	A
2	2	1	K1	46	47	44	0,522	445	11,125	1,823	1975	-	26	1031	0,432	14,850	0,451	7,317	11,892	72,280	Α
	3	3	К2	28	29	62	0,322	420	10,500	1,809	1990	-	16	641	0,655	33,280	1,258	10,280	15,703	94,689	В
3	1	1	K2	28	29	62	0,322	40	1,000	1,972	1825	-	15	588	0,068	21,394	0,040	0,733	2,181	13,335	В
	Knotenpi	ınktssumi	men:					2460						6497							
	Gewichte	te Mittelw	erte:												0,428	16,891					

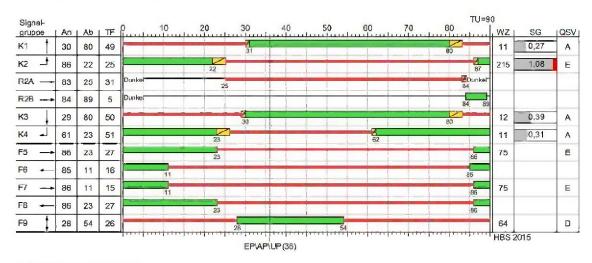
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t ₁ .	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nы5,95>йк	nc [Kfz/U]	C [Kfz/ħ]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	•/	K4	51	52	39	0,578	300	7,500	1,954	1842	-	27	1065	0,282	10,335	0,225	4,006	7,391	44,789	Α
1	3	1	КЗ	50	51	40	0,567	455	11,375	1,841	1955	-	28	1110	0,410	12,322	0,410	6,827	11,246	69,028	Α
	4	1	К3	50	51	40	0,567	455	11,375	1,841	1955	-	28	1110	0,410	12,322	0,410	6,827	11,246	69,028	A
	3	1	K1	49	50	41	0,556	315	7,875	1,865	1930	-	27	1073	0,294	11,407	0,239	4,419	7,974	49,566	A
2	2	1	KΣ	49	50	41	0,556	315	7,075	1,065	1930	-	27	1073	0,294	11,407	0,239	4,419	7,974	49,560	A
_	3	٤	KΖ	25	26	65	0,289	570	14,250	1,843	1953	-	14	564	1,011	174,948	22,396	36,646	46,884	288,055	F
3	1	4	K2	25	26	65	0,289	100	2,500	2,038	1766	-	13	510	0,196	25,081	0,137	2,021	4,425	27,957	8
	Knotenpi	un ktssum i	men:					2510						6505							
(Gewichte	te Mittelw	erte:												0,494	49,294					

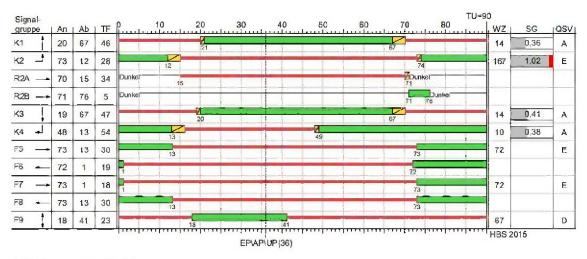
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [\$]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nмs,95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nivis [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	•/	K4	54	55	36	0,611	390	9,750	1,958	1839		28	1124	0,347	9,628	0,308	5,121	8,948	54,332	А
1	3	1	К3	47	48	43	0,533	450	11,250	1,841	1955		26	1042	0,432	14,308	0,451	7,276	11,838	72,662	А
	4	1	КЗ	47	48	43	0,533	450	11,250	1,841	1955	-	26	1042	0,432	14,308	0,451	7,276	11,838	72,662	А
	3	1	ΚI	46	47	44	0,522	405	10,125	1,823	1975	-	26	1031	0,393	14,262	0,380	6,469	10,771	65,466	A
2	2	1	Κĭ	46	47	44	0,522	405	10,125	1,823	1975	-	26	1031	0,393	14,262	0,380	6,469	10,771	65,466	A
,	3	3	К2	28	29	52	0,322	630	15,750	1,811	1988	-	16	640	0,984	144,203	20,253	35,884	46,015	277,747	E
3	1	-4	K2	28	29	52	0,322	40	1,000	1,972	1826	_	15	588	0,068	21,394	0,040	0,733	2,181	13,335	В
	Knotenpi	un ktssum i	men:					2770						6498							
	Gewichte	te Mittelw	rerte:												0,529	43,281					

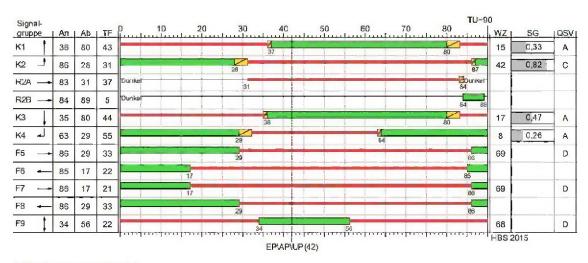
Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>11K	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [K[z]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	•/	K4	51	52	39	0,578	330	8,250	1,952	1844	-	27	1066	0,310	10,634	0,258	4,499	8,086	48,953	А
1	3	1	КЗ	50	51	40	0,567	430	10,750	1,841	1955	-	28	1108	0,388	12,026	0,372	6,340	10,598	65,051	Α
	4	1	КЭ	50	51	40	0,567	430	10,750	1,841	1955	-	28	1108	0,388	12,026	0,372	6,340	10,598	65,051	A
	3	1	K1	49	50	41	0,556	290	7,250	1,865	1930	-	27	1073	0,270	11,146	0,211	3,999	7,381	45,880	A
2	2	1	К1	49	50	41	0,556	290	7,250	1,865	1930	-	27	1073	0,270	11,146	0,211	3,999	7,381	45,880	A
	3	٤	К2	25	26	65	0,289	610	15,250	1,841	1955		14	565	1,080	246,67D	33,692	48,942	60,774	373,031	۶
3	1	~	K2	25	26	65	0,289	100	2,500	2,038	1766	-	13	510	0,196	25,081	0,137	2,021	4,425	27,957	В
	Knotenpe	unktssume	men:					2480						6503							
	Gewichte	te Mittelw	erte:												0,512	69,876					

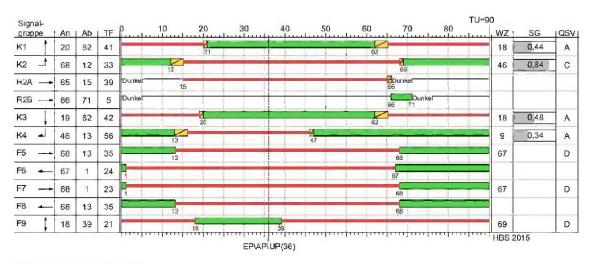
Entwicklungsstufe 2 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbo!	SGR	tr [s]	ta [s]	ts [s]	f _A	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nм5,95≥пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	Lx [m]	QSV
	1	•/	K4	54	55	36	0,611	430	10,750	1,954	1842	•	28	1125	0,382	10,041	0,362	5,817	9,896	59,970	A
1	3	1	КЗ	47	48	43	0,533	425	10,625	1,841	1955	-	26	1041	0,408	13,945	0,406	6,747	11,140	58,377	A
	4	1	K3	47	48	43	0,533	425	10,625	1,841	1955	-	26	1041	0,408	13,945	0,406	6,747	11,140	68,377	A
	3	1	K1	46	47	44	0,522	370	9,250	1,822	1976	uk.	26	1031	0,359	13,791	0,326	5,767	9,828	59,676	A
2	2	1	K1	46	47	44	0,522	370	9,250	1,822	1976	1.0	26	1031	0,359	13,791	0,326	5,767	9,828	59,676	A
•	3	•	K2	28	29	62	0,322	650	16,250	1,811	1988	-	16	640	1,015	175,860	25,840	42,090	53,062	320,282	F
3	3	~	KZ	28	29	62	0,322	40	1,000	1,972	1826	-	15	588	0,068	21,394	0,040	0,733	2,181	13,335	В
	Knotenpu	unktssumr	nen:					2710						6497							
4	Gewichte	te Mittelw	erte:		1										0,531	52,229					

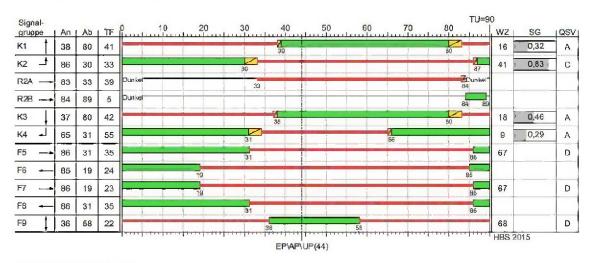
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	№ 8,95>пк	nc [Kfz/U]	C [Kfz/h]	x	1w [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	w /	K4	55	56	35	0,622	300	7,500	1,954	1842		29	1146	0,262	8,317	0,202	3,589	6,793	41,166	Α
1	3	1	КЗ	44	45	46	0,500	455	11,375	1,841	1955	-	24	978	0,465	16,579	0,522	7.932	12,695	77,922	Α
	4	1	КЗ	44	45	46	0,500	455	11,375	1,841	1955	-	24	978	0,465	16,579	0,522	7,932	12,695	77,922	A
	3	1	K1	43	44	47	0,489	315	7,875	1,865	1930	-	24	944	0,334	15,150	0,290	5,100	8,919	55,441	A
2	2	1	K1	43	44	47	0.489	315	7,875	1,865	1930	-	24	944	0,334	15,150	0,290	5,100	8,919	55,441	Α
	3	*	K2	31.	32	59	0,356	570	14,250	1,843	1953	-	17	695	0,820	46,305	3,851	16,811	23,745	145,889	С
3	1	4	К2	31.	32	59	0,356	100	2,500	2,038	1766	-	16	629	0,159	20,390	0,106	1,813	4,090	25,841	В
	Knotenpe	inktssumi	nen.					2510						5314							
	Gewichte	te Mittelw	erte:												0,476	22,135					

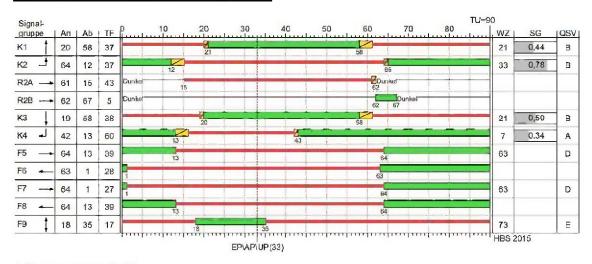
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	5GR	t= [s]	t _A	1s [s]	fa	q [Kfz/h]	m (Kfz/U)	ts [s/Kfz]	qs [Kfz/h]	№ 5,95>дк	nç [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	~ /	K4	56	57	34	0,533	390	9,750	1,958	1839	-	29	1164	0,335	8,592	0,291	4,832	8,550	51,916	Α
1	3	1	K3	42	43	48	0,478	450	11,250	1,841	1955	-	23	934	0,482	18,099	0,562	8,193	13,034	80,003	Α
	4	1	КЗ	42	43	48	0,478	450	11,250	1,841	1955	-	23	934	0,482	18,099	0,562	8,193	13,034	80,003	A
	3	1	K1	41	42	49	0,467	405	10,125	1,823	1975	-	23	922	0,439	17,897	0,465	7,253	11,808	71,769	Α
2	2	1	K1	41	42	49	0,467	405	10,125	1,823	1975	-	23	922	0,439	17,897	0,465	7,253	11,808	71,769	A
_	3	٤	K2	33	34	57	0,378	630	15,750	1,811	1988	-	19	751	0,839	47,929	4,680	19,026	26,403	159,369	С
3	1	1	K2	33	34	57	0,378	40	1,000	1,972	1826	-	1.7	690	0,058	17,977	0,034	0,670	2,054	12,558	A
	Knotenpt	ınktssumr	men:					2770						5317							
	Gewichte	te Mittelw	erte:												0,524	23,484					

Entwicklungsstufe 2 - Spitzenstunde früh



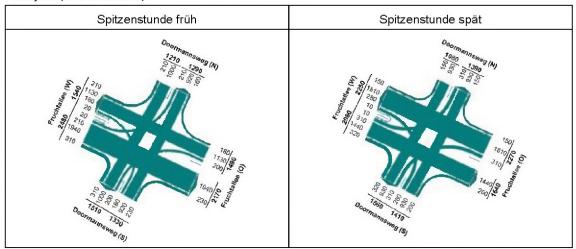
A-Signalgruppen ausgeblendet!

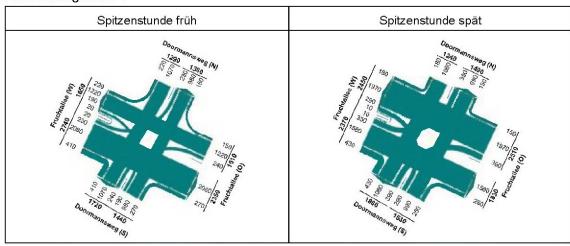
Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	№ м5.95> ПК	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
	1	4 ./	K4	55	56	35	0,622	330	8,250	1,952	1344	-	29	1147	0,288	8,561	0,232	4,031	7,427	44,963	Α
1	3	1	КЗ	42	43	48	0,478	430	10,750	1,841	1955	-	23	934	0,460	17,684	0,510	7,703	12,397	76,093	A
	4	1	КЗ	42	43	48	0,478	430	10,750	1,841	1955	-	23	934	0,460	17,684	0,510	7,703	12,397	76,093	A
	3	1	K1	41	42	49	0,467	290	7,250	1,865	1930		23	901	0,322	16,142	0,274	4,822	8,536	53,060	А
2	2	1	K1	41	42	49	0,467	290	7,250	1,865	1930	-	23	901	0,322	16,142	0.274	4,822	8,536	53,060	Α
	3	٤	K2	33	34	57	0,378	610	15,250	1,841	1955	-	18	739	0,825	45, 126	4,070	17,854	25,000	153,450	C
3	1	-	K2	33	34	57	0,378	100	2,500	2,038	1766	-	17	668	0,150	18,990	0,099	1,747	3,982	25,158	A
	Knotenpu	ınktssæmi	nen:					2480						6224							
	Gewichte	te Mittelw	erte:												0,482	22,912					

Entwicklungsstufe 2 - Spitzenstunde spät

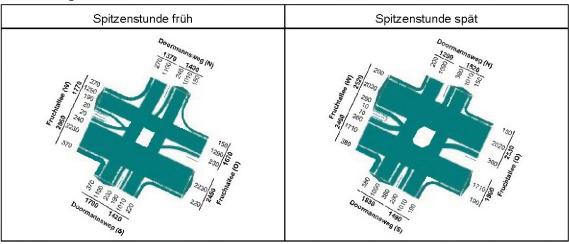
A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	[s]	ta [s]	1s [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95> DK	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS,95 [Kfz]	Lı [m]	QSV
	1	•/	K4	60	61	30	0,678	430	10,750	1,954	1842	-	31	1249	0,344	6,961	0,304	4,818	8,530	51,692	Α
1	3	1	К3	38	39	52	0,433	425	10,625	1,841	1955	-	21	846	0,502	21,094	0,613	8,311	13,187	80,942	В
	4	1	К3	38	39	52	0,433	425	10,625	1,841	1955	-	21	846	0,502	21,094	0,613	8,311	13,187	80,942	В
	3	1	K1	37	38	53	0,422	370	9,250	1,822	1976	-	21	833	0,444	20,553	0,475	7,054	11,546	70,107	В
2	2		K1	37	38	53	0,422	370	9,250	1,822	1976	-	21	833	0,444	20,553	0,475	7,054	11,546	70,107	3
	3	٠	K2	37	38	53	0,422	650	16,250	1,811	1988	-	21	839	0,775	33,874	2,688	16,645	23,545	142,118	В
3	1	-	К2	37	38	53	0,422	40	1,000	1,972	1326	1-	19	771	0,052	15,511	0,030	0,621	1,954	11,947	A
	Knotenpa	ınktssumr	men:					2710						6217							
	Gewichte	te Mittelw	erte:												0,520	21,687					

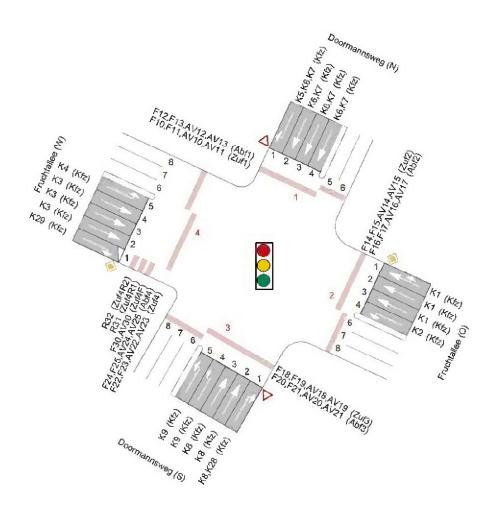

12.04.2019


26 Fruchtallee / Doormannsweg (LSA 813)

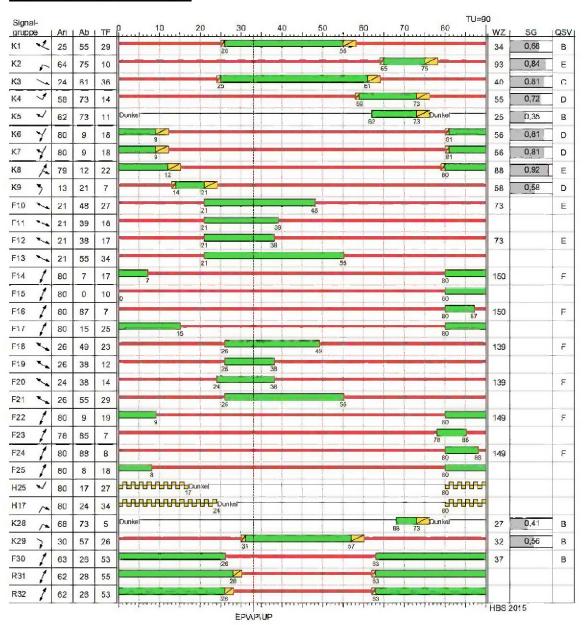
26.1 Fruchtallee / Doormannsweg – Knotenstrombelastungen


Analyse (VZ 29.03.2012)

Entwicklungsstufe 1



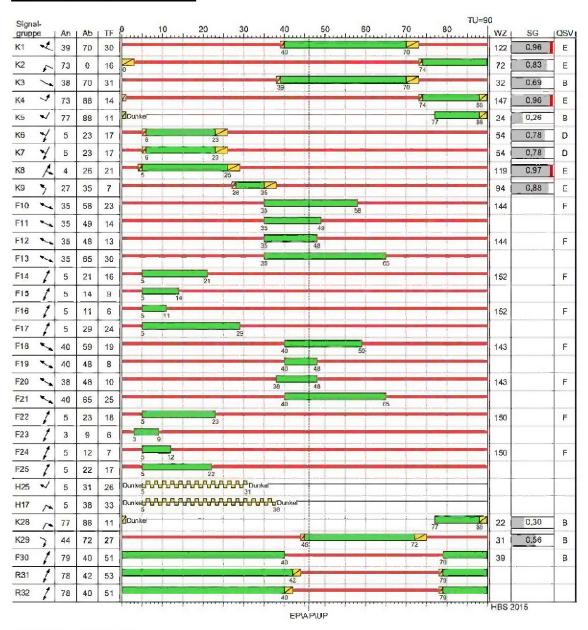
Entwicklungsstufe 2


26.2 Fruchtallee / Doormannsweg – Knotenpunktgeometrie Bestand

12.04.2019

Analyse - Spitzenstunde früh

A-Signalgruppen ausgeblendet!

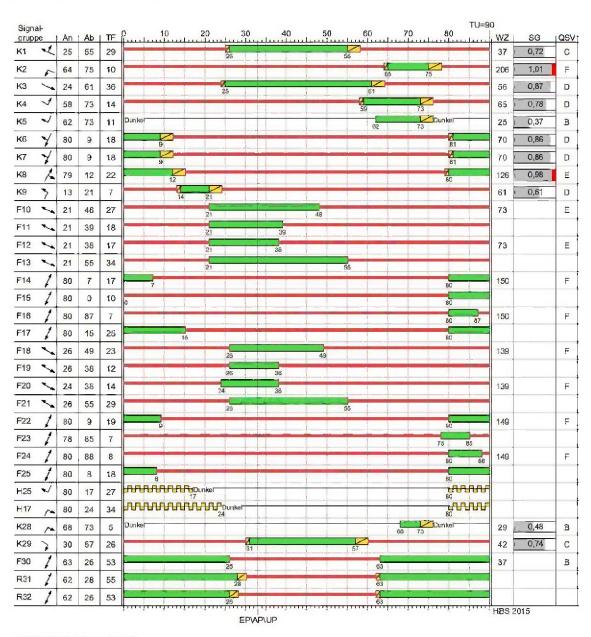


Analyse – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	tA [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nиs,95>рк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nиs [Kfz]	NMS.95 [Kfz]	[m]	Q\$V
	1	~	K5, K6, K7	29	30	61	0,333	210	5,250	1,991	1808	-	15	602	0,349	24,513	0,311	4,273	7,769	47,966	В
	2	1	K6, K7	18	19	72	0,211	334	8,350	1,840	1957	-	10	413	0,809	62,057	3,244	11,188	16,845	103,294	D
1	3	1	K6, K7	18	19	72	0,211	334	8,350	1,840	1957	-	10	413	0,809	62,057	3,244	11,188	16,845	103,294	D
	4	1	K6, K7	18	19	72	0,211	334	8,350	1,640	1957	(x)	10	413	0,809	62,057	3,244	11,188	16,845	103,294	D
	1	~	К1	29	30	61	0,333	434	10,850	1,872	1923	-	16	641	0,677	33,800	1,416	10,759	16,306	102,923	В
	2	-	K1	29	30	51	0,333	428	10,700	1,895	1900	-	16	633	0,676	33,844	1,408	10,618	15,129	101,903	В
2	3	1	K1	29	30	51	0,333	428	10,700	1,895	1900	-	16	633	0,676	33,844	1,408	10,618	16,129	101,903	В
	4	~	K2	10	11	80	0,122	200	5,000	1,847	1949	(x)	6	238	6,840	93,150	3,603	8,494	13,423	82,632	E
	5	7	К9	7	8	83	0,069	90	2,250	2,055	1752	-	4	156	0,577	58,453	0,827	2,988	5,911	36,636	D
	4	7	К9	7	8	83	0,089	90	2,250	1,999	1801	-	4	160	0,563	56,844	0,779	2,937	5,835	36,165	D
3	3	1	K8	22	23	58	0,256	460	11,500	1,852	1944	-	12	498	0,924	103,709	9,833	21,040	28,798	177,799	E
	2	1	K8	22	23	58	0,256	460	11,500	1,852	1944	-	12	498	0,924	103,709	9,833	21,040	28,798	177,799	E
	1	100	K8, K28	27	28	63	0,311	230	5,750	1,974	1824	(x)	14	567	0,406	27,002	0,402	4,936	8,693	53,201	В
	5	1	K4	14	15	76	0,167	530	5,750	1,876	1919	-	8	330	0,719	55,016	1,736	7,179	11,710	73,492	D
	4	~	K3	36	37	54	0,411	647	16,175	1,861	1934	-	20	795	0,814	40,260	3,710	18,027	25,208	156,390	C
4	3	~	K3	36	37	54	0.411	547	16,175	1,861	1934	-	20	795	0,814	40,260	3,710	18,027	25,208	156,390	C
	2	~	К3	36	37	54	0,411	647	16,175	1,861	1934	-	20	795	0,814	40,260	3,710	18,027	25,208	156,390	C
	1	7	K29	26	27	54	0,300	310	7,750	1,949	1847	(x)	14	554	0,560	31,649	0,792	7,312	11,885	71,809	В
	Kno	stenpunkt	ssummen:					6513						9124							
	Gev	vichtete Iv	littelwerte:												0,751	52,542					

Analyse - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

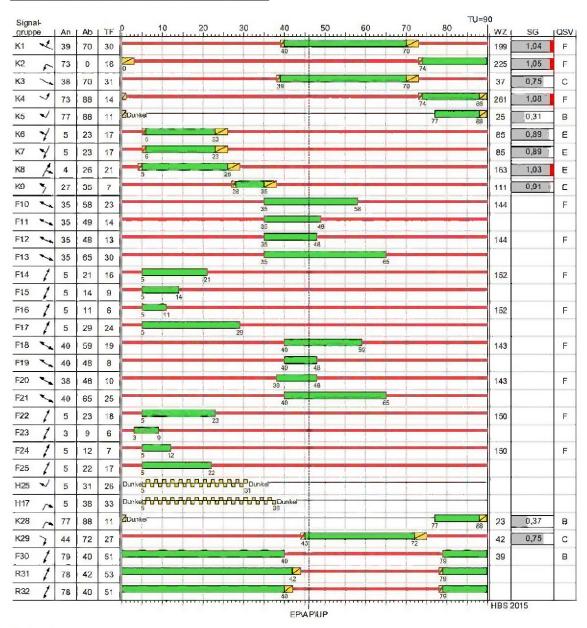


Analyse - Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	SGR	†# [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nws,95 > n k	nc [Kfz/U]	C [Kfz/h]	ж	tw [s]	NGE [Kfz]	Nws [Kfz]	N _{M5,95} [Kfz]	{x [m]	QSV
	1	*/	K5, K6, K7	28	29	52	0,322	150	3,750	1,983	1815	-	15	584	0,257	23,766	0,197	2,969	5,883	36, 180	В
	2	1	K6, K7	17	18	73	0,200	310	7,750	1,822	1976	-	10	396	0,783	58,338	2,661	10,012	15,363	93,284	D
1	3	1	K6, K7	17	18	73	0,200	310	7,750	1,822	1976	-	10	396	0,783	58,338	2,661	10,012	15,363	93,284	D
	4	1	K6, K7	17	18	73	0,200	310	7,750	1,822	1976	(x)	10	396	0,783	58,338	2,661	10,012	15,363	93,284	D
	1	4	K1	30	31	50	0,344	653	16,325	1,824	1974	-	17	679	0,962	121,387	17,436	33,442	43,222	262,703	Е
2	2	1	K1	30	31	50	0,344	653	16,325	1,825	1973	-	17	679	0,962	121,387	17,436	33,442	43,222	262,963	Е
2	3	1	K1	30	31	50	0,344	654	16,350	1,825	1973		17	679	0,963	122,282	17,602	33,641	43,450	264,350	E
	4	~	K2	16	17	74	0,189	310	7,750	1,822	1976	(x)	9	373	0,831	71,614	3,782	11,238	16,908	102,665	E
	5	7	К9	7	8	83	0,089	140	3,500	1,999	1801	ж								72,306	
	4	7	К9	7	8	83	0,175	140	3,500	1,945	1851	-	8	320	0,875	94,284	5,166	11,985	17,840	107,575	Е
3	3	1	К8	21	22	59	0,244	465	11,625	1,829	1968	-	12	481	0,967	139,446	14,134	25,636	34, 199	208,477	E
	2	1	K8	21	22	69	0,244	465	11,625	1,829	1968		12	481	0,967	139,446	14,134	25,636	34, 199	208,477	E
	1		K8, K28	32	33	58	0,367	200	5,000	1,964	1833	(x)	17	673	0,297	21,532	0,242	3,794	7,088	43,166	В
	S	1	K4	14	15	76	0,167	320	8,000	1,800	2000	-	8	334	0,958	147,220	10,210	18,143	25,347	152,082	E
	4	-	К3	31	32	59	0,356	480	12,000	1,834	1963	-	17	699	0,687	32,435	1,501	11,731	17,524	107, 142	В
4	3	`~	К3	31	32	59	0,356	480	12,000	1,834	1963	=	17	699	0,687	32,435	1,501	11,731	17,524	107,142	В
	2	~	К3	31	32	59	0,356	480	12,000	1,834	1963	-	17	699	0,687	32,435	1,501	11,731	17,524	107,142	В
	1	7	K29	27	28	63	0,311	320	8,000	1,958	1839	(x)	14	572	0,559	30,824	0,789	7,461	12,081	73,356	В
	Kno	tenpunkt	ssummen:					6840						9140							
	Gev	vichtete Iv	littelwerte:												0,817	85,175					

Entwicklungsstufe 1 - Spitzenstunde früh

A-Signalgruppen ausgeblendet!

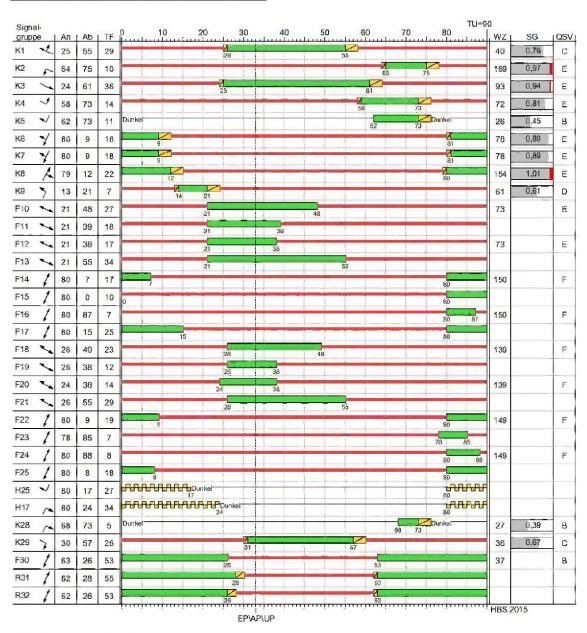


Entwicklungsstufe 1 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	rn [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Nvis,95 > nx	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS95 [Kfz]	[m]	QSV
	1	*/	K5, K6, K7	29	30	61	0,333	220	5,500	1,987	1812		15	603	0,365	24,784	0,334	4,510	8,102	49,925	В
	2	1	K6, K7	18	19	72	0,211	357	8,925	1,841	1955		10	413	0,864	79,045	5,138	13,750	20,021	122,889	Ε
1	3	1	K6, K7	18	19	72	0,211	357	8,925	1,841	1955	-	10	413	0,864	79,045	5,138	13,750	20,021	122,889	Ε
	4	1	K6, K7	18	19	72	0,211	357	8,925	1,841	1955	(x)	10	413	0,864	79,045	5,138	13,750	20,021	122,889	Ε
	1	*	K1.	29	30	61	0,333	460	11,500	1,874	1921	-	16	639	0,720	36,576	1,818	11,908	17,744	111,894	С
-	2	1	KI,	29	30	61	0,333	455	11,375	1,892	1903		16	633	0,719	36,593	1,806	11,782	17,587	110,904	C
2	3	1	KI	29	30	61	0,333	455	11,375	1,892	1903		16	633	0,719	36,593	1,806	11,782	17.587	110,904	С
	4	*	K2	10	11	80	0,122	240	6,000	1,845	1951	(x)	6	238	1,008	205,760	10,991	16,991	23,962	147,365	F
	5	7	K9	7	8	83	0,089	95	2,375	2,053	1754		4	156	0,609	61,502	0,954	3,242	6,287	38,929	D
	4	7	К9	7	8	83	0,089	95	2,375	1,997	1803		4	160	0,594	59,524	0,893	3,177	6,191	38,335	D
3	3	1	К8	22	23	68	0,256	490	12,250	1,850	1946		12	498	0,984	153,348	16,607	28,790	37,865	233,551	E
	2	1	K8	22	23	68	0,256	490	12,250	1,850	1946	-	12	498	0,984	153,348	16,607	28,790	37,865	233,551	Е
	1	/*	K8, K28	27	28	63	0,311	270	6,750	1,972	1826	(x)	14	568	0,475	28,507	0,543	6,000	10,143	62,014	В
	5	1	К.4	14	15	76	0,167	250	6,250	1,876	1919	-	8	320	0,781	64,607	2,551	8,538	13,480	84,600	D
	4	~	K3	36	37	54	0,411	694	17,350	1,861	1934	-	20	795	0,873	55,579	6,897	22,835	30,917	191,809	D
4	3	1	K3	36	37	54	0,411	694	17,350	1,861	1934		20	795	0,873	55,579	6,897	22,835	30,917	191,809	D
	2	-	КЗ	36	37	54	0,411	694	17,350	1,861	1934	-	20	795	0,873	55,579	6,897	22,835	30,917	191,809	D
	1	7	K29	26	27	64	0,300	410	10,250	1,949	1847	(x)	14	554	0,740	41,650	2,048	11,270	15,948	102,400	С
	Kno	tenpunkt	ssummen:					7083						9124							
	Gev	vichtete M	littelwerte:												0,813	71,726					

Entwicklungsstufe 1 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

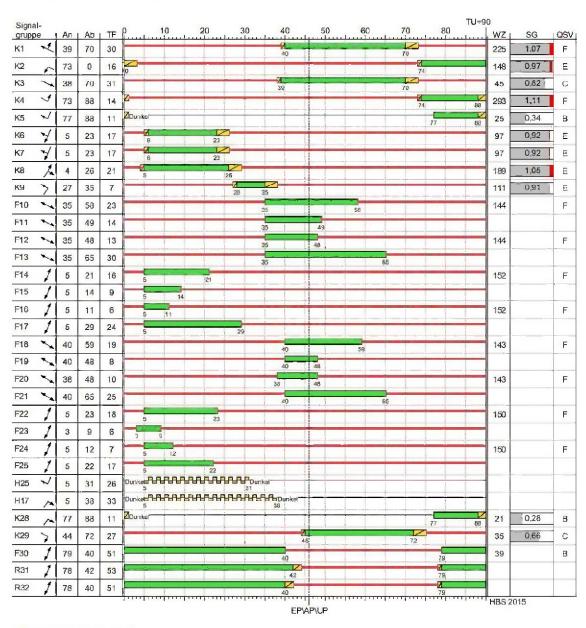


Entwicklungsstufe 1 – Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	1A [s]	ts [s]	FA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NM5,95> nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NŒ [Kfz]	N _{MS} [Kfz]	Nws,95 [Kfz]	Lx [m]	QSV
	2	*/	K5, K6, K7	28	29	62	0,322	180	4,500	1,983	1815	-	15	584	0,308	24,541	0,256	3,643	6,871	42,257	В
	2	1	K6, K7	17	18	73	0,200	354	8,850	1,820	1978	-	10	396	0,894	95,262	6,621	15,243	21,846	132,518	Е
1	3	1	K6, K7	17	18	73	0,200	354	8,850	1,820	1978	-	10	396	0,894	95,262	6,521	15,243	21,846	132,518	Е
	4	1	K6, K7	17	18	73	0,200	354	8,850	1,820	1978	(x)	10	396	0,894	95,262	6,621	15,243	21,846	132,518	Е
	ì	4	K1	30	31	60	0,344	707	17,675	1,824	1974	-	17	679	1,041	199,632	32,085	49,760	61,690	374,952	F
7	2	1	K1	30	31	60	0,344	706	17,650	1,825	1973	-	17	679	1,040	198,582	31,887	49,537	61,440	373,801	F
2	3	~	K1	30	31	60	0,344	707	17,675	1,825	1973	-	17	679	1,041	199,632	32,085	49,760	61,690	375,322	F
	4	5	K2	16	17	74	0,189	390	9,750	1,822	1976	(x)	9	373	1,046	224,544	19,484	29,234	38,378	233,031	F
	5	7	К9	7	8	83	0,089	145	3,625	1,999	1801	×								79,602	
	4	7	K9	7	8	83	0,175	145	3,625	1,945	1851		8	320	0,906	111,144	6,544	13,752	20,024	120,745	Е
3	3	1	K8	21	22	69	0,244	495	12,375	1,827	1970		12	481	1,029	198,595	21,989	34,364	44,278	269,653	F
	2	1	К8	21	22	69	0,244	495	12,375	1,827	1970	-	12	481	1,029	198,595	21,989	34,364	44,278	269,653	F
	1	14	K8, K28	32	33	58	0,367	250	6,250	1,970	1827	(x)	17	671	0,373	22,753	0,347	4,931	8,687	53,060	В
	5	1	K4	14	15	76	0,367	360	9,000	1,800	2000	-	8	334	1,078	261,278	20,763	29,763	38,990	233,940	F
	4	~	К3	31	32	59	0,356	527	13,175	1,836	1961	-	17	699	0,754	37,253	2,280	13,878	20,178	123,489	С
4	3	`	к3	31	32	59	0,356	527	13,175	1,836	1961	-	17	699	0,754	37,253	2,280	13,878	20,178	123,489	C
	2	~	К3	31	32	59	0,356	527	13,175	1,836	1961	-	17	699	0,754	37, 253	2,280	13,878	20,178	123,489	С
	1	7	K29	27	28	63	0,311	430	10,750	1,958	1839	(x)	14	572	0,752	41,862	2,221	11,889	17,720	107,596	Ç
	Kno	otenpunkt	ssummen:					7653						9138							
	Gev	vichtete M	littelwerte:												0,901	133,428					

Entwicklungsstufe 2 - Spitzenstunde früh

A-Signalgruppen ausgebiendet!



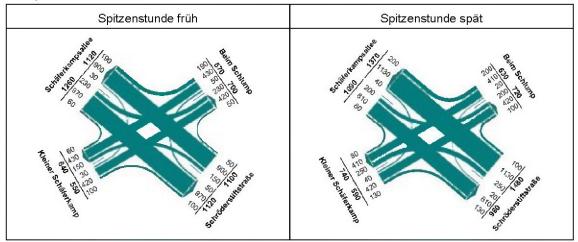
Entwicklungsstufe 2 – Spitzenstunde früh

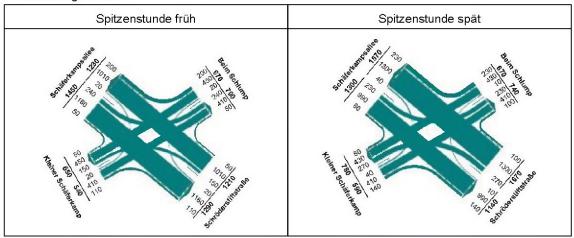
Zuf	FstcNc	Symbol	SGR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nm5,95273K	nc [Kfz/U]	C [Kfz/ħ]	х	tw [≴]	NGE [Kfz]	N _{MS} [Kfz]	N _{MS} 95 [Kfz]	Lx [m]	QSV
	1	~/	K5, K6, K7	29	30	61	0,333	270	6,750	1,989	1810	(x)	15	603	0,448	25,414	0,483	5,775	9,839	60,687	В
	2	1	K6, K7	18	19	72	0,211	367	9,175	1,840	1957	-	10	413	0,889	90,643	6,443	15,353	21,980	134,781	Е
1	3	1	K6, K7	13	19	72	0,211	367	9,175	1,840	1957	-	10	413	0,889	90,643	6,443	15,353	21,980	134,781	Ε
	4	1	K6, K7	18	19	72	0,211	367	9,175	1,840	1957	(x)	10	413	0,889	90,643	6,443	15,353	21,980	134,781	Ε
	1	1	K1	29	30	61	0,333	483	12,075	1,876	1919	-	16	639	0,756	39,714	2,300	13,064	19,177	121,045	С
	2	1	K1	29	30	61	0,333	478	11,950	1,894	1901	-	16	633	0,755	39,722	2,282	12,930	19,011	119,997	C
2	3	1	K1	29	30	61	0,333	479	11,975	1,894	1901	-	16	633	0,757	39,928	2,314	12,993	19,089	120,490	С
	4	~	K2	1.0	11	80	0,122	230	S,750	1,847	1949	(x)	6	238	0,966	169,257	8,590	14,313	20,711	127,497	Ε
	5	7	К9	7	8	83	0,089	95	2,375	2,053	1754	-	4	156	0,609	61,502	0,954	3,242	6,287	38,929	D
	4	7	К9	7	8	83	0,089	95	2,375	1,997	1803	-	4	160	0,594	59,524	0,893	3,177	6,191	38,335	D
3	3	1	KB	22	23	68	0,256	505	12,625	1,850	1946	-	12	498	1,014	182,251	20,580	33,205	42 951	264,922	F
	2	1	K8	22	23	68	0,256	505	12,625	1,850	1946	-	12	498	1,014	182,251	20,580	33,205	42,951	264,922	F
	1	/=	K8, K28	27	28	63	0,311	220	5,500	1,974	1824	(x)	14	567	0,388	26,650	0,371	4,681	8,340	51,041	В
	5	1	K4	14	15	76	0,167	260	6,500	1,878	1916	-	8	320	0,813	72,040	3,192	9,457	14,658	92,082	Ε
	4	~	кз	36	37	54	0,411	744	18,600	1,859	1937	-	20	795	0,936	92,518	14,828	32,633	42,294	262,138	Ε
4	3	~	КЗ	36	37	54	0,411	744	18,600	1,859	1937	-	20	795	0,936	92,518	14,828	32,633	42,294	262,138	Е
	2	1	К3	36	37	54	0,411	744	18,600	1,859	1937		20	795	0,936	92,518	14,828	32,633	42,294	262,138	E
	1	7	K29	26	27	64	0,300	370	9,250	1,950	1846	(x)	14	554	0,668	36,303	2,343	9,441	14.638	88,531	С
	Kno	otenpunkt	ssummen;				İ	7323						9123							
	Gev	vichtete N	littelwerte:												0,844	87,840					

Entwicklungsstufe 2 - Spitzenstunde spät

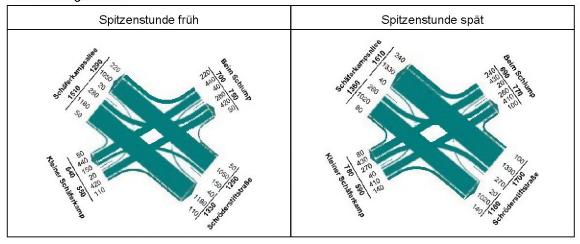
A-Signalgruppen ausgeblendet!

Entwicklungsstufe 2 – Spitzenstunde spät

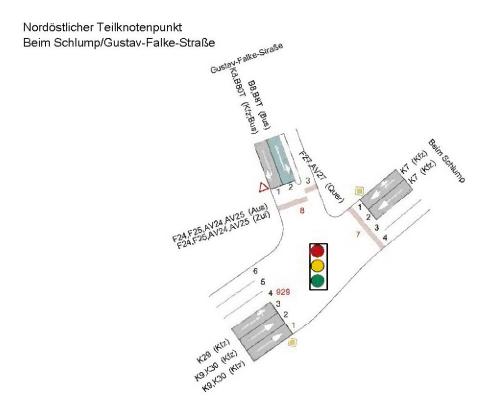

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs (Kfz/h)	N-м5.95>пк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nиs [Ktz]	NMS.95 [Kfz]	Lx [m]	QSV
	1	•/	K5, K6, K7	28	29	62	0,322	200	5,000	1,980	1818	-	15	585	0,342	25,098	0,301	4,111	7,540	46,281	В
	2	1	K6, K7	17	18	73	0,200	364	9,100	1,818	1980	~	10	396	0,919	110,467	8,270	17,189	24,201	146,658	E
1	3	1	K6, K7	17	18	73	0,200	364	9,100	1,818	1980	-	10	396	0,919	110,467	8,270	17,189	24,201	146,658	E
	4	1	K6, K7	17	18	73	0,200	364	9,100	1,818	1980	(x)	10	396	0,919	110,457	8,270	17,189	24,201	146.658	Е
	1	~	K1	30	31	60	0,344	723	18,075	1,824	1974	-	17	679	1,065	225,139	36,896	54,971	67,510	410,326	F
	2	1	K1	30	31	60	0,344	723	18,075	1,823	1975	-	17	679	1,065	225,139	36,896	54,971	67,510	410 326	F
2	3	1	K1	30	31	60	0,344	724	18,100	1,823	1975	-	17	679	1,066	226,216	37,099	55, 199	67,764	411,870	F
	4	5	К2	16	17	74	0,189	360	9,000	1,822	1976	(x)	9	373	0,965	148,167	11,601	20,528	28,191	171,176	E
	5	7	К9	7	8	83	0,089	145	3,625	1,999	1801	х								79,602	
	4	7	K9	7	8	83	0,175	145	3,625	1,945	1851	1	8	320	0,906	121,144	6,644	13,752	20,024	120,745	E
3	3	1	K8	21	22	69	0,244	505	12,625	1,827	1970	-	12	481	1,050	220,090	24,861	37,486	47,841	291,352	F
	2	1	K8	21	22	69	0,244	\$05	12,625	1,827	1970	-	12	481	1,050	220,090	24,861	37,486	47,841	291, 352	F
	1	/=	K8, K28	32	33	58	0,367	190	4,750	1,974	1824	(x)	17	669	0,284	21,351	0,227	3,584	6,786	41,530	В
	5	1	K4	14	15	76	0,167	370	9,250	1,800	2000	1 (=)	8	334	1,108	292,772	23,685	32,935	42,641	255,846	F
	4	1	КЗ	31	32	59	0,356	570	14,250	1,836	1961	-	17	699	0,815	45,264	3,684	16,612	23,505	143,851	C
4	3	1	КЗ	31	32	59	0,356	570	14,250	1,836	1951	-	17	699	0,815	45,264	3,684	16,612	23,505	143,851	С
	2	1	КЗ	31	32	59	0,356	570	14,250	1,836	1951	-	17	699	0,815	45,264	3,684	16,512	23,505	143,851	С
	1	7	K29	27	28	63	0,311	380	9,500	1,958	1839	(x)	14	572	0,664	35,205	1,316	9,565	14,796	89,841	С
	Kno	tenpunkt	ssummen:					7772						9137							
	Gev	vichtete M	littelwerte:												0,922	144,880					


27 Schäferkampsallee / Kleiner Schäferkamp (LSA 203)

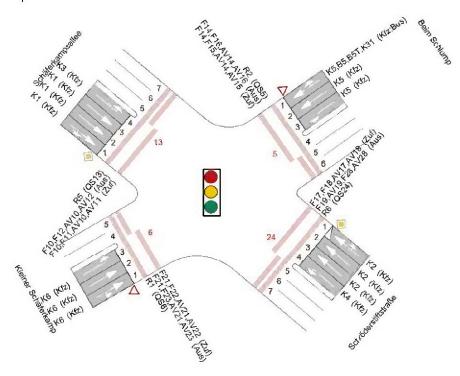
27.1 Schäferkampsallee / Kleiner Schäferkamp – Knotenstrombelastungen


Analyse (VZ 08.04.2015)

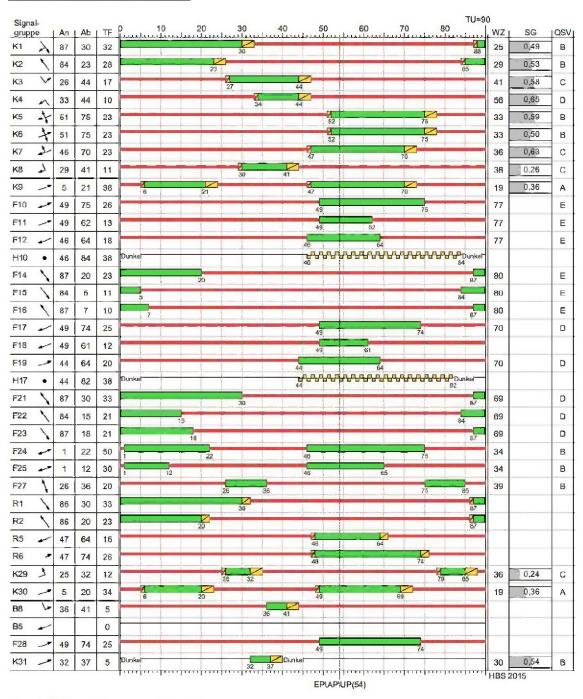
Entwicklungsstufe 1



Entwicklungsstufe 2



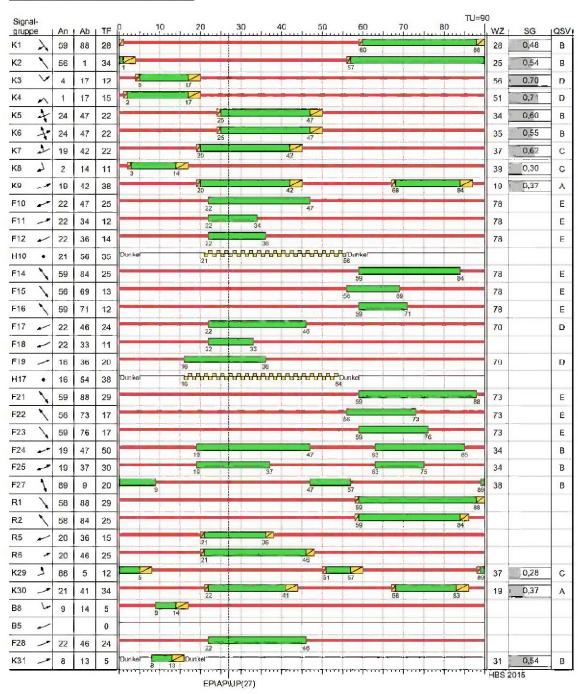
27.2 Schäferkampsallee / Kleiner Schäferkamp – Knotenpunktgeometrie Bestand



Hauptknotenpunkt

Analyse - Spitzenstunde früh

A- und BT-Signalgruppen ausgeblendet!

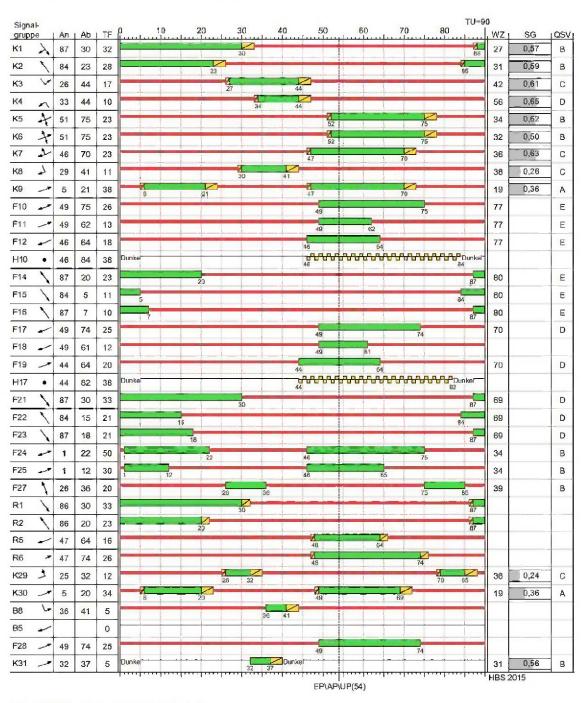


Analyse – Spitzenstunde früh

Zuf	Estr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	N MS.95>nK	nc [Kfz/U]	C [Kfz/h]	ж	tw [5]	Nge [Kfz]	NMS [Kfz]	NMS, 35 [Kfz]	[m]	QSV
	1	Y	K7	23	24	67	0,267	335	8,375	1,800	2000	-	13	534	0,627	36,367	1,087	B,460	13,379	80,274	С
7	2	/	K7	23	24	67	0,267	335	8,375	1,800	2000	-	13	534	0,627	36,367	1,087	8,460	13,379	80,274	С
	3	>	K29	12	13	78	0,144	70	1,750	1,800	2000	-	7	288	0,243	36,444	0,182	1,734	3,961	23,766	С
929	2	1	K9, K30	38	39	52	0,433	315	7,875	1,800	2000	-	22	866	0,364	18,558	0,333	5,634	9,648	57,888	А
	1	1	K9, K30	38	39	52	0,433	315	7,875	1,800	2000	-	22	866	0,364	18,558	0,333	5,634	9,648	57,888	A
8	1	7	K8	11	12	79	0,133	70	1,750	1,800	2000	-	7	266	0,263	37,799	0,203	1,775	4,028	24,168	С
	1	2	K5, K31	28	2.9	62	0,322	316	7,900	1,894	1901	-	15	591	0,535	29,939	0,708	7,238	11,788	75,184	В
5	2	1	K5	23	24	67	0,267	304	7,600	1,863	1932	-	13	516	0,589	35,004	0,905	7,515	12,151	75,458	С
	3	5	K5	23	24	67	0,267	50	1,250	1,881	1914	-	6	223	0,224	38,661	0,163	1,296	3,221	20,196	С
,	1	Y	K2	28	29	62	0,322	315	7,875	1,933	1863	-	15	600	0,525	28,956	0,677	7,102	11,609	74,390	В
	2	1	K2	28	29	62	0,322	317	7,925	1,924	1871	-	15	603	0,526	28,964	0,680	7,149	11,671	74,858	В
24	3	1	K2	28	29	62	0,322	318	7,950	1,922	1873	-	15	603	0,527	28,991	0,683	7,175	11,705	75,006	В
	4	^	K4	10	11	80	0,122	150	3,750	1,890	1905	-	6	232	0,647	55,725	1,164	4,739	8,421	53,052	D
	3	>	K6	23	24	67	0,267	30	0,750	2,115	1702	-	5	198	0,152	37,615	0,100	0,775	2,264	15,961	С
6	2	~	K6	23	24	67	0,267	259	6,475	1,874	1921	-	13	514	0,504	32,251	0.616	6,100	10,277	64,190	В
	1	4	K6	23	24	67	0,267	261	6,525	1,852	1944	-	13	519	0,503	32,188	0,614	5,139	10,329	64,267	В
	4	V	K3	17	18	73	0,200	230	5,750	1,829	1968	(x)	10	394	0,584	40,640	0,879	5,087	10,260	62,545	С
4.0	3	1	K1	32	33	58	0,367	344	8,600	1,867	1928	-	18	708	0,486	24,848	0,571	7,197	11,734	73,009	В
13	2	1	K1	32	33	58	0,367	344	8,600	1,867	1928	-	18	708	0,486	24,848	0,571	7,197	11,734	73,009	В
	1	×	K1	32	33	58	0,367	342	8,550	1,855	1940	-	18	703	0,486	25,152	0,571	7,190	11,725	72,953	В
	Knote	npunktss	ımmen:					5020						10466							
	Gewic	htete Mitt	telwerte:												0,506	30,298					

Analyse - Spitzenstunde spät

A- und BT-Signalgruppen ausgeblendet!

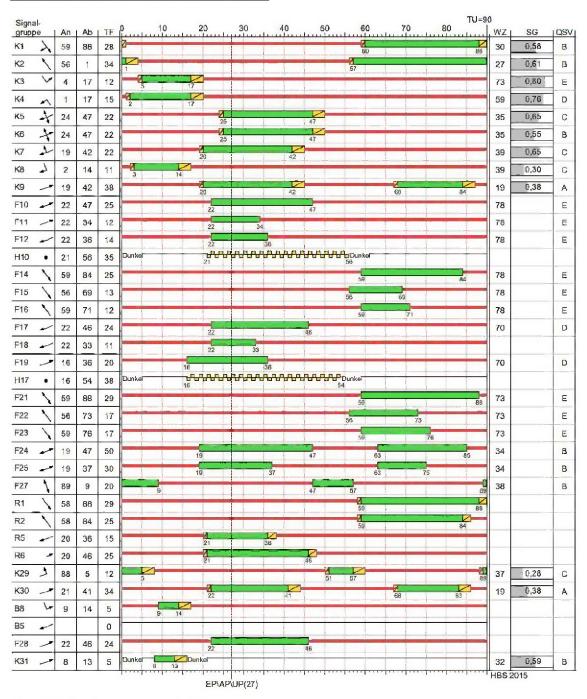


Analyse - Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nмs,95> nк	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	Not [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	Lx [m]	QSV
-	1	Y	K7	22	23	68	0,256	315	7,875	1,800	2000	-	13	512	0,615	36,764	1,024	7,978	12,755	76,530	Œ
7	2	1	к7	22	23	68	0,256	315	7,875	1,800	2000	-	13	512	0,615	36,764	1,024	7,978	12,755	76,530	£
	3	>	K29	12	13	78	0,144	80	2,000	1,800	2000	-	7	288	0,278	37,085	0,219	2,002	4,395	26,370	C
929	2	1	K9, K30	38	39	52	0,433	320	8,000	1,800	2000	-	22	866	0,370	18,549	0,342	5,743	9,796	58,776	Α
	1	1	K9, K30	38	39	52	0,433	320	8,000	1,800	2000	-	22	866	0,370	18,549	0,342	5.743	9,796	58,776	А
8	1	7	К8	11	12	79	0,133	80	2,000	1,800	2000	(-)	7	266	0,301	38,566	0,246	2,052	4,475	26,850	С
	1	>	K5, K31	27	28	63	0,311	311	7,775	1,887	1908	1	14	574	0,542	30,851	0,730	7,224	11,770	74,857	В
5	2	1	K5	22	23	68	0,256	299	7,475	1,845	1951	-	12	499	0,599	36,260	0,946	7,517	12,154	74,747	С
	3	_<	К5	22	23	68	0,256	20	0,500	1,800	2000	-	5	217	0,092	37,016	0,056	0,506	1,709	10,254	С
	1	×	K2	34	35	56	0,389	411	10,275	1,826	1972	-	19	767	0,536	24,572	0,713	8,645	13,518	83,260	В
	2	1	K2	34	35	56	0,389	409	10,225	1,832	1965	-	19	764	0,535	24,561	0,710	8,599	13,558	82,812	В
24	3	1	K2	34	35	56	0,389	410	10,250	1,832	1965	-	19	764	0,537	24,609	0,716	8,632	13,501	83,075	В
	4	^	K4	15	16	75	0,178	250	6,250	1,811	1988	-	9	354	0,706	51,281	1,623	7,499	12,130	73,217	D
	3	>	К6	22	23	68	0,256	40	1,000	2,036	1768	4	5	201	0,199	38,652	0,140	1,047	2,778	18,852	C
6	2	~	K6	22	23	68	0,256	274	6,850	1,834	1963	-	13	503	0,545	34,237	0,739	6,662	11,027	67,419	В
	1	4	к.6	22	23	68	0,256	276	6,900	1,814	1984	-	13	507	0,544	34,165	0,736	6,700	11,078	67,465	В
	4	~	КЗ	12	13	78	0,144	200	5,000	1,807	1992	(x)	7	287	0,697	55,768	1,524	6,282	10,521	63,379	D
13	3	1	K1	28	29	62	0,322	298	7,450	1,863	1932	-	16	622	0,479	27,659	0,553	6,525	10,845	67,347	В
15	2	1	K1	28	29	62	0,322	299	7,475	1,863	1932	-	16	622	0,481	27,707	0,558	6,555	10,885	67,596	В
	1	>	K1	28	29	62	0,322	293	7,325	1,855	1941	-	15	610	0,480	28,216	0,556	6,473	10,776	66,919	В
	Knote	npunktssi	ımmen:					5220						10601							
	Gewic	htete Mitt	elwerte:												0,523	30,974					

Entwicklungsstufe 1 – Spitzenstunde früh

A- und BT-Signalgruppen ausgeblendet!

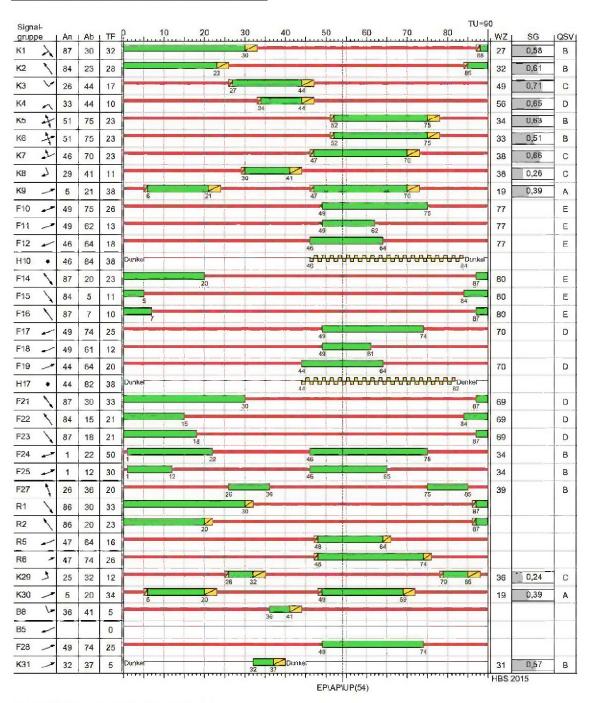


Entwicklungsstufe 1 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	ti: [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/ħ]	NMS,95>nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	Nws,95 [Kf2]	[m]	QSV
-	1	Y	K7	23	24	57	0,267	335	8,375	1,800	2000	-	13	534	0,627	36,367	1,087	8,460	13,379	80,274	C
7	2	1	K7	23	24	57	0,267	335	8,375	1,800	2000	-	13	534	0,627	36,367	1,087	8,460	13,379	80,274	C
	3	>	K29	12	13	78	0,144	70	1,750	2,800	2000		7	288	0,243	36,444	0,182	1,734	3,961	23,766	€
929	2	1	K9, K30	38	39	52	0,433	315	7,875	1,800	2000	-	22	866	0,364	18,558	0,333	5, 634	9,648	57,888	A
	1	1	K9, K30	38	39	52	0,433	315	7,875	1,800	2000		22	366	0,364	18,558	0,333	5,634	9,648	57,888	A
8	1	7	K8	11	12	79	0,133	70	1,750	1,800	2000		7	266	0,263	37,799	0,203	1,775	4,028	24,168	C
	1	>	K5, K31	28	29	52	0,322	331	8,275	1,894	1901	*	15	590	0,561	30,734	0,796	7,702	12,396	79,136	В
5	2	/	K5	23	24	67	0,267	319	7,975	1,863	1932	-	13	516	0,618	36,205	1,039	8,040	12,835	79,705	С
	3	<	KS	23	24	67	0,267	20	0,500	1,868	1927	-	6	224	0,089	36,400	0,054	0,501	1,698	10,575	C
	1	*	K2	28	29	52	0,322	352	8,800	1,931	1865		15	600	0,587	30,895	0,898	8,255	13,114	83,956	В
	2	1	K2	28	29	52	0,322	354	8,850	1,922	1873	-	15	603	0,587	30,868	0,898	8,297	13,169	84,387	В
24	3	1	K2	28	29	52	0,322	354	8,850	1,922	1873		15	603	0,587	30,868	0,898	8,297	13,169	84,387	В
	4	^	K4	10	11	80	0,122	150	3,750	1,890	1905	-	6	232	0,647	55,725	1,164	4,739	8,421	53,052	D
	3	>	K 6	23	24	57	0,267	20	0,500	2,138	1584	-	5	189	0,106	37,168	0,066	0,515	1,729	12,324	C
6	2	7	K6	23	24	57	0,267	259	6,475	1,868	1927	-	13	515	0,503	32,221	0.614	6,096	10,272	63,974	В
	1	~	K6	23	24	67	0,267	261	6,525	1,852	1944	-	13	520	0,502	32,150	0,611	6,134	10,323	64,416	В
	4	∨*	кз	17	18	73	0,200	240	6,000	1,829	1968	(×)	10	394	0,609	41,831	0,989	6,455	10,752	65,544	С
	3	1	K1	32	33	58	0.367	404	10,100	1,867	1928	-	18	708	0,571	27,057	0,835	8,923	13,975	86,952	В
13	2	1	K1	32	33	58	0,367	404	10,100	1,867	1928	-	18	708	0,571	27,057	0,835	8,923	13,975	86,952	В
	1	2	К1	32	33	58	0,367	402	10,050	1,857	1939	-	18	704	0,571	27,304	0,835	8,911	13,960	86,775	В
	Knate	npunktss	ımmen:					5310						10460							
	Gewic	htete Mitt	telwerte:												0,544	31,102					

Entwicklungsstufe 1 - Spitzenstunde spät

A- und BT-Signalgruppen ausgeblendet!

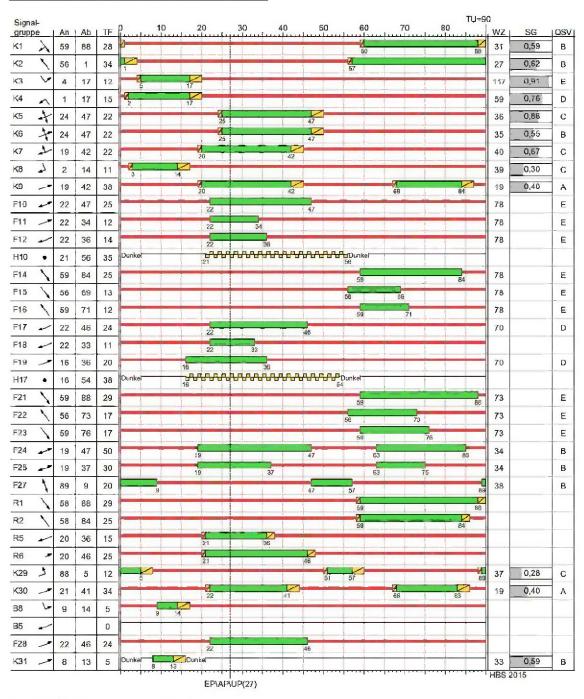


Entwicklungsstufe 1 – Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	Es [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Им2′аг>як	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nge [Kfz]	Nмs [Kfz]	Nws,95 [Kfz]	Lx [[77]]	QSV
-	1	7	K7	22	23	68	0,256	335	8,375	1,800	2000	v	13	512	0,654	38,672	1,245	8,729	13,726	82,356	С
7	2	/	K7	22	23	68	0,256	335	8,375	1,800	2000	-	13	512	0,654	38,672	1,245	8,729	13,726	82,356	С
	3	>	K29	12	13	78	0,144	80	2,000	1,800	2000	-	7	288	0,278	37,085	0,219	2,002	4,395	26,370	C
929	2	1	K9, K30	38	39	52	0,433	330	8,250	1,800	2000	10-	22	866	0,381	18,822	0,360	5,962	10,092	60,552	А
	1	1	K9, K30	38	39	52	0,433	330	8,250	1,800	2000	-	22	866	0,381	18,822	0,360	5,962	10,092	60,552	Α
8	1	لي	K8	11	12	79	0,133	80	2,000	1,800	2000	-	7	266	0,301	38,566	0,246	2,052	4,475	26,850	C
	1	>	K5, K31	27	28	63	0,311	337	8,425	1,892	1902	-	14	575	0,586	32,229	0,893	8,038	12,833	81,772	В
5	2	/	K5	22	23	68	0,256	323	8,075	1,847	1949	-	12	499	0,647	38,511	1,200	8,400	13,302	81,887	С
	3	<	K5	22	23	68	0,256	10	0,250	1,800	2000	-	5	217	0,046	36,353	0,027	0,251	1,098	6,588	С
	1	X	K2	34	35	56	0,389	468	11,700	1,825	1972	-	19	767	0,610	26,748	1,006	10,379	15,828	96,677	В
24	2	1	K2	34	35	56	0,389	466	11,650	1,832	1965		19	764	0,610	26,766	1,006	10,339	15,777	96,366	В
24	3	1	K2	34	35	56	0,389	466	11,650	1,832	1965	-	19	764	0,610	26,766	1,006	10,339	15,777	96,366	В
	4	^	K4	15	16	75	0,178	270	6,750	1,811	1988	(x)	9	354	0,763	\$8,503	2,293	8,713	13,705	82,723	D
	3	>	К6	22	23	68	0,256	40	1,000	2,036	1768	-	5	190	0,211	39,575	0,151	1,065	2,810	19,069	C
6	2	_	K6	22	23	68	0,256	274	6,850	1,834	1963		13	503	0,545	34,237	0,739	6,662	11,027	67,419	В
	1	4	K6	22	23	68	0,256	276	6,900	1,815	1983	-	13	508	0,543	34,125	0,733	6,695	11,071	66,426	В
	4	4	K3	12	13	78	0,144	230	5,750	1,805	1994	(x)	7	287	0,801	73,297	2,872	8,436	13,348	80,328	E
-12	3	1	K1	28	29	62	0,322	358	8,950	1,865	1.930	*	16	622	0,576	30,339	0,854	8,304	13,178	81,914	В
13	2	1	K1	28	29	62	0,322	359	8,975	1,965	1930	-	16	622	0,577	30,372	0,858	8,332	13,214	82,138	В
	1	>	K1	28	29	62	0,327	353	8,825	1,858	1938	-	15	612	0,577	30,789	0,857	8,239	13,093	81,386	В
	Knote	npunktssi	ımmen:					5720						10594							
	Gewic	htete Mitt	elwerte:												0,579	33,424					

Entwicklungsstufe 2 - Spitzenstunde früh

A- und BT-Signalgruppen ausgeblendet!

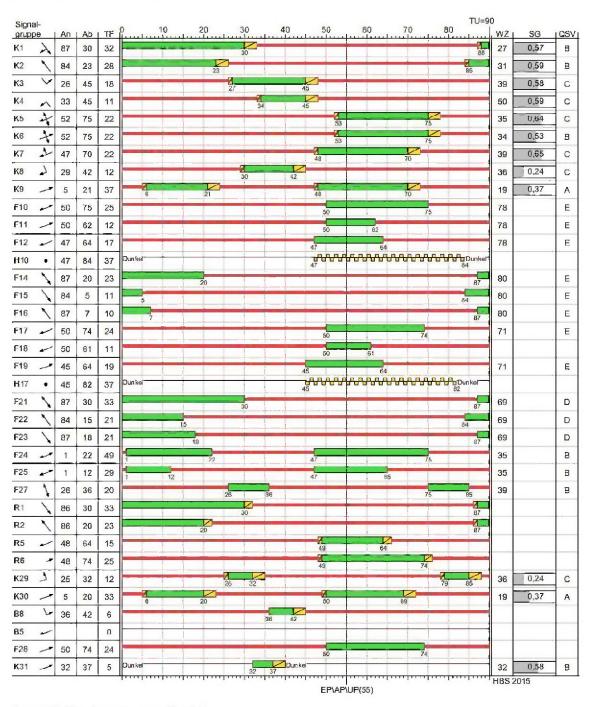


Entwicklungsstufe 2 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	ts= [5]	ta [5]	ts [s]	1 A	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,95>nк	nc [Kfz/U]	C [Kfz/h]	x	tw [5]	No [Kfz]	Nws [Kfz]	Nws.9s [Kfz]	l.x [m]	QSV
7	1	Y	k7	23	24	67	0,267	350	8,750	1,800	2000	-	13	534	0,655	37,750	1,253	9,026	14,107	84,642	С
/	2	1	K7	23	24	67	0,267	350	8,750	1,800	2000	-	13	534	0,655	37,750	1,253	9,026	14,107	84,642	С
	3	>	K29	12	13	78	0,144	70	1,750	1,800	2000	-	7	288	0,243	36,444	0,182	1,734	3,961	23,766	C
929	2	1	K9, K30	38	39	52	0,433	340	8,500	1,800	2000	4	22	866	0,393	19,014	0,380	6,188	10,395	62,370	Α
	1	/	K9, K30	38	39	52	0,433	340	8,500	1,800	2000	-4	22	866	0,393	19,014	0,380	6,188	10,395	62,370	А
8	1	77	K8	11	12	79	0,133	70	1,750	1,800	2000	-	7	266	0,263	37,799	0,203	1,775	4,028	24,168	C
	1	>	K5, K31	28	29	62	0,322	337	8,425	1,900	1895	-	15	592	0,569	30,921	0,826	7,874	12,620	80,642	В
5	2	1	K5	23	24	67	0,267	323	8,075	1,863	1932	-	13	515	0,627	36,630	1,086	8,195	13,036	80,954	С
	3	<	K5	23	24	67	0,267	40	1,000	1,868	1927	~	6	222	0,180	37,985	0,123	1,027	2,741	17,071	С
	1	X	K2	28	29	62	0,322	366	9,150	1,933	1863	-	15	600	0,610	31,754	1,002	8,722	13,717	87,981	В
	2	1	K2	28	29	62	0,322	367	9,175	1,921	1874	-	15	603	0,609	31,684	0,997	8,735	13,733	87,919	В
24	3	1	K2	28	29	62	0,322	367	9,175	1,921	1874	-	15	603	0,609	31,684	0,997	8,735	13,733	87,919	В
	4	^	K4	10	11	80	0,122	150	3,750	1,890	1905	-	6	232	0,647	55,725	1,164	4,739	8,421	53,052	D
	3	3	K6	23	24	67	0,267	20	0,500	2,138	1684	-	5	187	0,107	37,282	0,067	0,517	1,733	12,353	С
6	2	7	К6	23	24	67	0,267	264	6,600	1,872	1923	-	13	514	0,514	32,535	0,644	6,251	10,479	65,389	В
	1	7	K6	23	24	67	0,267	265	6,650	1,850	1946	-	13	519	0,513	32,461	0,641	6,289	10,530	65,581	В
	4	V	КЗ	17	18	73	0,200	280	7,000	1,829	1968	(x)	10	394	0,711	48,933	1,681	8,209	13,055	79,583	Е
	3	1	K1	32	33	58	0,367	410	10,250	1,867	1928	-	18	708	0,579	27,304	0,867	9,106	14,209	88,408	В
13	2	1	K1	32	33	58	0,367	411	10,275	1,865	1930	,	18	708	0,581	27,367	0,875	9,142	14,256	88,615	В
	1	>	K1	32	33	58	0,367	409	10,225	1,860	1936	-	18	704	0,581	27,614	0,875	9,129	14,239	88,680	В
	Knote	npunktssi	ımmen:					5530						10455							
	Gewic	htete Mitt	elwerte:												0.564	32.001					

Entwicklungsstufe 2 - Spitzenstunde spät

A- und BT-Signalgruppen ausgeblendet!

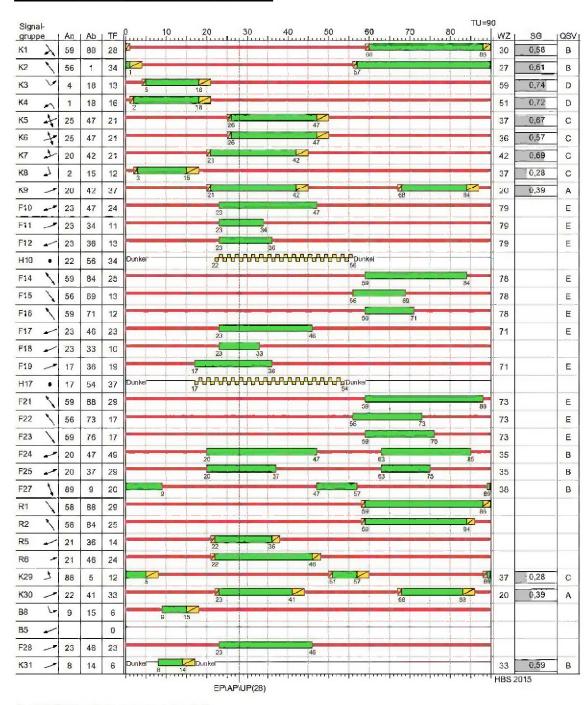


Entwicklungsstufe 2 – Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	ŕn [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,э5>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Net [Kfz]	N _{MS} [Kfz]	Nws.98 [Kfz]	[m]	QSV
~	1	Y	K7	22	23	68	0,256	345	8,625	1,800	2000		13	512	0,674	39,834	1,384	9,139	14,252	85,512	С
7	2	1	K7	22	23	68	0,256	345	8,625	1,800	2000	-	13	512	0,674	39,834	1,384	9,139	14,252	85,512	U
	3	>	K29	12	13	78	0, 144	80	2,000	1,800	2000	-	7	288	0,278	37,085	0,219	2,002	4,395	26,370	С
929	2	1	K9, K30	38	39	52	0,433	345	8,625	1,800	2000	-	22	865	0,398	19,092	0,388	6,297	10,541	63,246	A
	1	1	K9, K30	38	39	52	0,433	345	8,625	1,800	2000	-	22	866	0,398	19,092	0,388	6, 297	10,541	63,246	A
8	1	لم	K8	11	12	79	0,133	80	2,000	1,800	2000	-	7	266	0,301	38,566	0,246	2,052	4,475	26,850	С
	1	Y	K5, K31	27	28	63	0,311	342	8,550	1,890	1905	-	14	576	0,594	32,517	0,928	8,200	13,043	82,875	В
5	2	/	K5	22	23	68	0,256	328	8,200	1,845	1951	-	12	499	0,657	39,058	1,263	8,597	13,556	83,369	С
	3	5	K5	22	23	68	0,256	20	0,500	1,800	2000	-	5	217	0,092	37,016	0,056	0,506	1,709	10,254	C
	1	X	K2	34	35	56	0,389	478	11,950	1,825	1972	-	19	767	0,623	27,205	1,072	10,709	16,243	99,212	В
24	2	1	K2	34	35	56	0,389	476	11,900	1,834	1963	-	19	764	0,623	27,224	1,072	10,669	16,193	99,004	В
24	3	1	K2	34	35	56	0,389	476	11,900	1,834	1963	-	19	764	0,623	27,224	1,072	10,669	16,193	99,004	В
	4	Λ	K4	15	16	75	0,178	270	6,750	1,811	1988	(x)	9	354	0,763	58,503	2,293	8,713	13,705	82,723	D
	3	3	Kô	22	23	68	0,256	40	1,000	2,036	1768	-	S	188	0,213	39,707	0,152	1,067	2,814	19,096	С
6	2	1	K6	22	23	68	0,256	274	6,850	1,834	1963	-	13	503	0,545	34,237	0,739	6,662	11,027	67,419	В
	1	1	K6	22	23	68	0,256	276	6,900	1,815	1983	-	13	508	0,543	34,125	0,733	6,695	11,071	66,426	В
	4	V	КЗ	12	13	78	0,144	260	6,500	1,805	1994	(x)	7	287	0,906	116,944	6,300	12,699	18,726	112,693	E
12	3	1	KI	28	29	62	0,322	368	9,200	1,863	1932	-	16	622	0,592	30,883	0,920	8,627	13,594	84,419	В
13	2	1	K1	28	29	62	0,322	369	9,225	1,863	1932	-	16	622	0,593	30,916	0,924	8,655	13,631	84,649	В
	1	7	KI	28	29	62	0,322	363	9,075	1,855	1941	-	15	612	0,593	31,343	0,924	8,563	13,512	83,828	В
	Knote	npunktssi	ummen:					5880						10593							
	Gewic	htete Mitt	telwerte:												0,595	35,892					

Entwicklungsstufe 1 – Spitzenstunde früh

A- und BT-Signalgruppen ausgeblendet!

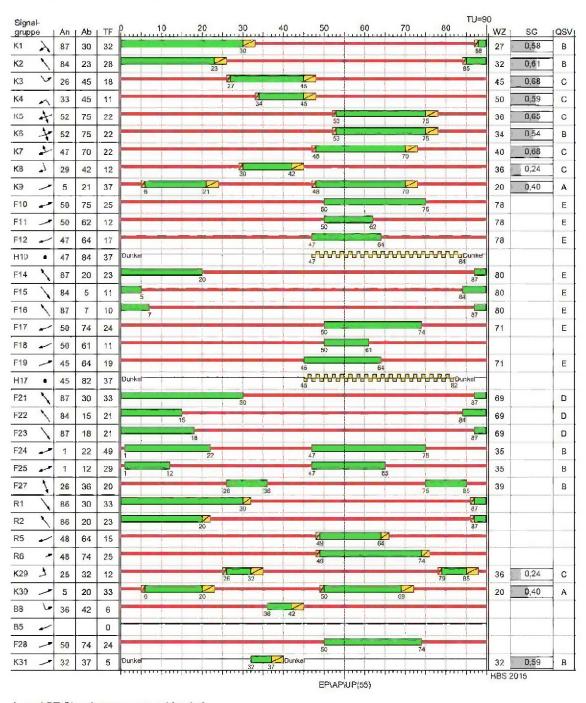


Entwicklungsstufe 1 – Spitzenstunde früh

Zuf	Fstr.Nr.	Symbol	SGR	t: [5]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>rjk	nc [Kfz/U]	C [Kłz/h]	×	tw [s]	NGE [Kfz]	N _{Ms} [Kfz]	NMS,95 [Kfz]	[m]	QSV
7	1	Y	K7	22	23	58	0,256	335	8,375	1,800	2000	-	13	512	0,654	38,672	1,245	8,729	13,726	82,355	C
1	2	1	K7	22	23	58	0,256	335	8,375	1,800	2000	-	13	512	0,654	38,672	1,245	8,729	13,726	82,356	C
	3	>	K29	12	13	78	0,144	70	1,750	1,800	2000	-	7	288	0,243	36,444	0,182	1,734	3,961	23,765	C
929	2	1	K9, K30	37	38	53	0,422	315	7,875	1,800	2000	-	21	844	0,373	19,322	0,347	5,749	9,804	58,824	Α
	1	1	K9, K30	37	38	53	0,422	315	7,875	1,800	2000	1	21	844	0,373	19,322	0,347	5,749	9,804	58,824	Α
8	1	4	К8	12	13	78	0,144	70	1,750	1,800	2000	-	7	288	0,243	36,444	0,182	1,734	3,961	23,766	C
5	1	2	KS, K31	27	28	63	0,311	332	8,300	1,894	1901	-	14	570	0,582	32,253	0,877	7,916	12,674	80,911	В
	2	1	K5	22	23	68	0,256	318	7,950	1,863	1932	-	12	495	0,642	38,310	1,169	8,247	13,104	81,376	С
	3	<	K5	22	23	58	0,256	20	0,500	1,868	1927	-	5	216	0,093	36,808	0,057	0,506	1,709	10,644	С
	1	Y	K2	28	29	62	0,322	352	8,800	1,931	1865	-	15	600	0,587	30,895	0,898	8,255	13,114	83,956	В
	2	1	K2	28	29	52	0,322	354	8,850	1,922	1873	-	15	603	0,587	30,868	0,898	8,297	13,169	84,387	В
24	3	1	K2	28	29	62	0,322	354	8,850	1,922	1873	-	15	603	0,587	30,868	0,898	8,297	13,169	84,387	В
	4	^	K4	11	12	79	0,133	150	3,750	1,890	1905	-	6	253	0,593	49,614	0,906	4,436	7,998	50,387	C
	3	*	Кб	22	23	58	0,256	20	0,500	2,138	1684	,	5	182	0,110	37,600	0,069	0,520	1,740	12,403	C
6	2	~	K6	22	23	68	0,256	259	6,475	1,868	1927	•	12	493	0,525	33,713	0,676	6,241	10,466	65,182	В
	1	7	K6	22	23	68	0,256	261	6,525	1,852	1944	-	12	498	0,524	33,633	0,673	6,280	10,518	65,632	В
	4	V	КЗ	18	19	72	0,211	240	6,000	1,829	1968	(x)	10	415	0,578	39,330	0,856	6,248	10,475	63,856	C
	3	1	K1	32	33	58	0,367	404	10,100	1,867	1928	-	18	708	0.571	27,057	0,835	8,923	13,975	86,952	В
13	2	1	K1	32	33	58	0,367	404	10,100	1,867	1928	-	18	708	0,571	27,057	0,835	8,923	13,975	86,952	В
	1	*	K1	32	33	58	0,367	402	10,050	1,857	1939	-	18	704	0,571	27,304	0,835	8,911	13,960	86,775	В
	Knote	npunktssi	ımmen:					5310						10336							
	Gewic	htete Mitt	elwerte:												0.550	31,549					

Entwicklungsstufe 1 - Spitzenstunde spät

A- und BT-Signalgruppen ausgeblendet!

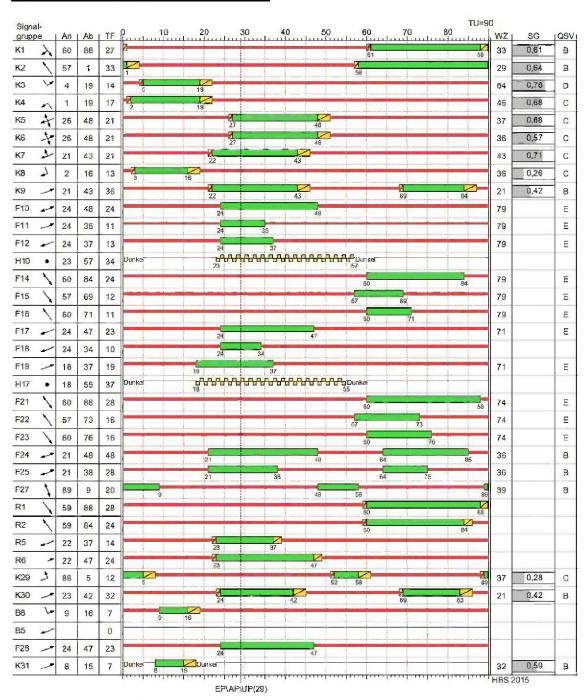


Entwicklungsstufe 1 – Spitzenstunde spät

Zuf	Fstr.Nr.	Symbol	5GR	tr [s]	ta [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	N _{MS,95} [Kfz]	t _x [m]	QSI
7	1	Y	K7	21	22	69	0,244	335	8,375	1,800	2000	-	12	488	0,686	41,771	1,475	9,079	14,175	85,050	C
,	2	1	K7	21	22	69	0,244	335	8,375	1,800	2000	-	12	488	0,686	41,771	1,475	9,079	14,175	85,050	C
	3	>	K29	12	13	78	0,144	80	2,000	1,800	2000	~	7	288	0,278	37,085	0,219	2,002	4,395	26,370	С
929	2	1	K9, K30	37	38	53	0,422	330	8,250	1,800	2000	-	21	844	0,391	19,609	0,376	6,087	10,260	61,560	A
	1	1	K9, K30	37	38	53	0,422	330	8,250	1,800	2000	-	21	844	0,391	19,609	0,376	6,087	10,260	G1,560	A
8	1	لم	К8	12	13	78	0,144	80	2,000	1,800	2000	-	7	288	0,278	37,085	0,219	2,002	4,395	26,370	C
	1	>	K5, K31	27	28	63	0,311	339	8,475	1,892	1903	-	14	571	0,594	32,682	0,928	8,147	12,974	82,670	8
5	2	1	K5	21.	22	69	0,244	321	8,025	1,847	1949	-	12	476	0,674	41,218	1,380	8,641	13,612	83,795	C
	3	<	K5	21	22	69	0,244	10	0,250	1,800	2000	-	5	208	0,048	36,793	0,028	0,253	1,104	6,624	C
	1	×	K2	34	35	56	0,389	458	11,700	1,825	1972	-	19	767	0,610	26,748	1,006	10,379	15,828	96,677	8
24	2	1	K2	34	35	56	0,389	456	11,650	1,832	1965	-	19	764	0,610	26,766	1,006	10,339	15,777	96,366	3
24	3	1	K2	34	35	56	0,389	466	11,650	1,832	1965	-	19	764	0,610	26,766	1,006	10,339	15,777	96,366	3
	4	^	K4	16	17	74	0,189	270	6,750	1,811	1988	-	9	376	0,718	50,961	1,746	8,090	12,887	77,786	D
	3	3	K6	21	22	69	0,244	40	1,000	2,036	1768	-	5	182	0,220	40,192	0,159	1,077	2,832	19,218	С
6	2	/	K6	21	22	69	0,244	274	6,850	1,834	1963	-	12	479	0,572	36, 167	0,835	6,854	11,282	68,978	C
	1	4	K6	21	22	69	0,244	276	6,900	1,815	1983	-	12	484	0,570	36,025	0,827	6,886	11,324	67,944	C
	4	y	K3	13	14	77	0,156	230	5,750	1,805	1994	(x)	8	311	0,740	58,915	1,959	7,445	12,060	72,577	D
13	3	1	K1	28	29	62	0,322	358	8,950	1,865	1930		16	622	0,576	30,339	0,854	8,304	13,178	81,914	8
13	2	1	K1	28	29	62	0,322	359	8,975	1,865	1930	-	16	522	0,577	30,372	0,858	8,332	13,214	82,138	8
	1	×	K1	28	29	62	0,322	353	8,825	1,858	1938	-	15	512	0,577	30,789	0,857	8,239	13,093	81,386	8
	Knote	npunktssu	ımmen:					5720						10478							
	Gewic	htete Mitt	elwerte:												0,584	33,288					

Entwicklungsstufe 2 - Spitzenstunde früh

A- und BT-Signalgruppen ausgeblendet!



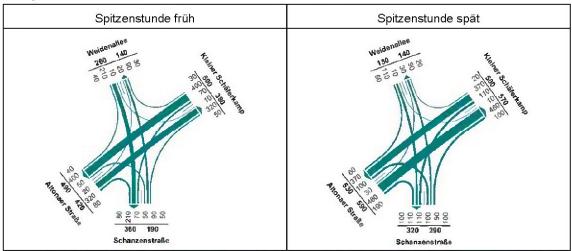
Entwicklungsstufe 2 – Spitzenstunde früh

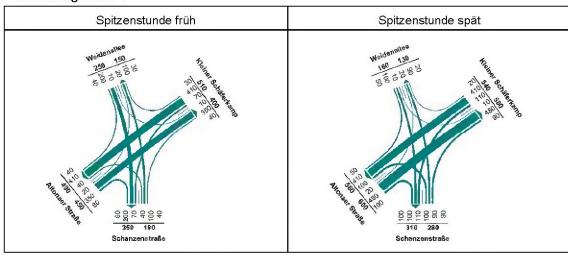
Zuf	Estr.Nr.	Symbol	SGR	t⊧ [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	te [s/Kfz]	qs [Kfz/h]	Им5,95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw/ [s]	Net [Kfz]	N _{MS} [Kfz]	Nw5,95 [Kfz]	Lx [m]	QSV
-	1	Y	K7	22	23	68	0,256	350	8,750	1,800	2000	-	13	512	0,684	40,470	1,461	9,353	14,525	87,150	С
7	2	1	K7	22	23	68	0,256	350	8,750	1,800	2000	1	13	512	0,684	40,470	1,461	9,353	14,525	87,150	С
	3	>	K29	12	13	78	0,144	70	1,750	1,800	2000	-	7	288	0,243	36,444	0,182	1,734	3,961	23,766	С
929	2	/	K9, K30	37	38	53	0,422	340	8,500	1,800	2000	-	21	844	0,403	19,807	0,397	6,317	10,568	63,408	A
	1	1	K9, K30	37	38	53	0,422	340	8,500	1,800	2000	-	21	844	0,403	19,807	0,397	6,317	10,568	63,408	Α
8	1	7	К8	12	13	78	0,144	70	1,750	1,800	2000	-	7	288	0,243	36,444	0,182	1,734	3,961	23,766	С
	1	>	K5, K31	27	28	63	0,311	337	8,425	1,900	1895	-	14	571	0,590	32,472	0,910	8,071	12,876	82,278	В
5	2	1	K5	22	23	68	0,256	323	8,075	1,863	1932	-	12	494	0,654	38,976	1,243	8,459	13,378	83,077	С
	3	4	KS	22	23	68	0,256	40	1,000	1,868	1927	1	5	213	0,188	38,519	0,130	1,038	2,761	17,196	С
	1	×	K2	28	29	62	0,322	368	9,150	1,933	1863	-	15	600	0,610	31,754	1,002	8,722	13,717	87,981	В
	2	1	K2	28	29	62	0,322	367	9,175	1,921	1874	1	15	603	0,609	31,684	0,997	8,735	13,733	87,919	В
24	3	1	K2	28	29	62	0,322	367	9,175	1,921	1874	1	15	603	0,609	31,684	0,997	8,735	13,733	87,919	В
	4	^	K4	11	12	79	0,133	150	3,750	1,890	1905	-	6	253	0,593	49,614	0,906	4,436	7,998	50,387	С
	3	>	K6	22	23	68	0,256	20	0,500	2,138	1684	-	5	180	0.111	37,697	0,069	0,521	1,742	12,417	С
6	2	_	K6	22	23	68	0,256	264	6,600	1,872	1923	-	12	493	0,535	34,025	0,707	6,397	10,675	66,612	В
	1	1	K6	22	23	68	0,256	266	6,650	1,850	1946	-	12	498	0,534	33,943	0,704	6,435	10,725	66,795	В
	4	V	кз	18	19	72	0,211	280	7,000	1,829	1968	(x)	10	415	0,675	44,637	1,380	7,820	12,549	76,499	С
13	3	1	K1	32	33	58	0,367	410	10,250	1,867	1928	-	18	708	0,579	27,304	0,867	9,106	14,209	88,408	В
13	2	1	k1	32	33	58	0,367	411	10,275	1,865	1930	-	18	708	0,581	27,367	0,875	9,142	14,256	88,615	В
	1	*	K1	32	33	58	0,367	409	10,225	1,860	19 36	-	18	704	0,581	27,614	0,875	9,129	14,239	88,680	В
	Knote	apunktss	ımmen:					5530						10331							
	Gewic	htete Mitt	elwerte												0,570	32,422					

Entwicklungsstufe 2 - Spitzenstunde spät

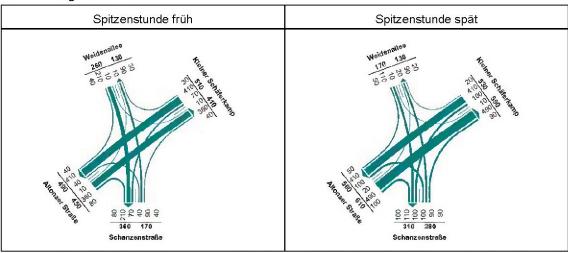
A- und BT-Signalgruppen ausgeblendet!

Entwicklungsstufe 2 – Spitzenstunde spät

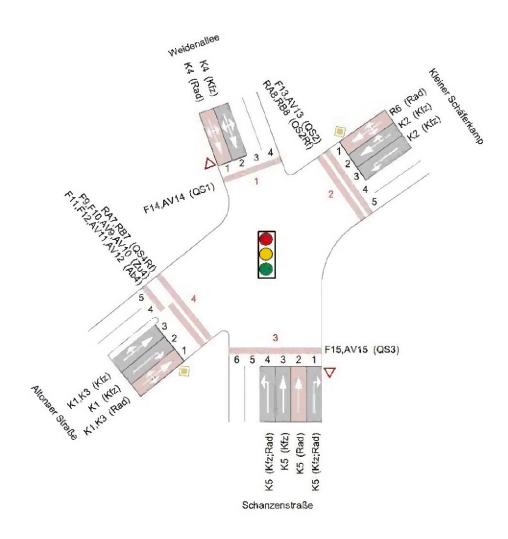

Zuf	Fstr.Nr.	Symbol	SGR	1º [s]	tA [s]	(s)	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,яз≻пк	n∈ [Kfz/U]	C [Kfz/h]	х	tw [s]	Nœ [Kfz]	N _{MS} [Kfz]	NM5,98 [Kfz]	L _x [m]	QSV
7	1	Y	К7	21	22	69	0,244	345	8,625	1,800	2000	-	12	488	0,707	43,334	1,661	9,541	14,765	88,590	С
/	2	/	K7	21	22	69	0,244	345	8,625	1,800	2000	-	12	488	0,707	43,334	1,661	9,541	14,765	88,590	С
	3	>	K29	12	13	78	0,144	80	2,000	1,800	2000	-	7	288	0,278	37,085	0,219	2,002	4,395	26,370	С
929	_ 2	1	K9, K30	36	37	54	0,411	345	8,625	1,800	2000	~	21	822	0,420	20,743	0,428	6,568	10,902	65,412	В
	1	1	K9, K30	36	37	54	0,411	345	8,625	1,800	2000	-	21	822	0,420	20,743	0,428	6,568	10,902	65,412	В
8	1	7	к8	13	14	77	0,156	80	2,000	1,800	2000	-	8	312	0,256	35,639	0,195	1,953	4,316	25,896	С
	1	Y	K5, K31	28	29	62	0,322	346	8,650	1,889	1906	-	15	590	0,586	31,693	0,894	8,193	13,034	82,818	В
5	2	/	К5	21	22	69	0,244	324	8,100	1,845	1951	-	12	476	0,681	41,682	1,433	8,777	13,787	84,790	С
	3	(XS	21	22	69	0,244	20	0,500	1,800	2000	-	5	208	0,096	37,512	0,059	0,512	1,722	10,332	С
	1	×	к2	33	34	57	0,378	478	11,950	1,825	1972	-	19	745	0,642	28,691	1,180	10,995	16,603	101,411	В
	2	1	X2	33	34	57	0,378	476	11,900	1,834	1963	-	19	742	0,642	28,714	1,180	10,954	16,551	101,193	В
24	3	1	K2	33	34	57	0,378	476	11,900	1,834	1963	-	19	742	0,642	28,714	1,180	10,954	16,551	101,193	В
	4	^	K4	17	18	73	0,200	270	6,750	1,811	1988		10	398	0,678	45,981	1,400	7,647	12,324	74,388	C
	3	2	к6	21	22	69	0,244	40	1,000	2,036	1768	-	S	181	0,221	40,307	0,160	1,079	2,836	19,245	С
6	2	1	К 6	21	22	69	0,244	274	6,850	1,834	1963	-	12	479	0,572	36,167	0,835	6,854	11,282	68,978	C
	1.	1	К6	21	22	69	0,244	276	6,900	1,815	1983	-	1.2	484	0,570	36,025	0,827	6,886	11,324	67,944	C
	4	y	К3	14	15	76	0,167	260	6,500	1,805	1994	(x)	8	333	0,781	63,638	2,565	8,792	13,807	83,091	D
17	3	1	K1	27	28	63	0,311	368	9,200	1,863	1932		15	601	0,612	32,446	1,012	8,841	13,870	86,133	В
13	2	1	K1	27	. 28	63	0,311	369	9,225	1,863	1932		15	601	0,614	32,526	1,022	8,878	13,917	86,425	В
	1	>	K1	27	28	63	0,311	363	9,075	1,855	1941	-	15	591	0,614	32,970	1,022	8,782	13,794	85,578	В
	Knote	npunktssi	ammen:					5880						10391							
	Gewic	htete Mitt	elwerte:												0,603	34,462					


28 Kleiner Schäferkamp / Weidenallee (LSA 219)

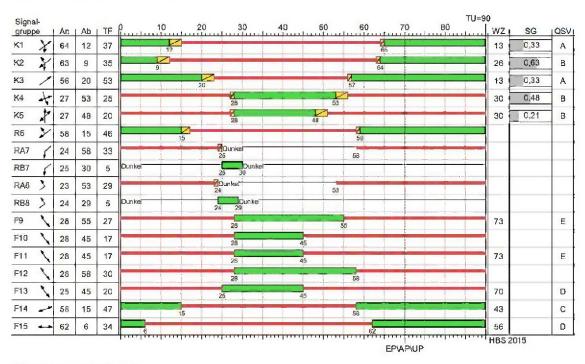
28.1 Kleiner Schäferkamp / Weidenallee – Knotenstrombelastungen


Analyse (VZ 07.07.2015)

Entwicklungsstufe 1

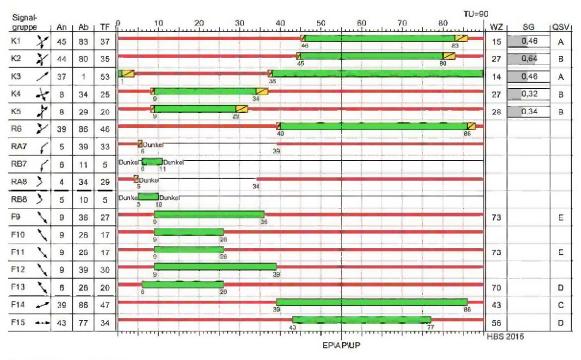


Entwicklungsstufe 2



28.2 Kleiner Schäferkamp / Weidenallee – Knotenpunktgeometrie Bestand

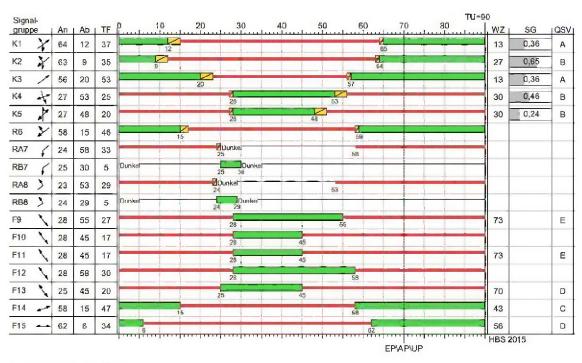
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Estr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	18 [s/Kfz]	qs [Kfz/h]	NMS.95>nk	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N ws [Kfz]	NMS96 [Kfz]	[m]	QSV
1	2	+	K4	25	26	65	0,289	260	6,500	1,883	1912	÷	14	545	0,477	30,245	0,548	5,927	10,044	63,036	В
2	2	>	K2	35	36	55	0,412	430	10,750	1,862	1933	-	20	792	0,631	26,101	1,117	11,049	16,671	102,427	В
2	3	ζ.	K2	35	36	55	0,400	70	1,750	1,935	1860	×								22,091	
	4	4	K5	20	21	70	0,233	50	1,250	2,258	1594	-	7	260	0,192	34,399	0,134	1,214	3,077	20,677	В
3	3	1	K5	20	21	70	0,233	90	2,250	1,994	1805	-	11	421	0,214	29,179	0,154	1,970	4,344	28,879	В
	7	+	K5	20	21	70	0,233	50	1,250	1,881	1914	-	11	446	0,112	27,747	0,070	1,054	2,790	17,493	В
	3	*	K1, K3	53	54	37	0,600	340	8,500	1,868	1927	-	26	1034	0,329	12,702	0,283	5,063	8,868	55,336	Α
4	2	~	K1	37	38	53	0,422	80	2,000	2,129	1691	-	18	714	0,112	16, 133	0,070	1,283	3,199	20,269	Α
	Knoten	punktssui	nmen:					1370						4212							
	Gewich	itete Mitte	lwerte:												0,434	23,545					

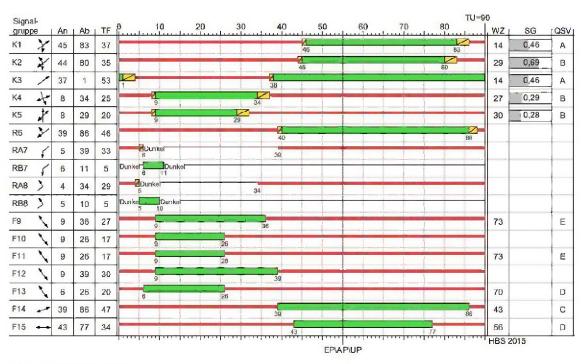
Analyse - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nas,95≻nk	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	Nise [Kfz]	N _{MS} [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
1	2	7	K4	25	26	65	0,289	180	4,500	1,815	1984	-	14	557	0,323	27,362	0,275	3,833	7,144	42,864	В
7	2	2	K2	35	36	55	0,399	390	9,750	1,839	1958	-	19	779	0,642	27,309	1,181	11,281	16,961	103,394	В
2	3	<	K2	35	36	55	0,400	110	2.750	1,861	1934	×								31,070	
	4	4	K5	20	21	70	0,233	100	2,500	2,032	1772	×								30,143	
3	3	†	K5	20	21	70	0,299	90	2,250	1,831	1966	-	14	555	0,342	26,584	0,301	4,010	7,397	45,136	В
	1	+	K5	20	21	70	0,233	100	2,500	1,969	1810	-	11	422	0,237	29,521	0,176	2,206	4,718	31,280	В
	3	*	K1, K3	53	54	37	0,600	490	12,250	1,822	1976	-	27	1065	0,460	14,440	0,510	8,019	12,808	77,847	Α
4	2	~	K1	37	38	53	0,422	100	2,500	2,016	1786	-	19	754	0,133	16,339	0,086	1,617	3,768	22,608	A
	Knoten	punktssur	mmen:					1560						4132							
	Gewich	tete Mitte	lwerte:												0,453	22,623					

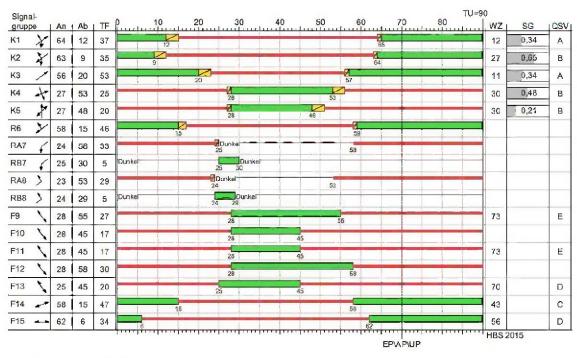
Entwicklungsstufe 1 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	FA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nмs,э5>пк	nc [Kfz/U]	C (Kfz/h)	×	tw [s]	Nge [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
1	2	4	K4	25	26	65	0,289	250	6,250	1,881	1914	-	14	544	0,460	29,904	0,509	5,656	9,678	60,681	В
-	2	2	K2	35	36	55	0,411	440	11,000	1,862	1934	-	20	790	0,646	26,751	1,206	11,430	17,148	105,357	В
2	3	<	K2	35	36	55	0,400	70	1.750	1,935	1860	х								22,259	
	4	*	KS	20	21	70	0,233	40	1,000	2,244	1604	-	7	267	0,150	33,434	0,099	0,954	2,606	17,403	В
3	3	•	KS	20	21	70	0,233	100	2,500	1,989	1810	-	11	422	0,237	29,521	0,176	2,206	4,718	31,280	В
	1	+	K5	20	21	70	0,233	40	1,000	1,868	1927	-	11	449	0,089	27,467	0,054	0,837	2,384	14,848	В
,	3	3/	K1. K3	53	54	37	0.600	370	9.250	1,870	1925	-	26	1040	0.356	12.899	0.321	5.589	9.587	59.880	A
4	2	^	K1	37	38	53	0,422	80	2,000	2,129	1691	-	18	714	0,112	16,133	0,070	1,283	3,199	20,269	A
	Knoten	punktssui	mmen:					1390						4226							
	Gewich	tete Mitte	werte:												0,445	23,432					

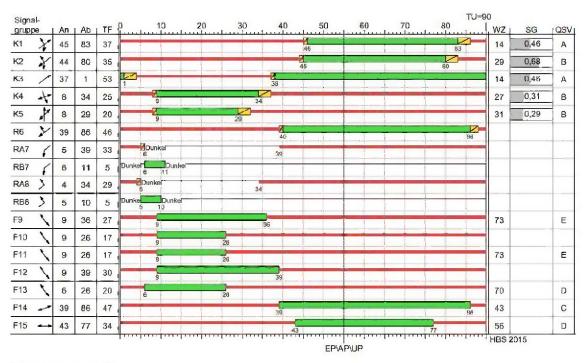
Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta (5)	ţs [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	cpi [Kfz/h]	Nм5,95>пк	nc [Kfz/U]	C [Kfz/h]	х	tw [s]	NGE [Kfz]	NMS [Kfz]	NMS,95 [Kfz]	(m)	QSV
1	2	+	K4	25	26	65	0,289	160	4,000	1,817	1981	-	14	555	0,288	26,872	0,231	3,364	5,466	38,796	В
,	2	2	K2	35	36	55	0,400	430	10,750	1,838	1959	-	20	781	0,691	29,491	1,541	12,735	18,770	114,422	В
2	3	<	K2	35	36	55	0,400	1.10	2,750	1,861	1934	x								31,181	
	4	•	K5	20	21	70	0,233	100	2,500	2,032	1772	-	9	354	0,282	32,799	0,224	2,344	4,933	29,835	В
3	3	1	K5	20	21	70	6,233	90	2,250	1,831	1966	-	11	458	0,197	28,832	0,138	3,947	4,307	26,281	В
	1		K5	20	21	70	0,233	90	2,250	1,994	1805	-	11	421	0,214	29,179	0,154	1,970	4,344	28,879	В
	3	311	K1, K3	53	54	37	0,600	500	12,500	1,821	1977	-	27	1097	0,456	13,577	0,502	7,949	12,717	77,218	Α
4	2	4	K1	37	38	53	0,422	100	2,500	2,016	1786	-	19	754	0.133	16,339	0,086	1,617	3,768	22,608	А
	Knoten	punktssui	mmen:					1580						4420							
	Gewich	tete Mitte	lwerte:												0,459	23,511					

Entwicklungsstufe 2 - Spitzenstunde früh

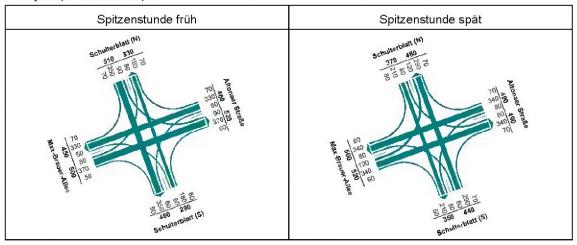


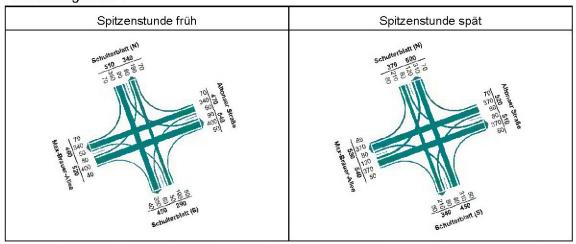
A-Signalgruppen ausgebiendet!

Zuf	Fstr.Nr.	Symbol	SGR	(s)	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
1	2	7	K4	25	26	65	0,289	260	6,500	1,883	1912	-	14	545	0,477	30,245	0,548	5,927	10,044	63,036	В
_	2	2	K2	35	36	55	0,410	440	11,000	1,862	1934		20	789	0,646	26,811	1,206	11,439	17,159	105,425	В
2	3	<	K2	35	36	55	0,400	70	1,750	1,935	1860	к								22,323	
	4	+1	K5	20	21	70	0,233	40	1,000	2,244	1604	-	7	261	0,153	33,725	0,101	0,959	2,615	17,463	В
3	3	1	К5	20	21.	70	0,233	90	2,250	1,994	1805	-	11	421	0,214	29,179	0,154	1,970	4,344	28,879	В
	1	+	K5	20	21	70	0,233	40	1,000	1,868	1927	-	11	449	0,089	27,467	0,054	0,837	2,384	14,848	8
	3	>	K1, K3	53	54	37	0,600	370	9,250	1,874	1921	-	27	1092	0,339	11,380	0,297	5, 246	9,120	57,018	Δ
4	2	~	К1	37	38	53	0,422	80	2,000	2,129	1691	-	18	714	0,112	16,133	0,070	1,283	3,199	20,269	A
	Knoten	punktssur	mmen:					1390						4271							
	Gewich	tete Mitte	lwerte:												0,444	23,102					

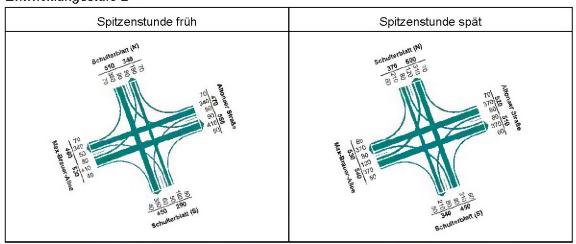
Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

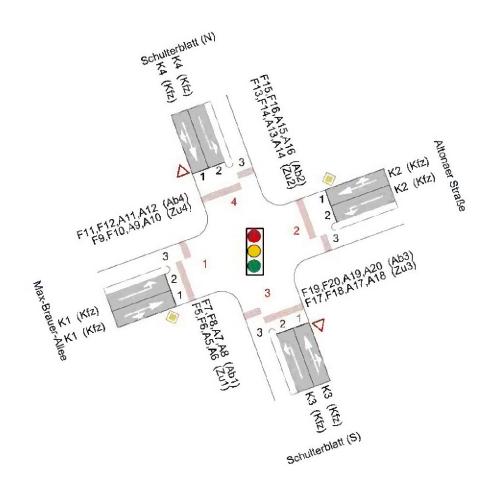

Zuf	Fstr.Nr.	Symbol	5GR	(s)	ta [s]	ts [s]	fA	q [Kfz/ħ]	m [Kfz/U]	ta [s/Kfz]	qs [Kfz/h]	N/M5,95>DK	nc [Kfz/U]	C [Kfz/h]	×	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	NMS,95 [Kfz]	[m]	QSV
1	2	4	K4	25	26	65	0,289	170	4,250	1,816	1983	-	14	557	0,305	27,073	0,252	3,594	6,800	40,800	В
_	2	>	K2	35	36	55	0,401	430	10,750	1,838	1959	-	20	783	0,677	28,710	1.424	12,318	18,254	111,276	В
2	3	\(\lambda\)	К2	35	36	55	0,400	100	2,500	1,868	1927	к								29,097	
	4	*	K5	20	21	70	0,233	100	2,500	2,032	1772	-	9	348	0,287	33,202	0,230	2,360	4,958	29,986	8
3	3	1	K5	20	21	70	0,233	90	2,250	L,831	1966		11	458	0,197	28,832	0,138	1,947	4.307	26,281	В
	1	F*	K5	20	21	70	0,233	90	2,250	1,994	1805	-	21	421	0,214	29,179	0,154	1,970	4,344	28,879	В
	3	3/	ка, ка	53	54	37	0,600	510	12,750	1,821	1977	-	27	1099	0,464	13,658	0,520	8,149	12,977	78,796	٨
4	2	^	K1	37	38	53	0,422	100	2,500	2,016	1786	-	19	754	0,133	16,339	0,086	1,617	3,768	22,608	A
	Knoten	punktssur	nmen:					1590						4420							
	Gewich	tete Mitte	lwerte:												0,457	23,245					


29 Max-Brauer-Allee / Schulterblatt (LSA 221)

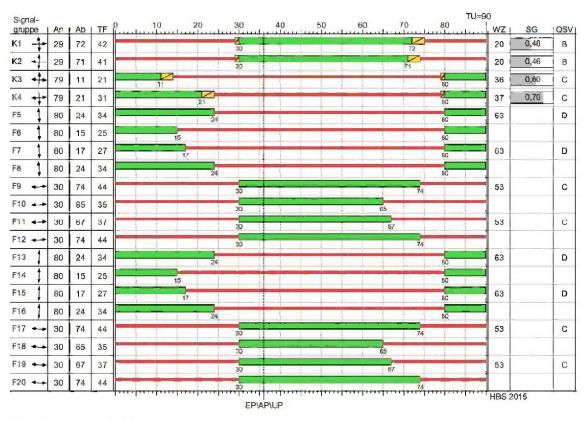
29.1 Max-Brauer-Allee / Schulterblatt – Knotenstrombelastungen


Analyse (VZ 07.07.2015)

Entwicklungsstufe 1

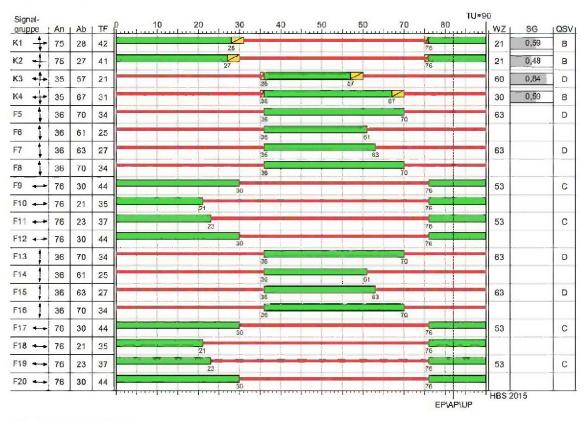


Entwicklungsstufe 2



29.2 Max-Brauer-Allee / Schulterblatt – Knotenpunktgeometrie Bestand

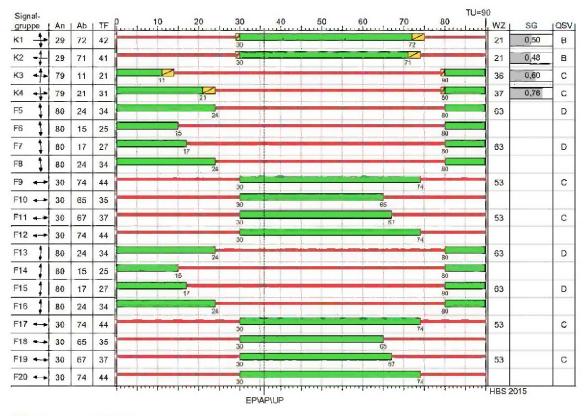
Analyse - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [s]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nr	nc [Kfz/U]	C [Kfz/h]	X	tw [s]	NGE [Kfz]	N _{MS} [Kfz]	Nмs.95 [Kfz]	Lx [m]	QSV
	1	4	K4	31	32	59	0,365	420	10,500	1,952	1845	-	17	674	0,757	37,486	2,324	13,511	19,728	128,311	С
4	2	Lo	K4	31	32	59	0,356	90	2,250	1,935	1860	X								29,793	
	1	1	K2	41	42	49	0,467	400	10,000	1,949	1847	-	22	862	0,464	18,488	0,519	7,323	11,900	77,255	Α
2	2	5	K2	41	42	49	0,467	60	1,500	1,958	1839	~	8	335	0,179	32,436	0,122	1,390	3,384	22,091	В
	2	*1	K3	21	22	69	0,244	50	1,250	1,935	1860	x								22,311	
3	1	40	КЗ	21	22	69	0,263	240	6,000	1,951	1845	-	12	486	0,597	35,943	0,938	7,276	11,838	76,923	С
	2	٤	K1	42	43	48	0,478	80	2,000	1,935	1860	-	9	357	0,224	32,343	0,163	1,852	4,154	26,793	8
1	1	-	K1	42	43	48	0.478	420	10,500	1.947	1849	-	22	884	0,475	18,083	0.545	7,636	12,309	79,984	Α
	Knotenpu	ınktssum:	men:					1760						3598							
-	Gewichte	te Mittelw	erte:												0,553	27,878					

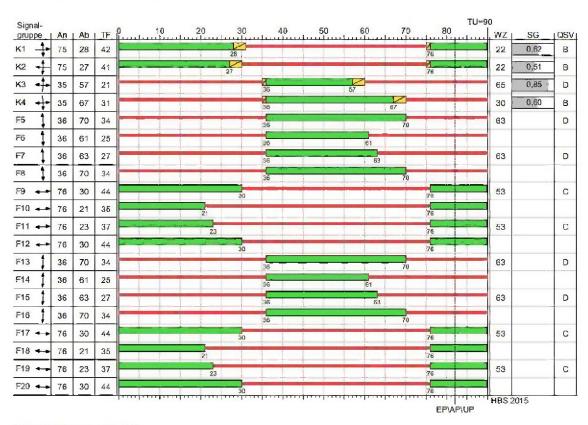
Analyse - Spitzenstunde spät



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	t# [5]	t. [s]	ts [s]	fa	q [Kfz/h]	m [Kfz/U]	ts [5/Kfz]	qs [Kfz/h]	NMS.95>11K	nc (Kfz/U)	C [Kfz/h]	×	tw [s]	NGE [Kfz]	Nws [Kfz]	NM5.95 [Kfz]	یا [m]	QSV
4	1	A	K4	31	32	59	0,338	290	7,250	1,949	1847	-	16	626	0,591	29,912	0,916	8,568	13,518	87,759	В
4	2	L=	K4	31	32	59	0,356	80	2,000	1,935	1860	х								28,851	
2	1	2	K2	41	42	49	0,467	410	10,250	1,949	1847	-	22	862	0,476	18,722	0,547	7,572	12,226	79,371	Α
2	2	4	K2	41	42	49	0,467	80	2,000	1,969	1828	1	9	347	0,231	32,644	0,170	1,864	4, 173	27,392	В
,	2	41	K3	21	22	69	0,244	80	2,000	1,858	1927	х								28,667	
13	1	1	K3	21	22	69	0,273	360	9,000	1,867	1928	-	13	526	0,837	60, 162	4,286	14,652	21,126	131,319	D
	2	7	К1	42	43	48	0,478	120	3,000	1,935	1860	×								37,339	
1	1	4	K1	42	43	48	0,477	400	10,000	1,946	1850	-	22	883	0,589	20,832	0,911	10,367	15,812	102,652	В
	Knotenpu	ınktssumi	men:					1820						3244							
	Gewichte	te Mittelw	erte:												0,608	32,230					

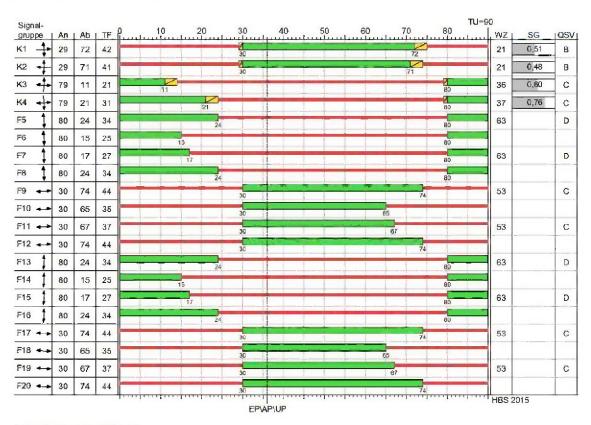
Entwicklungsstufe 1 – Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [5]	ta [s]	ts [s]	ÍA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	Nws,95>nk	nc [Kfz/U]	C [Kfz/h]	x	tw [s]	NGE [Kfz]	Nius [Kfz]	NMS,95 [Kfz]	[m]	QSV
	1	7	K4	31	32	59	0,365	420	10,500	1,952	1845	-	17	674	0,757	37,486	2,324	13,511	19,728	128,311	С
4	2	10	K 4	31	32	59	0,356	90	2,250	1,935	1860	х								29,793	
2	1	2	K2	41.	42	49	0,467	410	10,250	1,949	1847	-	22	862	0,476	18,722	0,547	7,572	12,226	79,371	А
2	2	5	К2	41	42	49	0,467	60	1,500	1,958	1839		8	323	0,186	33,015	0,128	1,406	3,411	22,267	В
	2	47	КЗ	21	22	69	0,244	50	1,250	1,935	1860	х								22,311	
3	1	7-	K 3	21	22	69	0,263	240	6,000	1,952	1845	-	12	486	0,597	35,943	0,938	7,276	11,838	76,923	Ç
	2	1	K1	42	43	48	0,478	80	2,000	1,935	1860	-	9	350	0,229	32,733	0,168	1,865	4,175	26,929	В
Τ	1	7	K1	42	43	48	0,478	440	11,000	1,950	1847	1-	22	883	0,498	18,551	0,603	8,139	12,964	84,318	A
	Knotenpi	inktssumi	men:					1790						3578							
	Gewichte	te Mittelw	erte:												0,560	27,921					

Entwicklungsstufe 1 - Spitzenstunde spät



A-Signalgruppen ausgebiendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [5]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs [Kfz/h]	NMS,95>nx	nc [Kfz/U]	C [Kfz/h]	х	tw [5]	Nge [Kfz]	N _M s [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
	1	7	K4	31	32	59	0,336	290	7,250	1,949	1847	-	16	621	0,596	30,246	0,938	8,618	13,583	88,181	В
4	2	4	K4	31	32	59	0,356	80	2,000	1,935	1860	x	ĺ							29,025	
	1	2	К2	41	42	49	0,467	440	11,000	1,950	1846	-	22	863	0,510	19,430	0,635	8,331	13,212	85,852	Α
2	2		К2	41	42	49	0,467	80	2,000	1,969	1828	-	8	334	0,240	33,346	0,179	1,888	4,212	27,648	В
	2	*	КЗ	21	22	69	0,244	SO	2,000	1,868	1927	×								28,667	
3	1	1	КЗ	21	22	69	0,273	370	9,250	1,865	1930	-	13	527	0,854	65,341	5,025	15,690	22,389	139,170	D
	2	2	К1	42	43	48	0,478	120	3,000	1,935	1860	х								37,920	
1	1	-5	К1	42	43	48	0,474	420	10,500	I,947	1849	-	22	877	0,616	21,846	1,038	11,057	16,693	108,471	В
	Knotenpu	ınktssumi	men:					1880						3222							
4	Gewichte	te Mittelw	erte:												0,628	33,834					

Entwicklungsstufe 2 - Spitzenstunde früh



A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	ta [s]	ts [5]	fA	q [Kfz/h]	m [Kfz/U]	ts [s/Kfz]	qs {Kfz/h}	NMS95>nk	nc [Kfz/U]	⊂ {Kfz/h]	X	tw [s]	NGE [Kfz]	Nws [Kfz]	NMS.95 [Kfz]	[m]	QSV
	1	A	K4	31	32	59	0,365	420	10,500	1,952	1845	-	17	674	0,757	37,486	2,324	13,511	19,728	128,311	С
4	2	10	K4	31	32	59	0,356	90	2,250	1,935	1860	×								29,793	
	1	2	K2	41	42	49	0,467	410	10,250	1,949	1847	-	22	862	0,476	18,722	0,547	7,572	12,226	79,371	A
2	2	4	К2	41	42	49	0,467	60	1,500	1,958	1839	-	8	317	0,189	33,376	0,131	1,415	3,427	22,371	В
_	2	*	К3	21	22	69	0,244	50	1.250	1,935	1860	×								22,311	
3	1	4	КЗ	21	22	69	0,263	240	6,000	1,952	1845	~	1.2	486	0,597	35,943	0,938	7,276	11,838	76,923	С
	2	2	К1	42	43	48	0,478	80	2,000	1,935	1860	-	9	350	0,229	32,733	0,168	1,865	4,175	26,929	В
1	1	1	ΚI	42	43	48	0,478	450	11,250	1,950	1847	-	22	883	0,510	18,804	0,635	8,401	13,303	86,523	A
	Knotenpu	ınktssumi	men:					1800						3572							
	Gewichte	te Mittelw	erte:												0,563	27,945					

Entwicklungsstufe 2 - Spitzenstunde spät

A-Signalgruppen ausgeblendet!

Zuf	Fstr.Nr.	Symbol	SGR	tr [s]	t4 [5]	\$5 [5]	fA	q [Kfz/h]	m (Kfz/U)	ta [s/Kfz]	qs [Kfz/h]	№ 5,95> дк	nc [Kfz/U]	C [Kf2/h]	x	tw [s]	NGE [Kfz]	NMS [Kfz]	NM5,95 [Kfz]	Lx [m]	QSV
	1	4	K4	31	32	59	0,336	290	7,250	1,949	1847	_	16	621	0,596	30,246	0,938	8,618	13,583	88,181	В
4	2	4	K4	31	32	59	0,356	80	2,000	1,935	1860	х								29,025	
	1	2	K2	41	42	49	0,467	440	11,000	1,950	1846	-	22	863	0,510	19,430	0,635	8,331	13,212	85,852	A
2	2	7	K2	41	42	49	0,467	80	2,000	1,969	1828	-	8	334	0,240	33,346	0,179	1,888	4,212	27,648	В
_	2	47	КЗ	21	22	69	0,244	80	2,000	1,868	1927	х								28,667	
3	1	1/2	K3	21	22	69	0,273	370	9,250	1,865	1930	-	13	527	0,854	65,341	5,025	15,690	22,389	139,170	D
	2	2	K1	42	43	48	0,478	120	3,000	1,935	1860	×								37,920	
1	1	~	K1	42	43	48	0,474	420	10,500	1,947	1849	-	22	877	0,616	21,846	1,038	11,067	16,693	108,471	В
	Knotenpu	ınktssumi	men:					1880						3222							
	Gewichte	te Mittelw	erte:												0,628	33,834					

- [1] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH, Verkehrsuntersuchung "Neue Mitte Altona", Hamburg, 2010.
- [2] SBI Beratende Ingenieure für Bau Verkehr Vermessung GmbH, Verkehrsuntersuchung Bahrenfeld-Nord, Hamburg, Juni 2014.
- [3] Carlsberg Deutschland Logistik GmbH (Herr Michael Donalies), Angaben zum aktuellen Verkehr der Holsten-Brauerei, E-Mail vom 09.11.2016.
- [4] Freie und Hansestadt Hamburg, Landesbetrieb für Straßen, Brücken und Gewässer, S1, Bestandsunterlagen für die Lichtsignalanlagen 7, 131, 151, 153, 600, 621, 706 und 709, Hamburg, November 2016.
- [5] Freie und Hansestadt Hamburg, Behörde für Wirtschaft, Verkehr und Innovation, VE2 Verkehrs- und Infrastrukturentwicklung, Ergebnisse von Verkehrszählungen an ausgewählten Knotenpunkten, Hamburg, 2012 2015.
- [6] Gerch Development GmbH, Angaben zum Nutzungskonzept (Datei: 20160908_HH_Holsten_Vorgaben Wettbewerb aus LOI.xlsx), E-Mail vom 19.10.2016.
- [7] Schmeck Junker Ingenieurgesellschaft mbH, Informationen zu Ausbauplanungen an der LSA Kaltenkircher Platz, im Auftrag der Freien und Hansestadt Hamburg, Landesbetrieb Straßen, Brücken und Gewässer, Projekt Busbeschleunigung GF/PB -, Telefonat am 10.11.2016 mit Frau Tanja Windhorst.
- [8] Ingenieurplanung-Ost GmbH, Veloroute 13 Abschnitt 1 Holstenplatz: Lageplan 1. Verschickung, Zeichnungs-Nr.: 13-12279-04-01, Greifswald: im Auftrag der Freien und Hansestadt Hamburg, LandesbetriebStraßen, Brücken und Gewässer, Geschäftsbereich Straße, Fachbereich S2 -, Juli 2016.
- [9] Masuch+Olbrisch Ingenieurgesellschaft für das Bauwesen GmbH, Mitte Altona Äußere Erschließung, Harkortstraße: Verkehrstechnischer Lageplan Variante 1a und 5 (Vorabzug), Vorplanung, Oststeinbek: im Auftrag der Freien und Hansestadt Hamburg, Landesbetrieb Straßen, Brücken und Gewässer, Geschäftsbereich Straßen, Fachbereich S2 -, 21.04.2016 bzw. 13.04.2016.
- [10] B. f. S. u. U. A. f. B. u. H. Freie und Hansestadt Hamburg, Fachanweisung "Notwendige Stellplätze und notwendige Fahrradplätze", Hamburg, 21.01.2013.
- [11] Schlothauer & Wauer Ingenieurgesellschaft für Straßenwesen, Lisa+ Planungssoftware für Lichtsignalanlagen im Straßenverkehr (Version 5.1.2), Berlin, 2015.
- [12] Forschungsgesellschaft für Straßen- und Verkehrswesen, Handbuch für die Bemessung von Straßenverkehrsanlagen HBS, Köln, 2001/2009.
- [13] Forschungsgesellschaft für Straßen- und Verkehrswesen, Handbuch für die Bemessung von Straßenverkehrsanlagen HBS Teil S Stadtstraßen, Köln, 2015.

- [14] Hoffmann-Leichter Ingenieurgesellschaft mbH, Verkehrszählung am Berliner Ring in Wolfsburg am 07.04.2016, Wolfsburg/Berlin, 2016.
- [15] SBI Verkehr Beratende Ingenieure für Bau-Verkehr-Vermessung, Verkehrsuntersuchung Wolfsburg-Ost, Hamburg, 2014.
- [16] WVI Prof. Dr. Wermuth Verkehrsforschung und Infrastrukturplanung GmbH, Integriertes regionales Verkehrskonzept für die Region Großraum Braunschweig, Braunschweig, fortlaufend.
- [17] Hoffmann-Leichter Ingenieurgesellschaft mbH, Verkehrsgutachten für den Neubau eines Einzelhandelsstandorts mit Boardinghouse im Berliner Ring 11-14 in Wolfsburg, Berlin, 2016.
- [18] Forschungsgesellschaft für Straßen- und Verkehrswesen, Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen, Köln, 2006.
- [19] BPR Beratende Ingenieure mbB, Alternative Grüne Route (AGR): Varianten 1 und 4a, Lagepläne, Wolfsburg, Stand: 12.04.2016.
- [20] BPR Beratende Ingenieure mbB, Alternative Grüne Route (AGR): Entwurfsplanung der Varianten Bus 1, Bus 2.5 und Bus 3.3, Lagepläne, Wolfsburg, Stand: 12.10.2017/02.03.2018.
- [21] Thomas Schüler Architekten Stadtplaner mit Faktorgruen, Städtebaulicher Ideenwettbewerb "Wohnbauentwicklung Nordsteimke/Hehlingen", Düsseldorf/Freiburg, 2015.
- [22] Quanto Verkehrsanalyse GmbH, Verkehrszählung am Knotenpunkt L322/K111/Steinbeker Straße in Wolfsburg am 18.06.2013, Wolfsburg/Hamburg, Stand 2013.

Legende der Bewertungstabellen

für signalisierte Einmündungen/Knotenpunkte (ohne LSA)		
Zuf.	Zufahrt	[-]
Fstr.Nr.	Fahrstreifen-Nummer	[-]
Symbol	Fahrstreifen-Symbol	[-]
SGR	Signalgruppen	[-]
t_{F}	Freigabezeit	[s]
t A	Abflusszeit	[s]
ts	Sperrzeit	[s]
fA	Abflusszeitanteil	[-]
q	Belastung	[Kfz/h]
m	Mittlere Anzahl eintreffender Kfz pro Umlauf	[Kfz/U]
t_B	Mittlerer Zeitbedarfswert	[s/Kfz]
qs	Sättigungsverkehrsstärke unter konkreten Bedingungen	i [Kfz/h]
$N_{MS,95}$	Kurzer Aufstellstreifen vorhanden	[-]
n _C	Abflusskapazität pro Umlauf	[Kfz/U]
С	Kapazität des Fahrstreifens	[Kfz/h]
X	Auslastungsgrad	[-]
t _W	Mittlere Wartezeit	[s]
N_{GE}	Mittlere Rückstaulänge bei Freigabeende	[Kfz]
N _{MS}	Mittlere Rückstaulänge bei Maximalstau	[Kfz]
N _{MS,95}	Rückstau bei Maximalstau, der mit einer stat. Sicherheit von 95% nicht überschritten wird	t [Kfz]
L_{x}	Erforderliche Stauraumlänge	[m]
QSV	Qualitätsstufe des Verkehrsablaufes	[-]
TU	Umlaufzeit der Lichtsignalanlage	[s]
Т	Untersuchungszeitraum	[s]
für vorfahrtgeregelte Einmündungen/Knotenpunkte (ohne LSA)		
QFz	Verkehrsstärke	[Fz/h]
QPE	Sättigungsverkehrsstärke unter konkreten Bedingungen	n [Pkw-E/h]
$C_{\text{PE}},C_{\text{Fz}}$	Kapazität [[Pkw-E/h] bzw. [Fz/h]
X_i	Auslastungsgrad	[-]
R	Kapazitätsreserve	[Fz/h]
t _W	Mittlere Wartezeit	[s]